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Abstract

Aerodynamic flows involve features with a wide range of spatial and temporal scales which
need to be resolved in order to accurately predict desired engineering quantities. While
computational fluid dynamics (CFD) has advanced considerably in the past 30 years, the
desire to perform more complex, higher-fidelity simulations remains. Present day CFD simu-
lations are limited by the lack of an efficient high-fidelity solver able to take advantage of the
massively parallel architectures of modern day supercomputers. A higher-order hybridizable
discontinuous Galerkin (HDG) discretization combined with an implicit solution method is
proposed as a means to attain engineering accuracy at lower computational cost. Domain
decomposition methods are studied for the parallel solution of the linear system arising at
each iteration of the implicit scheme.

A minimum overlapping additive Schwarz (ASM) preconditioner and a Balancing Do-
main Decomposition by Constraints (BDDC) preconditioner are developed for the HDG
discretization. An algebraic coarse space for the ASM preconditioner is developed based on
the solution of local harmonic problems. The BDDC preconditioner is proven to converge at
a rate independent of the number of subdomains and only weakly dependent on the solution
order or the number of elements per subdomain for a second-order elliptic problem. The
BDDC preconditioner is extended to the solution of convection-dominated problems using
a Robin-Robin interface condition.

An inexact BDDC preconditioner is developed based on incomplete factorizations and
a p-multigrid type coarse grid correction. It is shown that the incomplete factorization
of the singular linear systems corresponding to local Neumann problems results in a non-
singular preconditioner. The inexact BDDC preconditioner converges in a similar number
of iterations as the exact BDDC method, with significantly reduced CPU time.

The domain decomposition preconditioners are extended to solve the Euler and Navier-
Stokes systems of equations. An analysis is performed to determine the effect of boundary
conditions on the convergence of domain decomposition methods. Optimized Robin-Robin
interface conditions are derived for the BDDC preconditioner which significantly improve
the performance relative to the standard Robin-Robin interface conditions. Both ASM
and BDDC preconditioners are applied to solve several fundamental aerodynamic flows.
Numerical results demonstrate that for high-Reynolds number flows, solved on anisotropic
meshes, a coarse space is necessary in order to obtain good performance on more than 100
processors.

Thesis Supervisor: David L. Darmofal
Title: Professor of Aeronautics and Astronautics

3



4



Acknowledgments

I would like to thank all of those who helped make this work possible. First, I would like to
thank my advisor Prof. David Darmofal, for giving me the opportunity to work with him.
I am grateful for his guidance and encouragement throughout my studies at MIT. Second,
I would like to thank my committee members Profs. Alan Edelman and Jaime Peraire for
their criticism and direction throughout my PhD work. I would also like to thank my thesis
readers Prof. Qiqi Wang and Dr. Venkat Venkatakrishnan for providing comments and
suggestions on improving this thesis.

This work would not have been possible without the contributions of the ProjectX team
past and present (Julie Andren, Garrett Barter, Krzysztof Fidkowski, Bob Haimes, Josh
Krakos, Eric Liu, JM Modisette, Todd Oliver, Mike Park, Huafei Sun, Masa Yano). Partic-
ularly, I would like to acknowledge JM whose been a good friend and office mate my entire
time at MIT.

I would like to thank my wife, Laura, my parents, Klara and Levente, and my brother,
Andrew, for their encouragement throughout my time at MIT. Without their love and sup-
port this work would never have been completed.

Finally, I would like to acknowledge the financial support I have received throughout my
graduate studied. This work was supported by funding from MIT through the Zakhartchenko
Fellowship and from The Boeing Company under technical monitor Dr. Mori Mani. This
research was also supported in part by the National Science Foundation through TeraGrid
resources provided under grant number TG-DMS110018.

