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Abstract

This paper presents a new method of Missing Point Estimation (MPE) to derive efficient reduced-order models for

large-scale parameter-varying systems. Such systems often result from the discretization of nonlinear partial differential

equations. A projection-based model reduction framework is used where projection spaces are inferred from proper

orthogonal decompositions of data-dependent correlation operators. The key contribution of the MPE method is to

perform online computations efficiently by computing Galerkin projections over a restricted subset of the spatial

domain. Quantitative criteria for optimally selecting such a spatial subset are proposed and the resulting optimization

problem is solved using an efficient heuristic method. The effectiveness of the MPE method is demonstrated by

applying it to a nonlinear computational fluid dynamic model of an industrial glass furnace. For this example, the

Galerkin projection can be computed using only 25% of the spatial grid points without compromising the accuracy

of the reduced model.

Index Terms

model reduction, proper orthogonal decomposition, time-varying systems, parameter-varying systems

I. INTRODUCTION

This paper presents a novel reduced-order modeling strategy for large-scale parameter-varying systems. The

proposed method uses selective spatial sampling to yield models of low order that can be solved efficiently in online

computations. Such systems often result from the discretization of nonlinear partial differential equations (PDEs),

ordinary differential equations (ODEs) and differential algebraic equations (DAEs), and have many applications of

practical interest, including computational fluid dynamic (CFD) models and Electronic Design Automation models.

In recent years, simulation capabilities for systems governed by PDEs have reached a considerable level of

maturity, particularly with regard to the development and use of commercial packages. For example, in the glass
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furnace industry, such packages have served as tools for modeling physical systems, for analyzing the performance

and stability of systems, and for computer aided engineering designs [6], [14], [1].

In the case of spatial-temporal systems, numerical simulation is typically achieved by spatial discretization of the

governing PDEs using, for example, finite volume or finite element methods. The spatial discretization procedure

leads to large-scale systems of ordinary differential equations (ODEs), typically of order 103 − 108, depending on

the complexity of the governing equations and the desired level of accuracy. The underlying governing equations

are generally nonlinear and the model parameters are often functions of state variables (hence time-varying), which

adds considerably to the degree of complexity [43], [2], [4], [5]. Thus, for problems of practical interest, the

computational effort required to simulate these systems is substantial.

Both the large dimension of the system and the large computational requirements render such simulation models

inadequate for control design and online optimization. To facilitate model-based control design, it is essential to have

accurate low-order models that are significantly faster to solve than the original model. A reduced-order model can

be derived using a projection-based framework, in which the system variables and governing equations are projected

onto low dimensional subspaces. In the context of parameter- and time-varying systems, the resulting system is of

reduced order, but is not necessarily computationally efficient to solve. This is because online simulations of the

reduced models still require computations on the large scale.

The contribution of this paper is a new method – the Missing Point Estimation (MPE) approach – that achieves the

goals of low model order, efficient simulation and accurate predictions using a projection-based model reduction

framework combined with selective spatial sampling to efficiently perform the necessary online computations.

Given a simulated or measured signal that evolves both in time and space, we first characterize a basis of spatial

functions that achieves optimal approximation properties with respect to the measured signal by considering partial

(finite) sums of spectral expansions. This so called ‘proper orthogonal’ (or ‘principal component’) basis has as

its distinguishing features that it is data dependent, physically relevant, computable and optimal in a well defined

sense. To enhance the computational speed of the resulting reduced model, we propose to sample the spatial

domain in such a way that orthonormality of basis functions is preserved in the sampled domain by the introduction

of a suitable bilinear form. It is shown that this bilinear form plays a crucial role in questions on exact signal

reconstruction from sampled observations (missing point estimations) and on deriving expressions for alias errors

in approximate signal reconstructions. An algorithm is then derived for the selection of optimal samples using a

heuristic optimization method to minimize the alias error in any interpolated signal in the sampled domain. We

apply the theoretical results to a model of an industrial glass feeder. The merits of the procedure for model reduction

and the enhancement of computational speed by missing point estimations are demonstrated in a rather complicated

heat transition mechanism in a glass feeder.

A. Previous work

The proper orthogonal decomposition (POD) technique [24], [38], [26] derives an empirical basis from a collection

of simulation or experimental data. In recent years, the POD method has seen widespread, successful application
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to model reduction for CFD applications. For this reason, it is chosen, in combination with a glass furnace control

example, as a case study for the methodology presented in this paper. However, the MPE approach is applicable

to other projection-based model reduction techniques, such as balanced truncation [31], [37], [15], [22] and Krylov

subspace methods [20], [18].

Improvements in the numerical efficiency of reduced-order models have been focused mostly on the development

of alternative, more efficient methods to compute the approximating basis functions [30], [15], [41]. Efforts to

address the problem of high computational cost for simulation of nonlinear and time-varying systems include the

work of Rewienski and White, who use a trajectory piecewise-linear approximation scheme [35], [36]. In this

approach, a nonlinear system is represented as a weighted combination of linear models, which are obtained by

linearizing the nonlinear system at selected points along a state trajectory. This approach has been successfully

applied to nonlinear analogue circuits and micromachined devices [35], [36], and to a nonlinear CFD model of a

supersonic diffuser [21]. Other methods that do not rely on linearization of the system have been proposed more

recently in [10], [4], and [5]. In [10], the approach for accelerating the reduced model simulation is similar to that

proposed here, i.e., by constructing the nonlinear behavior using a subset of the original equations. In that work,

the choice of the selected original equations is made based on a priori knowledge rather than using a systematic

approach. The MPE approach was discussed in [4] and [5] in the context of computational fluid dynamics models,

while preliminary work on MPE was presented in [2]. The mathematical foundation of MPE can be traced back

to classical sampling theory [45], [33], [32] or, more specifically, to the problem of approximate signal recovery

from inhomogeneously sampled multidimensional signals. Some signal recovery results from [13], [33], [23], [32]

are generalized here to non-band-limited spectral expansions of multidimensional signals by arbitrary orthonormal

POD bases. Quantitative criteria are introduced in [4] and [5] as a means to select suitable sample points so as to

minimize alias effects in interpolations.

B. Paper organization

The paper is organized as follows. Preliminaries and notational issues are collected in Section II. The method of

reduced-order modeling via POD is introduced in Section III. Section IV describes the construction of reduced-order

models using selective spatial sampling. A heuristic optimization procedure to select the sample points is given in

Section V. The concepts are implemented on a simulation model of a glass feeder, which is a section in a glass

furnace. The results of the implementations are presented in Section VI. Conclusions are given in Section VII.

II. PRELIMINARIES AND NOTATION

Let R, R
+, R

n and R
n×p denote the field of real numbers, the sets of positive reals, real n-vectors and real n×p

matrices, respectively. For A ∈ R
n×p, A> is the transpose of A, A−L = (A>A)−1A> and A−R = A>(AA>)−1

are the left and right inverses of A, respectively, assuming the inverses exist. The inner product and norm of an inner

product space X are denoted as (·, ·) and ‖ · ‖, respectively, or as (·, ·)X and ‖ · ‖X if the context requires indicating

the underlying space. If X is a Lebesgue measurable set then the space of all equivalence classes (i.e. pointwise
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equality almost everywhere on X) of measurable functions f : X → Y, which are square integrable over X is

denoted by L2(X,Y). This is a Hilbert space when equipped with its usual inner product. The restriction of f to a

subset X0 ⊂ X is the mapping f̃ : X0 → Y defined by f̃(x) = f(x) with x ∈ X0 and is also denoted by f̃ = f |X0
.

The boundary of a set X0 ⊆ X is the set theoretic difference between its closure and interior and denoted by ∂X0.

The function col stacks the elements in its argument as a column vector.

III. PROPER ORTHOGONAL DECOMPOSITION

A. The POD basis problem

In the study of dynamical systems that evolve in space and time we consider signals w that depend on a spatial

variable x and on time t. That is, we consider signals w : X × T → W where X is a bounded spatial domain in a

d-dimensional Euclidean space R
d, T ⊆ R denotes the set of time instants of interest and W is a normed vector

space of dimension dim(W) = w in which w(x, t) assumes its values. For any such function w and time instant

t ∈ T, the map w(t) : x 7→ w(x, t) is assumed to be an element of some Hilbert space X of functions defined on

X. We let W = L2(T,X ) be the space of all functions t 7→ w(t) that map T into X and that are square integrable

in the sense that

‖w‖W =

(∫

T

‖w(t)‖2
X dt

)1/2

is finite. W becomes a Hilbert space with inner product

(v,w)W =

∫

T

(v(t),w(t))X dt

where v,w ∈ W . We will consider dynamical spatial-temporal systems B that are subsets of W and view elements

of B as time depending functions w where, for fixed time t ∈ T, the expression w(t) stands for the function w(·, t)

in X that acts on the spatial domain X.

Spectral decompositions of signals by (infinite) sequences of orthogonal functions underlie many numerical

techniques of approximation. A central theme in this paper is therefore the construction of an (empirical) orthonormal

basis of the Hilbert space X that proves useful for the representation and approximation of signals. Suppose that

X is a separable Hilbert space so that it admits [27] a countable orthonormal basis {ϕk, k ∈ I} where the index

set I = {1, 2, . . .} has cardinality equal to the (possibly infinite) dimension of X . Given such an orthonormal basis,

we introduce for any w ∈ W the spectral expansion

w(x, t) =
∑

k∈I

ak(t)ϕk(x), x ∈ X, t ∈ T, (1)

where the expansion coefficients are given by

ak(t) = (w(t), ϕk)X , k ∈ I, t ∈ T. (2)

The approximation of w(x, t) using a finite sum retaining the first n terms in (1) is denoted wn(x, t).
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Definition 1: Given an observation w ∈ W , a POD basis is an orthonormal basis {ϕk, k ∈ I} of X with the

property that the error

‖w −wn‖
2
W :=

∫

T

‖w(t) −

n∑

k=1

(w(t), ϕk)X ϕk‖
2
X dt (3)

is minimal for all values of n > 0.

A POD basis therefore has the property that any truncation in the expansion (1) of w is an optimal approximation to

w in the normed space W . POD bases can be characterized and computed by means of an eigenvalue decomposition

of a suitably defined correlation operator. Precisely, define, for w ∈ W , the data-correlation operator Cw : X → X

by

(ψ1, Cwψ2)X :=

∫

T

(ψ1,w(t))X · (ψ2,w(t))X dt ψ1, ψ2 ∈ X . (4)

It is immediate that Cw is a well defined linear, bounded, self-adjoint and non-negative operator on X . If X happens

to be finite dimensional, then Cw is simply a non-negative definite matrix. It can be shown [24], [8], [29] that an

orthonormal basis {ϕk, k ∈ I} of X is a POD basis if and only if ϕk , k ∈ I, are normalized eigenfunctions

corresponding to the ordered eigenvalues λ1 ≥ λ2 ≥ · · · of Cw.

The truncation level n depends on the problem at hand and can be determined in many ways. We introduce the

criterion

Pn =

∑n
k=1 λk∑
k∈I

λk
. (5)

The correlation tolerance 0 < Ptol < 1 then defines the truncation level as the minimal value n for which Pn ≥ Ptol.

In typical applications Ptol = 0.99 [24]. Once n has been set, the reduced-order model can be constructed by

conducting a Galerkin projection. For models describing diffusion phenomena in computational fluid dynamics, a

number of case studies ([26], [24], [3]) show that the order can be reduced to as low as 1% of the order of the

original model.

B. Approximate solutions and Galerkin projections

In most applications, spatial-temporal systems are described by partial differential equations and a typical evolution

equation can be written in the form

Dtw(x, t) = F (w(x, t), . . . , Dp
xw(x, t), . . .) (6)

subject to boundary and initial conditions on (subsets of) the (sufficiently smooth) boundary set ∂(X × T). Here,

F is some function, Dt is the partial derivative operator Dt = ∂
∂t and Dp

x is a compact notation for an arbitrary

partial derivative in the spatial coordinate x. Precisely, Dp
x is defined by

Dp
xw = Dp1

x1
Dp2

x2
· · ·Dpd

xd
w =

∂|p|w

∂xp1

1 · · · ∂xpd

d

,

where p denotes a multi-index p = (p1, . . . , pd) that consists of d non-negative integers pi, and where |p|, the length

of the multi-index, is defined as |p| =
∑d

i=1 pi. By convention, D0,··· ,0
x w = w. For the important class of linear
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spatial-temporal systems, (6) simplifies to

Dtw(x, t) =
∑

0≤|p|≤m

cpD
p
xw(x, t), (7)

where
∑

0≤|p|≤m cpD
p
x is a polynomial differential operator with real coefficients cp and degree m in the partial

derivative operator Dx.

Throughout it is assumed that solutions w of (6) are continuous functions on the closure of X × T and are

sufficiently often continuously differentiable as elements of the Hilbert space W . The notion of an approximate

solution of (6) will be defined in terms of projections of either the solution space of (6) or the residual associated

with (6) onto a finite dimensional subspace. Specifically, let S be a finite dimensional subspace of X , dim(S) = n,

and suppose that w = 1. That is, we consider scalar valued functions in (6) only.

Definition 2: Let S be an n dimensional subspace of X and let Wn = L2(T,S). An element wn ∈ Wn is an

• approximate weak solution of order n of (6) if

(Dtwn(t), ϕ)S = F ((wn(t), ϕ)S , . . . , (D
p
xwn(t), ϕ)S , . . .) (8)

for all ϕ ∈ S and almost all t ∈ T.

• Galerkin approximate solution of order n of (6) if

(Dtwn(t), ϕ)S = (F (wn(t), . . . , Dp
xwn(t), . . .) , ϕ)S (9)

for all ϕ ∈ S and almost all t ∈ T.

The set of all approximate weak solutions of order n is denoted Bweak
n and the set of all Galerkin approximate

solutions of order n is denoted BGalerkin
n .

It is important to point out that for linear systems the expressions (8) and (9) coincide because of the linearity

of F . This means that a projection of the solution space and a projection of the residual associated with a linear

PDE (6) coincide and result in the property that Bweak
n = BGalerkin

n . For nonlinear systems this is evidently no longer

the case. We refer to [25], [40] for a rigorous treatment of solution concepts and Galerkin projections in nonlinear

evolutionary PDEs.