5





Contents

1 Introduction 15
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Higher-order Discontinuous Galerkin Methods . . . . . . . . . . . . . . 16
1.2.2 Scalable Implicit CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Domain Decomposition Theory . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 Large Scale CFD simulations . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.5 Balancing Domain Decomposition by Constraints . . . . . . . . . . . . 23

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Discretization and Governing Equations 27
2.1 HDG Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Compressible Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Domain Decomposition and the Additive Schwarz Method 37
3.1 Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Additive Schwarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Balancing Domain Decomposition by Constraints 51
4.1 A Schur Complement Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 The BDDC Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 The BDDC Preconditioner Revisited . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Robin-Robin Interface Condition . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Inexact BDDC 73
5.1 A Note on the BDDC Implementation . . . . . . . . . . . . . . . . . . . . . . 74
5.2 BDDC using Incomplete Factorizations . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Inexact Harmonic Extensions . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Inexact Partially Assembled Solve . . . . . . . . . . . . . . . . . . . . 76

7



5.2.3 One or Two matrix method . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Inexact BDDC with p-multigrid correction . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Inexact Harmonic Extensions . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Inexact Partially Assembled Solve . . . . . . . . . . . . . . . . . . . . 83

5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.1 Inexact BDDC using Incomplete Factorizations . . . . . . . . . . . . . 85
5.4.2 Inexact BDDC with p-multigrid correction . . . . . . . . . . . . . . . . 89

6 Euler and Navier-Stokes Systems 101
6.1 Linearized Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 1D Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 2D Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Optimized Robin Interface Condition . . . . . . . . . . . . . . . . . . . . . . . 111
6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Application to Aerodynamics Flows 127
7.1 HDG Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 DG Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Conclusions 143
8.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Recommendations and Future Work . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 147

A 2D Euler Analysis: Infinite Domain 157

B BDDC for DG Discretizations 163
B.1 DG Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.2 The DG discretization from a new perspective . . . . . . . . . . . . . . . . . . 167
B.3 BDDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8



List of Figures

3-1 Sample grid and non-overlapping partition . . . . . . . . . . . . . . . . . . . . 38
3-2 Overlapping partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3-3 Additive Schwarz method applied to sample Poisson problem . . . . . . . . . 40
3-4 Coarse basis functions for additive Schwarz method . . . . . . . . . . . . . . . 42
3-5 Additive Schwarz method with coarse space applied to sample Poisson problem 43
3-6 Plot of solution for 2d scalar model problems . . . . . . . . . . . . . . . . . . 44
3-7 Plot of meshes used 2d scalar model problems . . . . . . . . . . . . . . . . . . 45
3-8 GMRES convergence history for advection-diffusion boundary layer problem

with µ = 10−6, p = 2 and n = 128 on isotropic structured mesh . . . . . . . . 48

4-1 Coarse basis functions for BDDC . . . . . . . . . . . . . . . . . . . . . . . . . 59
4-2 Partially Assembled solve applied to sample Poisson problem . . . . . . . . . 59
4-3 Effect of harmonic extensions for sample Poisson problem . . . . . . . . . . . 59
4-4 Unstructured mesh and partition for advection-diffusion boundary layer problem 70
4-5 Number of local linear solves for advection-diffusion boundary layer problem

with µ = 10−4, and n ≈ 128 on anisotropic unstructured meshes . . . . . . . 71
4-6 Number of local linear solves for advection-diffusion boundary layer problem

with µ = 10−4, and N = 64 on anisotropic unstructured meshes . . . . . . . . 72

5-1 CPU time for 3D advection-diffusion boundary layer problem with µ = 1, and
n = 400 on isotropic unstructured mesh . . . . . . . . . . . . . . . . . . . . . 98

5-2 CPU time for 3D advection-diffusion boundary layer problem with µ = 10−4,
and n = 400 on isotropic unstructured mesh . . . . . . . . . . . . . . . . . . . 99