In computational fluid dynamics, S typically consists of finite element approximations of functions in X . We will

be particularly interested in Galerkin approximations where S = Xn = span(ϕk , k = 1, . . . , n) where {ϕk, k ∈ I}

is a POD basis of X . In that case, elements wn ∈ Wn assume the form

wn(x, t) =

n∑

k=1

ak(t)ϕk(x)

where the coefficient functions ak : T → R are square integrable. Condition (8) implies that the expansion

coefficients of approximate weak solutions satisfy the ordinary differential equation

ȧk(t) = F (ak(t), . . . ,

n∑

`=1

a`(t) (Dp
xϕ`, ϕk)S , . . .) for all t ∈ T, k = 1, . . . , n. (10)
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Similarly, (9) implies that the coefficients satisfy

ȧk(t) = (F (wn(t), . . . , Dp
xwn(t), . . .) , ϕ)S . (11)

In spite of a substantial reduction of model order that can be accomplished in this manner, the computational gain

in computing solutions of the reduced-order model may still be modest because the evaluation of the inner products

in the right-hand side of (10) or (11) is computationally intensive. Indeed, (10) and (11) amount to evaluating the

inner products (·, ·)S over the entire spatial domain, which may become a formidable task in large-scale or high-

dimensional systems, and computationally prohibitive in parameter- and time-varying models where the evaluation

of these inner products needs to be performed online. This paper proposes a new methodology to accelerate these

online computations. In Section IV, it is shown that under suitable conditions, the same reduced-order model can

be obtained with a much simpler right-hand-side expression than the one in (10).

IV. MISSING POINT ESTIMATIONS AND PARTIAL OBSERVATIONS

The key contribution of this paper is a method to make the approximate models Bweak
n and BGalerkin

n suitable for

fast computations. In order to achieve this goal, we consider a sampling of the signal w : X×T → W. The sampled

points can be regarded as measurements or observations of w. We first consider the exact reconstruction of signals

from sampled data or sampled measurements by means of an appropriate interpolation of the sampled signal. We

then address the approximate recovery of signals from sampled or partial observations.

The methodology presented in this section extends the idea of the missing point estimation (MPE) described

in [4], [5], [3], which is based upon the theory of Gappy POD, developed by Everson and Sirovich [17]. The

gappy POD method has been applied to data reconstruction problems, such as reconstruction of facial images

[17], flow structure [12], [42], and flow sensing [44]. The key idea of gappy POD is to estimate the expansion

coefficients {ak, k ∈ I} from incomplete (gappy) data. As such, this estimation problem belongs to the realm of

signal reconstruction problems that are abundant in signal processing [45], [23], [33], [32]. Results on exact signal

reconstruction that are presented here are inspired by signal reconstruction problems from inhomogeneously sampled

data. Especially, the results in [13] are generalized here to non-band-limited spectral expansions of multidimensional

signals in terms of an arbitrary orthonormal POD basis.

Suppose that X0 is a finite subset of N distinct points X0 = {x1, . . . , xN} in the domain X and suppose that a

measurement or partial observation w̃ is available at the collection of the points in X0. That is, a measurement is

a function w̃ : X0 ×T → W defined on N spatial samples X0 and time T that satisfies the restriction w̃ = w|X0×T

for some unobserved signal w : X × T → W. Throughout, tildes and hats will be used to indicate sampled and

interpolated signals, respectively. We consider here the problem to reconstruct the unobserved signal w from its

samples w̃.

Suppose that {ϕk, k ∈ I} is a basis for X and assume that X is either finite dimensional or a set of continuous

functions. Let ϕ̃k := ϕk|X0
denote the restriction of the basis function ϕk to the samples X0. Define, for n > 0

August 20, 2007 DRAFT



MISSING POINT ESTIMATION IN MODELS DESCRIBED BY PROPER ORTHOGONAL DECOMPOSITION 8

and a set {ãk, k = 1, . . . , n} of coefficient functions ãk : T → R the expansion

w̃n(x, t) :=
n∑

k=1

ãk(t)ϕ̃k(x), x ∈ X0, t ∈ T (12)

together with its interpolation

ŵn(x, t) :=
n∑

k=1

ãk(t)ϕk(x), x ∈ X, t ∈ T. (13)

The name ‘interpolation’ is justified since ŵn coincides with w̃n on the sample points in X0.

Introduce the N × n real matrix Φ̃ that consists of the samples of the first n basis functions ϕk, defined by

Φ̃ :=




ϕ1(x1) . . . ϕn(x1)
...

...

ϕ1(xN ) . . . ϕn(xN )


 . (14)

Then (12) can be written in matrix form as

w̃n(t) := Φ̃ã(t), (15)

where ã(t) = col(ã1(t), . . . , ãn(t)) is the vector of expansion coefficients and w̃n(t) = col(w̃n(x1, t), . . . , w̃n(xN , t))

is the vector of samples at time t.

We define for any v, w ∈ X the bilinear form:

(v, w)N :=
N∑

i,j=1

v(xi)qi,jw(xj), (16)

where qi,j is the (i, j)th entry of the N ×N real symmetric matrix

Q := Φ̃(Φ̃>Φ̃)−1(Φ̃>Φ̃)−1Φ̃>,

and where we assume that n ≤ N is such that Φ̃ is injective. Since Q = Q> ≥ 0, we have that ‖w‖N := (w,w)
1/2
N

defines a semi-norm on X . Moreover, since (v, w)N only depends on the samples ṽ = v|X0
and w̃ = w|X0

we also

write, with some abuse of notation, (ṽ, w̃)N for the right-hand side of (16) and view (·, ·)N as a bilinear form on

the sampled functions ṽ and w̃.

The introduction of the bilinear form (16) enables us to formulate both exact and approximate reconstruction of

the signal w, as described in the following subsections.

A. Exact reconstruction

The following lemma motivates the importance of (16), relating the bilinear form on the sampled functions to

the inner product in X .

Lemma 3: If Φ̃ defined in (14) is injective, then

(v, w)N = (v, w)X for all v, w ∈ Xn, (17)

where Xn = span(ϕk , k = 1, . . . , n).
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Proof: Let v, w ∈ Xn. Then, with ak = (v, ϕk), bk = (w,ϕk), a = col(a1, . . . , an) and b = col(b1, . . . , bn),

there holds v =
∑n

k=1 akϕk, w =
∑n

`=1 b`ϕ` and

(v, w)X =

(
n∑

k=1

akϕk,

n∑

`=1

b`ϕ`

)
=

n∑

k=1

akbk = a
>
b = ṽ

>
(
Φ̃−L

)>
Φ̃−L

w̃ = ṽ
>Qw̃ = (v, w)N ,

where in the fourth equality we used that (15) and the injectivity of Φ̃ implies that the coefficients a and b are

uniquely determined by Φ̃−L
ṽ and Φ̃−L

w̃, respectively.

Lemma 3 implies that (16) defines an inner product on the space Xn whenever Φ̃ is injective. In particular, for

v, w ∈ Xn, this means that (v, w)X can equivalently be evaluated on the sampled values ṽ = v|X0
and w̃ = w|X0

by employing (16). Furthermore, setting v = ϕk and w = ϕ` in (17), implies that {ϕk, k = 1, . . . , n} is also an

orthonormal basis of Xn with respect to the inner product (16).

Now define

ãk(t) = (w(t), ϕk)N , k = 1, . . . , n, t ∈ T, (18)

and let ŵn be the corresponding interpolant (13). Using the definition in (18) and the result from Lemma 3, the

following theorem provides the condition for exact reconstruction of the signal w from its partial observations.

Theorem 4: Let X0 = {x1, . . . , xN} be a set of N distinct samples, and let {ϕk, k ∈ I} be an orthonormal basis

of X . Suppose Φ̃ defined in (14) has rank n. If w(t) = w(·, t) ∈ Xn = span(ϕ1, . . . , ϕn) for t ∈ T, then w can

be reconstructed exactly from its partial observations w̃ = w|X0×T in that

ŵn(x, t) = w(x, t), for all x ∈ X, t ∈ T

by taking the expansion coefficients (18) in the interpolant (13). In particular, any signal w in the approximate

models Bweak
n and BGalerkin

n can be reconstructed exactly in this way.

Proof: If w(·, t) ∈ Xn then w(x, t) =
∑n

k=1 ak(t)ϕk(x) so that its samples w̃(x, t) =
∑n

k=1 ak(t)ϕ̃k(x).

Hence, using vector notation, we can write w̃(t) = Φ̃a(t). By the injectivity of Φ̃, a(t) is uniquely defined by the left

inverse a(t) = Φ̃−L
w̃(t), where Φ̃−L = (Φ̃>Φ̃)−1Φ̃>. Using the definition of Q, it follows that a(t) = Φ̃>Qw̃(t)

so that, by (16), its kth entry reads ak(t) = (w(t), ϕk)N . Consequently, with ãk(t) defined by (18), we have

ãk(t) = ak(t) for all t ∈ T and for all k = 1, . . . , n. But then the interpolant (13) reads

ŵn(x, t) =

n∑

k=1

ãk(t)ϕk(x) =

n∑

k=1

ak(t)ϕk(x) = w(x, t)

for all x ∈ X and all t ∈ T, which gives the result.

Thus, provided that the unobserved signal w(·, t) belongs to Xn for all t ∈ T, this signal can be reconstructed

perfectly from its N samples w̃ by taking the spectral coefficients (18) in the interpolant (13). It is important

to observe that, by (16), the coefficients ãk only depend on the sampled signals w̃ and ϕ̃k . In particular, no

information of w other than its partial observations is necessary to recover w from its samples. With harmonic

basis functions and equidistant samples, Theorem 4 specializes to the classical Shannon sampling theorem that

has been profoundly studied in information and sampling theory [45], [33], [32]. Following standard engineering

terminology, the minimum value of n for which w ∈ Xn is the bandwidth of w. If no such n exists, the signal
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is said to be non-band-limited. Theorem 4 therefore provides a signal recovery strategy for inhomogeneously

sampled multidimensional signals that are represented by spectral expansions in terms of arbitrary orthonormal

bases {ϕk}k∈I.

B. Approximate reconstruction

Of course, there are many cases where w(·, t) /∈ Xn for all time instances t ∈ T. For these cases, exact signal

reconstruction from samples w̃ will not be possible.

Using the bilinearity of (16), we have that the coefficients ãk defined in (18) satisfy

ãk := (w, ϕk)N =
∑

`∈I

a` (ϕ`, ϕk)N =
n∑

`=1

a` (ϕ`, ϕk)N +
∑

`>n

a` (ϕ`, ϕk)N =

= ak + aalias,k (19)

where

aalias,k :=
∑

`>n

a` (ϕ`, ϕk)N , k = 1, . . . , n

is the kth alias coefficient. Hence, the kth coefficient ãk not only depends on ak but also on the higher order

expansion coefficients a` of w with ` > n. The alias expression (19) is well documented for specific orthonormal

bases such as bases of trigonometric functions or bases consisting of Laguerre or Chebeshev polynomials [33],

[45], [13] but is hardly ever used for multidimensional signals expanded through arbitrary orthonormal bases such

as the ones used here.

Due to the alias expression (19), the interpolant ŵn defined in (13) with spectral coefficients (18) will in general

not be equal to w and incur an interpolation error ‖w − ŵ‖. Using (19), we can express this error as

‖w − ŵn‖
2
W = ‖w − wn + wn − ŵn‖

2
W = ‖w − wn‖

2
W + ‖wn − ŵn‖

2
W =

=
∑

k>n

‖ak(t)‖2
L2(T,R) +

n∑

k=1

‖aalias,k(t)‖2
L2(T,R). (20)

Here, the first summation is due to the projection error w−wn and the second summation is due to the alias error:

ŵn(x, t) − wn(x, t) =

n∑

k=1

aalias,k(t)ϕk(x). (21)

It follows that the interpolation error is never less than the projection error and never less than the alias error.

If exact signal reconstruction is not possible, one may adopt an anti-alias approach by either increasing n, or by

using an anti-alias filter that forces coefficients a` = 0 for ` > n. In the transform domain, the coefficients aalias,k

depend linearly on the coefficients a`, ` > n. Consequently, the alias operator An : `2(I,R) → R
n defined by

Ana := col(aalias,k, k = 1, . . . , n) (22)

which maps the expansion coefficients a` of a given observation to its corresponding alias error coefficients, is a

linear surjective map. Its induced norm

‖An‖ := sup
06=a∈`2(I,R)

‖Ana‖

‖a‖
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is a suitable measure for the alias sensitivity and depends on the truncation level n and, by (16), on the choice of

the N distinct sample points in X0. The following theorem characterizes the alias sensitivity. In the next section,

this characterization is used to derive a quantitative metric for selecting samples.

Theorem 5: Let {ϕk, k ∈ I} be an orthonormal basis of X and let X0 = {x1, . . . , xN} be a sample set consisting

of N disjoint points in X. Then

1) The alias sensitivity ‖An‖ is given by ‖An‖ = λ
1/2
max(A), where A is the n×n real symmetric matrix whose

(k, `)th entry is given by

Ak,` =
∑

p>n

(ϕp, ϕk)N · (ϕp, ϕ`)N .

2) If X is finite dimensional and equipped with the standard Euclidean inner product, then the alias sensitivity

is ‖An‖ = λ
1/2
max(A), where A is the matrix

A = (Φ̃>Φ̃)−1 − I.

Proof:

1) The alias sensitivity ‖An‖ = λ
1/2
max(A), where A = AnA

∗
n. Hence, it suffices to show that A = AnA

∗
n. The

adjoint A∗
n of An : `2(I,R) → R

n is the mapping A∗
n : R

n → `2(I,R) defined by

(A∗
nb)(`) :=






0 if 1 ≤ ` ≤ n

∑n
k=1 bk (ϕ`, ϕk)N if ` > n

.

Indeed, with a ∈ `2(I,R) and b ∈ R
n there holds

(Ana, b) =
n∑

k=1

bk
∑

`>n

a` (ϕ`, ϕk)N =
∑

`>n

a`

n∑

k=1

bk (ϕ`, ϕk)N = (a,A∗
nb) ,

where the first inner product is the standard inner product in R
n and the last inner product is the standard

inner product in `2(I,R). Consequently, if ek and e` denote the kth and `th unit vectors in R
n, we have that

the (k, `)th entry of the n× n matrix AnA
∗
n is given by

(ek, AnA
∗
ne`) = (A∗

nek, A
∗
ne`)`2

=
∑

p>n

(ϕp, ϕk)N · (ϕp, ϕ`)N .

Hence, A = AnA
∗
n as claimed.

2) To prove the second item, suppose that X is finite dimensional, say of dimensionK, equipped with the standard

Euclidean inner product. Let Φ ∈ R
K×K be the matrix whose kth column defines the kth orthonormal basis

function ϕk of X , k = 1, . . . ,K. Furthermore, let Φ̃ be as in (14) and define Φ̃tail as the N × (K−n) matrix

whose kth column is the vector of restrictions ϕ̃k = ϕk|X0
, n < k ≤ K. Then, using the orthonormality of

the basis {ϕk, k = 1, . . . ,K}, we have that Φ>Φ = ΦΦ> = IK and
(
Φ̃ Φ̃tail

)(
Φ̃ Φ̃tail

)>
= IN . (23)
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Using the expression for A derived in the first part of this proof, (23) and (16), we infer that

A = Φ̃>QΦ̃tailΦ̃
>
tailQΦ̃ = Φ̃>Q

(
IN − Φ̃Φ̃>

)
QΦ̃ =

= Φ̃>Φ̃(Φ̃>Φ̃)−2Φ̃
(
IN − Φ̃Φ̃>

)
Φ̃(Φ̃>Φ̃)−2Φ̃>Φ̃ =

= (Φ̃>Φ̃)−1
(
Φ̃>Φ̃ − (Φ̃Φ̃>)2

)
(Φ̃>Φ̃)−1 =

= (Φ̃>Φ̃)−1 − In.