6-1 Convergence rate versus wave number, ξ using basic Robin-Robin algorithm . 110
6-2 Optimization of asymptotic wave number . . . . . . . . . . . . . . . . . . . . 112
6-3 Minimum asymptotic convergence rate . . . . . . . . . . . . . . . . . . . . . . 112
6-4 Convergence rate for different z, for M = 0.05, CFLH = 100 . . . . . . . . . . 113
6-5 Convergence rate for different z, for M = 0.05, CFLH = 100 . . . . . . . . . . 114
6-6 Optimization over all wave numbers . . . . . . . . . . . . . . . . . . . . . . . 115
6-7 Convergence rate using optimized interface conditions . . . . . . . . . . . . . 115
6-8 Discrete optimization of z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6-9 Residual reduction for linearized Euler problem after 10 GMRES iterations . 117
6-10 Solution after one application of the BDDC preconditioner . . . . . . . . . . . 117
6-11 Number of local linear solves for linearized Euler problem with n = 512 . . . 119
6-12 Number of local linear solves for linearized Euler problem with N = 64 . . . . 119
6-13 GMRES convergence plot for linearized Euler problem with p = 2 and n = 512120

9



6-14 Number of local linear solves for linearized Navier-Stokes problem, Re = 106

with n = 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6-15 Number of local linear solves for linearized Navier-Stokes problem, Re = 104

with n = 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6-16 Number of local linear solves for linearized Navier-Stokes problem, Re = 102

with n = 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6-17 Number of local linear solves for linearized Navier-Stokes problem, with p = 2

and N = 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6-18 Number of local linear solves for linearized Navier-Stokes problem, Re = 0.01,

n = 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6-19 Number of local linear solves for linearized Navier-Stokes problem, Re = 0.01,

N = 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7-1 Grid and flow solution for inviscid flow over NACA0012, M∞ = 0.3, α = 5.0◦,
p = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7-2 Weak scaling results for inviscid flow over NACA0012, M∞ = 0.3, α = 5.0◦,
p = 2, 2000 elements per subdomain . . . . . . . . . . . . . . . . . . . . . . . 129

7-3 Weak scaling results for inviscid flow over NACA0012, M∞ = 0.3, α = 5.0◦,
p = 5, 500 elements per subdomain . . . . . . . . . . . . . . . . . . . . . . . . 130

7-4 Detailed timing for inviscid flow over NACA0012, M∞ = 0.3, α = 5.0◦, p = 5,
500 elements per subdomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7-5 Grid and flow solution for viscous flow over NACA0005, M∞ = 0.2, α = 2.0◦,
Rec = 5000, p = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7-6 Weak scaling results for viscous flow over NACA0005, M∞ = 0.2, α = 2.0◦,
Rec = 5000, p = 2, 1000 elements per subdomain . . . . . . . . . . . . . . . . 132

7-7 Weak scaling results for viscous flow over NACA0005, M∞ = 0.2, α = 2.0◦,
Rec = 5000, p = 5, 250 elements per subdomain . . . . . . . . . . . . . . . . . 133

7-8 Weak scaling results for inviscid flow over NACA0012, M∞ = 0.3, α = 5.0◦,
p = 2, 2000 elements per subdomain . . . . . . . . . . . . . . . . . . . . . . . 136

7-9 Weak scaling results for inviscid flow over NACA0012, M∞ = 0.3, α = 5.0◦,
p = 5, 500 elements per subdomain . . . . . . . . . . . . . . . . . . . . . . . . 137

7-10 Weak scaling results for viscous flow over NACA0005, M∞ = 0.2, α = 2.0◦,
Rec = 5000, p = 2, 1000 elements per subdomain . . . . . . . . . . . . . . . . 138

7-11 Weak scaling results for viscous flow over NACA0005, M∞ = 0.2, α = 2.0◦,
Rec = 5000, p = 5, 250 elements per subdomain . . . . . . . . . . . . . . . . . 138

7-12 Grid and flow solution for turbulent flow over RAE2822, M∞ = 0.3, α =
2.31◦, Rec = 6.5× 106, p = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7-13 Strong scaling results for turbulent flow over RAE2822, M∞ = 0.3, α =
2.31◦, Rec = 6.5× 106, p = 2 adaptation step . . . . . . . . . . . . . . . . . . 141

7-14 Weak scaling results for turbulent flow over RAE2822, M∞ = 0.3, α = 2.31◦,
Rec = 6.5× 106, p = 2, 1000 elements per subdomain . . . . . . . . . . . . . . 142

A-1 Analytical convergence rate versus wave number, ξ using basic Robin-Robin
algorithm on two infinite domains . . . . . . . . . . . . . . . . . . . . . . . . . 160