Here, we used in the second equality that (23) implies Φ̃tailΦ̃
>
tail = IN − Φ̃Φ̃>. This gives the result.

C. Construction of MPE reduced-order models

In this subsection, the results on signal reconstruction and approximation are extended to the construction of

reduced-order models using missing point estimations. This is a key enabler to derive reduced-order models that are

computationally efficient to solve for nonlinear and time-varying systems. The main result of this subsection provides

conditions under which the reduced-order models can equivalently be represented through function evaluations that

involve the bilinear form (16).

We consider reduced-order models of a dynamic spatial-temporal system B ⊂ W . Let n > 0 and suppose that

Bweak
n and BGalerkin

n are the nth order systems specified in Definition 2 with

S = Xn = span(ϕ1, . . . , ϕn).

Let X0 consist of N distinct points in the spatial domain X. Then define B̃weak
n as the set of all functions wn in

Wn = L2(T,S) that satisfy

(Dtwn(t), ϕ)N = F ((wn(t), ϕ)N , . . . , (Dp
xwn(t), ϕ)N , . . .) (24)

for all ϕ ∈ S and almost all t ∈ T. Similarly, let B̃Galerkin
n be the solution set of all wn ∈ Wn that satisfy

(Dtwn(t), ϕ)N = (F (wn(t), . . . , Dp
xwn(t), . . .) , ϕ)N (25)

for all ϕ ∈ S and almost all t ∈ T. The evaluation of each of the arguments in the right-hand sides of (24) and

(25) involves, by (16), only N function evaluations and is therefore considerably faster than the evaluation of the

inner products in the right-hand-sides of (8) and (9). In particular, solutions to (24) or (25) require considerably

less computational effort when compared to solving (10) and (11). Moreover, the following result shows that, under

mild conditions, this computational acceleration does not incur any loss of accuracy.

Theorem 6: If n ≤ N is such that Φ̃ defined in (14) is injective then

B̃weak
n = Bweak

n .

Moreover, if B is linear then

B̃weak
n = B̃Galerkin

n = Bweak
n = BGalerkin

n .
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Proof: This result is an immediate consequence of Lemma 3. Indeed, wn ∈ Bweak
n implies wn(t) ∈ S = Xn

for all t. But then, by Lemma 3, the differential equations (8) and (24) are identical, so that the solution sets B̃weak
n

and Bweak
n coincide, provided that Φ̃ is injective. The second statement is an immediate consequence of the linearity

of F in (6) and linearity of the inner product in (25).

In other words, under a mild condition of injectivity of Φ̃ the reduced-order model Bweak
n coincides with the reduced-

order model B̃weak
n which can equivalently be obtained by (24). In addition, for the linear case the reduced-order

models of Definition 2, can equivalently be obtained through (24) or (25).

The MPE method therefore yields computationally efficient reduced order models for both nonlinear and linear

cases. Nonlinear reduced order models that are fast to solve are particularly attractive for a vast range of engineering

applications, where nonlinear PDEs are frequently employed to describe the physical systems.

V. CHOICE OF SAMPLES

The question how to select the N distinct samples X0 = {x1, . . . , xN} is of evident interest for the overall

accuracy of the reduced-order model and has not been addressed so far. The choice of suitable sensor locations

by which the system dynamics can be recovered is a prime practical motivation behind this question. This section

describes selection criteria to define optimal choices of sensor locations. We propose an efficient heuristic opti-

mization approach and two screening criteria. The criteria are independent of the original model equations, which

is important for numerical tractability and simplicity of design. Indeed, for large-scale systems it is more feasible

to develop selection criteria using data rather than using the model. Throughout this section it is assumed that X is

finite dimensional, say of dimension K. X is identified with R
K and equipped with the standard Euclidean inner

product. In particular, the hypothesis of item 2 of Theorem 5 applies throughout this section.

A. Optimization of the point selection

In (20) it has been shown that the estimation error ‖w − ŵn‖W , obtained from the interpolation of a partial

observation on the grid X0, can be represented as the norm of the projection error w − wn and the alias error

ŵn −wn. The induced norm of the alias sensitivity An, as characterized in Theorem 5, obviously depends on the

choice of N distinct points X0, simply because the bilinear form (3) depends on the sample points X0. Let

e′n(X0) := ‖An‖
2 (26)

express this dependence.

Using the assumptions on X we have, by item 2 of Theorem 5,

e′n(X0) =‖ (Φ̃>Φ̃)−1 − I ‖ (27)

so that the minimization of e′n(X0) over all subsets X0 ⊂ X of cardinality N amounts to selecting X0 in such a

way that ‖ (Φ̃>Φ̃)−1 − I ‖ is minimal. The relation expressed in (27) implies that the closer Φ̃>Φ̃ is to the identity

matrix, the smaller the sensitivity of the aliasing error, as the gain from the neglected POD modes to the alias error

is small.
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This result is analogous to well-known results in the literature of experimental design [11],[16],[19] where an

optimal selection of N factors out of K experiments needs to be made. The search for N factors is done by

maximizing a particular information matrix. Similar to what we have derived in Section IV, maximization of the

information matrix also amounts to preserving the orthogonality of the information matrix when N factors are

chosen. In Section IV, we introduced a bilinear form to arrive at a similar result.

If e′n(X0) ≤ γ for some upperbound γ > 0, then (Φ̃>Φ̃)−1 − I ≤ γI from which we infer (after pre- and

post-multiplying by (Φ̃>Φ̃)1/2 and using that Φ̃>Φ̃ ≤ I) that also

I − Φ̃>Φ̃ ≤ γI.

To avoid computing the inverse in (27), we will instead minimize the criterion

en(X0) =‖ I − Φ̃>Φ̃ ‖ (28)

over all subsets X0 of cardinality N . In particular, the above reasoning shows that en(X0) ≤ e′n(X0). As matrix

norm, we consider the Frobenius norm

‖ X ‖2:=

n∑

i=1

n∑

j=1

|Xij |
2. (29)

Selection of X0 so as to minimize en(X0) is a combinatorial optimization problem, which is generally not a very

appealing optimization strategy for large-scale systems. In this paper we employ a non-combinatorial suboptimal

approach to construct X0, using the greedy algorithm. This algorithm is also implemented in [44] to characterize

suitable sensor locations. Given a current subset of points X0, the greedy algorithm adds a point to X0 by looping

over all possible candidate points, computing the restricted basis Φ̃ that would result if the candidate point were

added to X0, and evaluating the condition number c(Φ̃>Φ̃) defined by

c(Φ̃>Φ̃) :=
λmax(Φ̃

>Φ̃)

λmin(Φ̃>Φ̃)
. (30)

The point that yields the lowest value of c(Φ̃>Φ̃) is then added to X0, and the process is repeated. In this way, the

subset X0 is constructed by choosing one point at a time. The algorithm is terminated when c(Φ̃>Φ̃) ≤ ctol, where

ctol > 0 is a user defined condition number, typically chosen to be well below 100 [26], [28]. The resulting sample

set X0 will not minimize en(X0), but the search mechanism is efficient.