A-2 Analytical convergence rate vs Mx using basic Robin-Robin algorithm on two
infinite domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10



B-1 Degrees of freedom involved in “local” bilinear form. •: Element Node, ◦:
Neighbor Node, →: Switch (β) . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B-2 Examples of subtriangulations of p = 1 triangular elements . . . . . . . . . . 175

11





List of Tables

3.1 Number of GMRES iterations for Poisson problem on isotropic structured mesh 45
3.2 Number of GMRES iterations for advection-diffusion boundary layer problem

with µ = 1 on isotropic structured mesh . . . . . . . . . . . . . . . . . . . . . 46
3.3 Number of GMRES iterations for advection-diffusion boundary layer problem

with µ = 10−6 on isotropic structured mesh . . . . . . . . . . . . . . . . . . . 47
3.4 Number of GMRES iterations for advection-diffusion boundary layer problem

with µ = 10−6 on anisotropic structured mesh . . . . . . . . . . . . . . . . . . 49
3.5 Number of GMRES iterations on both isotropic and anisotropic meshes with

N = 64, n = 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Number of GMRES iterations using BDDC preconditioner for Poisson prob-
lem on isotropic structured mesh . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Iteration count for BDDC preconditioner with µ = 1 or µ = 1000, n = 128 . . 67
4.3 Number of GMRES iterations for advection-diffusion boundary layer problem

with µ = 1 on isotropic structured mesh . . . . . . . . . . . . . . . . . . . . . 68
4.4 Number of GMRES iterations for advection-diffusion boundary layer problem

with µ = 10−6 on isotropic structured mesh . . . . . . . . . . . . . . . . . . . 68
4.5 Number of GMRES iterations for advection-diffusion boundary layer problem

with µ = 10−6 on anisotropic structured mesh . . . . . . . . . . . . . . . . . . 69
4.6 Number of GMRES iterations on both isotropic and anisotropic meshes with

N = 64, n = 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Number of local linear solves both isotropic and anisotropic meshes for scalar

boundary layer problem with µ = 10−4 . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Number of GMRES iterations for 3D Poisson problem using ILUT(τ ,π) inex-
act solver, with τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . 85

5.2 Number of GMRES iterations for 3D advection-diffusion boundary layer prob-
lem with µ = 1 on isotropic unstructured mesh using ILUT(τ ,π) inexact
solver, with τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Number of GMRES iterations for 3D advection-diffusion boundary layer prob-
lem with µ = 10−4 on isotropic unstructured mesh using ILUT(τ ,π) inexact
solver, with τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Number of GMRES iterations for 3D Poisson problem using ILUT with p = 0
coarse grid correction, with τ = 10−6 and varying π . . . . . . . . . . . . . . 90

5.5 Number of GMRES iterations for 3D Poisson problem using ILUT(τ ,π) with
p = 1 coarse grid correction, with τ = 10−6 and varying π . . . . . . . . . . . 91

13



5.6 Number of GMRES iterations for 3D Poisson problem using ILUT(τ ,π) with
p = 1 coarse grid correction applied to global partially assembled problem,
with τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Number of GMRES iterations for 3D advection-diffusion boundary layer prob-
lem with µ = 1, using ILUT(τ ,π) with p = 0 coarse grid correction, with
τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Number of GMRES iterations for 3D advection-diffusion boundary layer prob-
lem with µ = 1, using ILUT(τ ,π) with p = 1 coarse grid correction, with
τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 Number of GMRES iterations for 3D advection-diffusion boundary layer prob-
lem with µ = 10−4, using ILUT(τ ,π) with p = 0 coarse grid correction, with
τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Number of GMRES iterations for 3D advection-diffusion boundary layer prob-
lem with µ = 10−4, using ILUT(τ ,π) with p = 1 coarse grid correction, with
τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.11 Number of GMRES iterations for 3D advection-diffusion boundary layer prob-
lem with µ = 10−4, using ILUT(τ ,π) with p = 1 coarse grid correction, with
τ = 10−6 and varying π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Number of iterations required for the Schwarz algorithm to convergence using

different interface and boundary conditions . . . . . . . . . . . . . . . . . . . 106
6.3 Number of iterations required for the Schwarz algorithm to convergence using

characteristic interface conditions and different boundary conditions . . . . . 106