Algorithm 7: The greedy algorithm

Input a (possibly empty) set X
0
0 ⊂ X of N0 pre-selected points, a threshold ctol > 0 for the condition number,

and a set Y ⊆ X of K0 candidate points. Set j = 0.

1) Repeat the following steps until c
(
Φ̃>(Xj

0)Φ̃(Xj
0)
)
≤ ctol or until j = K0.

• Set j = j + 1.

• For all xkg
∈ Y\X

j−1
0 , determine

cg = c
(
Φ̃>(Xg)Φ̃(Xg)

)
,

where Xg = X
j−1
0 ∪ {xkg

} and g = 1, . . . ,K0 − j + 1.
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• Find the index g∗ for which cg∗ ≤ cg for all 1 ≤ g ≤ K0 − j + 1.

• Set X
j
0 = X

j−1
0 ∪ {xkg∗

}. Then X
j
0 consists of N0 + j points.

2) Output X0 = X
j
0 is a set of N = N0 + j sample points.

For very large systems, it may be computationally expensive to consider all points in the high-dimensional space

X as candidate points. In this case, a screening criterion may be applied to first select a subset of sample points Y,

to which the greedy algorithm is applied. This criterion could also be used for selecting the initial sample set X
0
0.

B. Point screening criteria

The first point screening criterion orders the points as xk1
, . . . , xkK0

according to the quantity en such that

en(xk1
) ≤ en(xk2

) ≤ · · · ≤ en(xkK0
). (31)

This criterion is motivated by the desire to minimize the alias sensitivity ‖An‖ over all selections of N distinct

rows in (14).

A second screening criterion, which incorporates the relationship with the collected snapshot data, considers the

ensemble of projected signals wn(t) ∈ R
K where t ∈ T and sets

Wn :=
(
wn(t1) · · · wn(tM )

)
.

Let ΠX0
denote the canonical projection from X = R

K to X0 = R
N , and define, for all time instants t ∈ T, the

projections w̄n(t) = ΠX0
wn(t). Set

Wn :=
(
w̄n(t1) · · · w̄n(tM )

)
.

The second screening criterion measures the difference between the time correlation matrix W >
n Wn constructed

from the ensemble {wn(tj), j = 1, . . . ,M} and the correlation matrix W
>

nWn built from the restricted ensemble

{w̄n(tj), j = 1, . . . ,M}. The difference is measured by ên(X0) defined as

ên(X0) =‖W>
n Wn −W

>

nWn ‖ . (32)

The points in X are reordered as xk1
, . . . , xkK

such that

ên(xk1
) ≤ ên(xk2

) ≤ · · · ≤ ên(xkK
). (33)

Using either (31) or (33) the first K0 points {xk1
, . . . , xkK0

} are included in the set of candidate points Y, which

are then input to the greedy algorithm.

VI. APPLICATION

A. Glass Melt Feeder Application

The missing point estimation approach is implemented on a numerical model of a glass melt feeder. A glass melt

feeder, shown in the schematic Figure 1, is the section of a glass furnace that is located between the refiner and
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the glass melt exit point. The feeder is fed by incoming glass melt from a reactor. The rate of glass melt flow is

measured in tons/day and is known in the glass industry as the pull rate.

Glass quality is highly sensitive to variations in glass composition and energy transfer in the furnace and the feeder.

The control of glass quality specifications predominantly involves the concise tracking of a non-uniform temperature

distribution within a specified range. Non-concise tracking of temperature will produce defective glass products,

such as irregular shapes, cracks, or bubbles [7]. The actuators in a glass feeder are the temperature distributions of

the so-called crown, which is a combustion chamber above the glass melt. Several temperature sensors are placed

in the glass melt and the measurements are fed back to controllers to adjust the crown temperature. The crown is

divided into several zones; the temperature distribution in each zone is adjusted to reach the desired temperature

profiles in the glass feeder.

Fig. 1. Schematic view of a glass feeder, the glass melt is entering the feeder from the left side and at the right end is discharged as glass

gob to the forming machine.

Until now, the glass industry has mainly used conventional PID controllers. Fast (100 to 1000 times faster than

real time), accurate (absolute errors in the range of 0.2 degrees) simulation models provide an opportunity to use

more sophisticated, model-based process control.

A CFD model is used for high-fidelity predictive simulations of the glass melt flow and temperature distribution

in the feeder. In general, the flow can be considered to be incompressible and laminar. The flow is governed by

the Navier-Stokes equations, which describe the pressure field p and the velocity field (vx, vy, vz) in the x, y and z

directions, respectively, and the energy equations for the temperature field w [9]. In this application, w(x, t) refers

to the temperature of the melt at position x = (x, y, z) ∈ X in the feeder and at time t ∈ T.

The governing equation of heat transfer in the glass feeder is given by

∂ρcpw

∂t
= − div(ρcpwv)︸ ︷︷ ︸

convective heat transfer

+ div(κ gradw)︸ ︷︷ ︸
conductive heat transfer

+ q,︸︷︷︸
external energy sources

(34)

which is a PDE of the form (6).

Most physical parameters of the glass melt are functions of temperature. In Table I, the temperature-dependent

parameters of a specific green container glass are listed (the temperature is in Kelvin).

To solve the equations numerically over the spatial domain X and a finite time domain T, the feeder is discretized

as shown in Figure 2, using a total of 7128 grid points. The model (34) is discretized in space using the finite
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TABLE I

TEMPERATURE DEPENDENT PHYSICAL PARAMETERS.

Density ρ [kg/m3] [39] ρ(w) = 2540 − 0.14w

Viscosity µ(w) (Ns/m2) [7] µ(w) = 10−2.592 + 4242.904

w−541.8413

Specific Heat cp(w) (J/kgK) [7] cp = 221 + 0.0956w

Thermal conductivity κ (W/m.K) [39] κ(w) = 0.527 + 0.001w + 2.67 × 109w3

volume method [43], in which the governing PDE (34) is integrated for every grid cell. Specifically, the temperature

w at a grid point P and a time instant tk is denoted by wP (k) and given by the discrete evolution equation

aP (k)wP (k) = aW (k)wW (k) + aE(k)wW (k) + aS(k)wS(k) + aN (k)wN (k)

+ aB(k)wB(k) + aT (k)wT (k) + a0
P (k)wP (k − 1) + Sg(k)u(k − 1) (35)

where wW , wE , wN , wS , wT , wB denote the temperature at the western, eastern, northern, southern, top, and bottom

neighboring grid points, respectively. The input u(k) ∈ R
nu comprises nu external sources such as the crown

temperature, electrical boostings, heaters, and the terms where boundary conditions (such as inlet and outlet

temperatures) are imposed. The contribution from the input to the dynamics of wP (k) is denoted as Sg(k) ∈ R
1×nu .

The terms aP , a
0
P , aW , aE, aS , aN , aT , aS ,Sg ∈ R

1×nu are generally time varying due to the dependencies of the

physical parameters on the temperature.

Writing (35) for 7128 grid points yields the following nonlinear set of equations

A(w(k + 1))w(k + 1) = A0(w(k + 1))w(k) + B(w(k + 1))u(k) (36)

where w(k + 1) is the vector containing the unknown temperature values at time tk+1.

At grid points on the domain boundary, the temperature is specified using Dirichlet or Neumann boundary

conditions. The temperature at these boundary points belongs to the input terms u(k) in (36); they do not belong

to the variables to be solved. For this application, the number of non-boundary points is 3800. In addition, we

exploit symmetry in the z direction and only consider half of the mesh points defined in the feeder; therefore,

w(k) ∈ R
1900 and K = 1900.

B. Complexity Analysis

In CFD and many other applications, the nonlinear system (36) is typically solved in an iterative manner. A

number hiter of inner iterations (in our case 100) is applied to advance from time tk to tk+1. Each inner iteration

step takes the form

A(wh
k+1)w

h+1
k+1 = A0(w

h
k+1)w(k) + B(wh

k+1)u(k), h = 0, . . . , hiter (37)

where h is the inner iteration index and w
h
k+1 is the approximation of w(k + 1) at the hth iteration. Each iteration

is initialized with w
0
k+1 = w(k) and is terminated when either the difference (wh+1

k+1 −w
h
k+1) is smaller than some

specified tolerance or when h = hiter.
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 Fig. 2. Geometry and grid cells of the feeder channel. The Cartesian coordinate orientation is denoted by the x for length, y for height, and

z for width. The entrance of the feeder (which is connected to the working end) starts from the left part and the outlet of the feeder/the spout

is on the rightmost part.

Solution of the nonlinear system at each time step therefore requires solving a sequence of linear problems in

the unknown w
h+1
k+1 as given by (37), which can be cast as a linear parameter varying (LPV) system. Refer to [34]

and [43] for more details on the implementation for this particular application.

The total computational cost of solving the full model can be classified according to the following three sources:

1) computing the coefficients of A,A0 and B at every iteration within each timestep

2) solving (37) at every iteration within each timestep, using, for example, LU decomposition or conjugate

gradient method;

3) other overhead cost, such as the time needed for initialization, etc.

Using a projection framework (e.g. standard POD) to derive the reduced model results in a reduced-order LPV

system, which must be constructed and solved at every iteration within each timestep. As for the full model, the

large-scale matrices A, A0 and B must still be computed. In addition, the inner products Φ>
AΦ, Φ>

A0Φ and Φ>
B

must be computed at each iteration. The complexity of computing these inner products is, respectively, O(pAK),

O(pA0
K) and O(K), where pA and pA0

are the number of non-zero entries in each row of the sparse matrices A

and A0. The computational cost of solving the resulting nth-order linear system is very small, since n is typically

small; this is where some savings are achieved relative to the full-order system.

Implementing the MPE approach results in savings in the computation of the large-scale matrices and the necessary

inner products. Specifically, if MPE is applied over N < K spatial grid points, then only the corresponding N

rows and columns of A, A0 and B must be computed. In addition, the necessary inner products with the basis

vectors can be computed with complexity O(pAN), O(pA0
N) and O(N).

A comparison of the relative computational complexity of the three approaches is given in Table II. It can be seen

that the MPE approach reduces the cost associated with computing the matrix coefficients and the inner products

by a factor of N/K relative to the standard projection method. This means that the computational acceleration

that can be achieved using the MPE approach over standard projection is directly proportional to the reduction in

the dimension of X0. Obviously, the magnitude of this reduction that can be achieved without significant loss of
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accuracy is problem dependent.

TABLE II

RELATIVE COMPUTATIONAL COMPLEXITY OF SOLVING FULL-ORDER, STANDARD REDUCED-ORDER, AND MPE MODELS FOR EACH

ITERATION STEP. C1 , C2 AND C3 DENOTE COMPUTATIONAL COST ASSOCIATED WITH COMPUTING THE MATRIX COEFFICIENTS, SOLVING

THE LINEAR SYSTEM, AND THE OVERHEAD COST FOR THE LARGE-SCALE SYSTEM.

Sources of computational cost Full-order model Standard projection method MPE

Computing the matrix coefficients C1 C1 (N/K)C1

Computing projection inner products 0 O(pAK + pA0
K + K) O(pAN + pA0

N + N)

Solving the linear system C2 O(n3) O(n3)

Overhead cost C3 C3 C3

However, for applications in which the dimension of the reduced basis is small, it is reasonable to expect that a

significant reduction in the dimension of X0 can be achieved. In many applications for which model reduction is

effective, the basis vectors are relatively smooth in space, which means that selective spatial sampling should be

effective. In addition, as the dimension of the full-order state increases, often the required number of basis vectors

remains small [26]. If this is the case, then the savings achieved using MPE will scale to very large systems.

C. Reduced-Order Models

We will simulate the process in a transition of glass color specification from green to flint (transparent) glass .

This color transition is a highly nonlinear process during which the heat conductivity will change by a factor of

eight. The nominal distribution of the crown temperature and the variations from the nominal temperature for every

zone are depicted in Figure 3. A POD reduced-order model and corresponding acceleration by the MPE method
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Fig. 3. The nominal crown temperature profile (left), the variations from the nominal temperature in every zone (right)

are applied to describe the color change process in the glass feeder. In this particular example, the reduced models

are derived by employing the Galerkin method.
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The POD basis is derived from temperature simulation data collected each minute over M = 112 minutes and

contained in the snapshot matrix Wsnap =
(
w(t1) · · · w(t112)

)
. The POD basis vectors, {ϕk, k = 1, . . . , 3800},

are then found as the eigenvectors of the correlation matrix Cw = 1
112WsnapW

>
snap. The eigenspectrum of the snapshot

correlation matrix is depicted in Figure 4. Eighteen POD basis functions corresponding to the n = 18 largest
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Fig. 4. The POD eigenvalue spectrum corresponding to 112 snapshots collected during simulation of a color change.

eigenvalues are chosen to construct the POD reduced-order model, BGalerkin
18 , as defined in (10), which is calculated

using Xn = S = span{ϕi}
18
i=1 as the projection space. Figure 5 shows the comparison between the results of the

POD reduced-order model and the original model at two measurement points. From Figure 5, it can be seen that

the reduced-order model captures the dynamics of the original model well.
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Fig. 5. POD-based reduced-order model and original temperature profiles during the color change process at two measurement points.

D. Application of MPE to the glass melt feeder

The order of the reduced model is more than 200 times lower than the original model; however, the computational

time needed to solve the temperature distribution is only enhanced by a factor of 2.2. The lack of computational
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efficiency for this time-varying system is due to the fact that the reduced-order model requires projecting the full

model equations onto the span of a low number of POD basis functions. The CFD matrices A(k),A0(k),B(̇k) in

(37) must be constantly updated to accommodate the varying physical parameters, such as the density, viscosity,

and heat conductivity.

To accelerate the computation, the MPE method is implemented by selecting sample points in X0 ⊂ X. The

MPE method yields reduced-order models B̃Galerkin
18 as defined in (25), where X0 is determined from the selection

criteria described in Section V.

An important implementation point is that, in the MPE reduced-order models, the boundary conditions must be

satisfied and the set of excitation signals defined by the crown temperature must be incorporated. To achieve this,

all points that are adjacent to the boundary cells have been included in X0. In the case of the feeder model, there are

N0 = 265 points that are adjacent to the boundary cells where crown temperature, inlet temperature, inlet velocity

are defined. These points are considered as “obligatory points”. The locations of these points define the pre-selected

mask X
0
0 in Algorithm 7.

Both screening criteria were implemented to determine a reduced set of 1635 candidate points Y = {x1, . . . , x1635}

that remain after the N0 = 265 boundary points have been included in the selection. The quantities e18(xk) and

ê18(xk) are calculated for all candidate points xk ∈ X. After e18(xk) (screening criterion 1) and ê18(xk)(screening

criterion 2) are calculated for every point, the values are ordered as in (31) and (33). Plots of the ordered e18(xkj
)

and ê18(xkj
), j = 1, . . . , 1635 are shown in Figure 6. Although the absolute differences in magnitudes of e18(xkj

)
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Fig. 6. The ordered exk
(left) and êxk

(right) based on MPE point screening criteria.

and ê18(xkj
) for the different points are small, the relative variations are important for differentiating among states.

For example, suppose that we would like to construct a reduced-order model with 1000 points. The condition

number of Φ̃>Φ̃ constructed from the 1000 points with lowest e18(xkj
) is 19.1, while the condition number of

Φ̃>Φ̃ constructed from the 1000 points with highest e18(xkj
) is 3189.9. A low condition number of Φ̃>Φ̃ (less than

100) is required to use the reduced-order model for predicting different scenarios; otherwise, the prediction results

can be very sensitive to any small perturbations. Inspection of Figure 6 for the second screening criterion shows
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a cut-off after 1400 points. The condition number of Φ̃>Φ̃ constructed by the 1400 points with lowest ê18(xkj
) is

18.52, while the condition number of Φ̃>Φ̃ constructed by the 1400 points with highest ê18(xkj
) is 216.3. Hence,

it can be seen that both screening criteria help to separate the less relevant points from the relevant ones.

For this example, the second screening criterion tends to choose points that are spatially clustered. This is due to

the fact that in this screening criterion, the POD basis is weighted by the coefficients obtained from the projection

of the snapshot data. The criterion therefore tends to group states (and corresponding grid points) that have similar

temperature variations, which, due to the dominant diffusive nature of the heat transfer processes in the glass melt

feeder, translates directly into a grouping of points that are closely located in space. Selection of many points that

are close to each other leads to a poor conditioning of the spatially restricted basis.

Two reduced-order models are constructed by the MPE method. The greedy algorithm (Algorithm 7) is applied

to improve the condition number of the restricted basis inner product and reduce the number of points selected by

each screening criteria to 200. After adding the obligatory boundary points, a total of 465 points are used for each

MPE model. Figure 7 shows the selected spatial samples for each MPE model as grey grid cells.
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Fig. 7. Selected spatial samples in grey cells at one cross section of the feeder. The grey cells are found after implementing the greedy

algorithm on points selected by screening criterion 1 (left) and screening criterion 2 (right).

Comparisons between the original and the reduced-order models constructed by the MPE method are shown in

Figure 8 at two locations on the glass surface. The simulated conditions are the same as the conditions applied

during the snapshot collection. From Figure 8, it is evident that the reduced models built by the MPE method

adequately reconstruct the dynamics of the original model. The deviation from the original model is quantified by

the maximum absolute error average εmax, calculated as

εmax = max
x∈X

1

Nt

∑

t∈T

‖ w(x, t)︸ ︷︷ ︸
original model

− ŵ(x, t)︸ ︷︷ ︸
reduced model

‖, (38)

where Nt is the number of time samples. The maximum absolute error for both reduced-order models constructed

by the MPE method is less than 0.18K, which is about 0.1K higher than the maximum absolute error for reduced-

order models constructed by the conventional POD method. The additional error is considered insignificant, as this

error level is still very much below the maximum temperature variations, which is about 12K.
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Fig. 8. Comparisons between the original model and reduced-order models constructed by the MPE method. The simulated conditions are the

same as the conditions applied during the snapshot collection.

For a more challenging assessment of the POD-MPE model quality, the models are validated by exciting the

system with crown temperature variations that were not considered as part of the snapshot set. In this case, all

crown temperature zones are subjected to random variations from the nominal temperature distribution, distributed

between 0 and 5K. The random variations are shown in Figure 9.
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Fig. 9. The random variations from the nominal distribution of the crown temperature, applied to all four zones of the crown.

The responses of two measured locations on the glass melt surface when subjected to the random excitation

signals are plotted in Figure 10. Both reduced-order models perform quite well under different excitation signals.

Both reduced-order models have a maximum absolute error average of εmax < 1K, a level of deviation that is within

the 10% relative accuracy requirement, and thus is acceptable.

Figure 10 shows that the MPE model constructed from the implementation of the greedy algorithm on points

screened by the first screening criterion is better for handling large temperature variations (more than 10K) while the

one constructed from the points screened by the second screening criterion is more accurate when the temperature

variation is small (about 4K). As explained previously, in this example the second screening criterion tends to group
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Fig. 10. The comparisons between the original model and reduced models built by the MPE method under random excitation as depicted in

Figure 9. The MPE model constructed from points prescreened by screening criterion 1 handles large temperature variations better (left), while

the other is more accurate for small temperature variations (right).

points that have similar temperature variations. It can be seen from Figure 7 that in some regions of the feeder, the

implementation of the greedy algorithm on the points screened by this criterion result in a more clustered group of

points compared to those using the first screening criterion.

Table III summarizes the simulation results using POD models and MPE models for the case of random excitations

and shows the substantial computational gains that can be made using the MPE approach. The resulting average

absolute errors for each screening criterion are similar, as the condition numbers of the restricted basis inner

products are also similar between the two criteria. The computational gain of the reduced-order models built by

TABLE III

COMPARISON BETWEEN POD AND MPE MODELS FOR RANDOM EXCITATIONS.

Model Maximum Absolute Condition number Computational

Type Average Error c(H) = c(Φ̃>Φ̃) Gain

POD (1900 points, symmetric case ) 0.081 K 1 226%

(the same excitation signals)

MPE, optimized by greedy, screening criterion 1 (465 points) 0.13 K 4.637 754%

(the same excitation signals)

MPE, optimized by greedy, screening criterion 1 (465 points) 0.97 K 4.637 754%

(validation by random excitation signals)

MPE, optimized by greedy, screening criterion 2 (465 points) 0.175 K 4.531 754%

(the same excitation signals)

MPE, optimized by greedy, screening criterion 2 (465 points) 0.90 K 4.531 754%

(validation by random excitation signals)

MPE corresponds to 8.5 times faster than real time. The computation is performed on a 2.8 GHz processor with

512 MB RAM. The achievable computational gain depends on several factors, such as the solution methods used
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to simulate the original model, the convergence criterion, and the algorithmic structure of the original model.

The computational gains achieved using the MPE approach may not seem sufficiently high to achieve the goal of

real-time model-based control; however, in this paper, we only consider reduced-order modeling of the temperature,

while the variables governing the fluid flow are still solved by the original model. If the same approach were applied

to other variables, then an acceleration of 25 to 30 times faster than real time on a single processor is feasible. This

would be a major breakthrough for the implementation of nonlinear, large-scale models in online control design,

online tuning, and process monitoring.

VII. CONCLUSIONS

We have proposed a methodology to derive computationally efficient, reduced-order models for parameter-varying

systems, such as those obtained from the discretization of nonlinear PDEs. Conventional projection-based model

reduction techniques do not generally yield models that are efficient to simulate, since the original high-order

model must be computed and the projection carried out at each timestep. In this paper, computational acceleration

is achieved using a formal modification of the proper orthogonal decomposition method that selects a subset of the

spatial domain over which to represent the dynamics of the original system. A heuristic optimization procedure,

combined with two quantitative screening criteria, is proposed to select a suitable subset of grid points or state

variables. The approach described in this paper is applicable to other projection-based model reduction techniques,

such as balanced truncation. Demonstration of the approach on a nonlinear CFD example shows that large gains in

efficiency of the reduced-order models can be obtained while retaining the nonlinear characteristics of the original

system.
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