B.1 Numerical fluxes for different DG methods . . . . . . . . . . . . . . . . . . . . 166
B.2 Numerical fluxes for different DG methods . . . . . . . . . . . . . . . . . . . . 168
B.3 Elementwise bilinear form for different DG methods . . . . . . . . . . . . . . 168
B.4 Iteration count for BDDC preconditioner using Interior Penalty Method . . . 179
B.5 Iteration count for BDDC preconditioner using the method of Bassi and Rebay180
B.6 Iteration count for BDDC preconditioner using the method of Brezzi et al. . . 180
B.7 Iteration count for BDDC preconditioner using the LDG method . . . . . . . 181
B.8 Iteration count for BDDC preconditioner using the CDG method . . . . . . . 181
B.9 Iteration count for BDDC preconditioner using the CDG method with µ = 1

or 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

14



Chapter 1

Introduction

1.1 Motivation

Computational fluid dynamics (CFD) has advanced considerably in the past 30 years, such

that CFD tools have become invaluable in the design and analysis of modern aircraft and

spacecraft. CFD has become important due to the ability to simulate a large range of flow

conditions at all relevant parameters in a flow (eg. Mach number, Reynolds number, specific

heat ratio, etc.) which may not be possible in wind-tunnel experiments. Through advances

in both numerical algorithms and computer hardware the complexity of problems solved has

increased dramatically since the first two-dimensional potential flow simulations in the mid

1970s.

While the complexity of the problems has increased significantly, the desire to perform

even more complex, higher-fidelity simulations remains. A recent review of the AIAA Drag

Prediction Workshops shows that insufficient resolution remains a limiting factor in achiev-

ing accurate predictions [84]. Aerodynamic flows involve features with a large range of

spatial and temporal scales which need to be resolved in order to accurately predict desired

engineering quantities. Higher-order methods provide a possible means of obtaining engi-

neering required accuracy with fewer degrees of freedom. However, the requirements to have

increased spatial and temporal resolution necessitates the use of more powerful computing

resources.

Today’s most powerful supercomputers are able to reach a peak performance of more

than one petaflops. However, peak performance has been reached by a continuing trend of
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parallelization, with the most powerful machines now employing more than 100,000 proces-

sors. While several CFD codes have been used on large parallel systems with up to several

thousand processors, the scalability of most CFD codes tops out around 512 cpus [89]. De-

veloping CFD codes which are able to scale efficiently to tens or hundreds of thousands of

processors remains a significant challenge.

1.2 Background

1.2.1 Higher-order Discontinuous Galerkin Methods

Higher-order methods have the potential for reducing the computational cost required to

obtain engineering accuracy in CFD simulations. Typical industrial CFD methods employ

second-order finite volume schemes for which the error scales as E ∝ h2, where h is the

characteristic mesh size. Thus, in three dimensions, decreasing the mesh size by a factor of

two leads to a four-fold reduction in solution error, but an eight-fold increase in the number

of degrees of freedom. Higher-order numerical methods are those which achieve an error

convergence E ∝ hr, r > 2, provided the solution is sufficiently smooth. Thus, if a low error

tolerance is required, higher-order methods allow for the error tolerance to be met with fewer

degrees of freedom than typical second-order methods.

In this work a higher-order discontinuous Galerkin (DG) discretization is used [9, 11–

14, 16, 37, 42, 56, 87, 97, 98]. DG methods are attractive since the piecewise discontinuous

representation of the solution provides a natural means of achieving higher-order accuracy

on arbitrary unstructured meshes. Even at high order, DG methods maintain a nearest-

neighbour stencil as element-wise coupling is introduced only through the flux across element

boundaries. In particular, this work uses a new DG variant known as the hybridizable

discontinuous Galerkin (HDG) method [39–41, 96, 100]. In HDG methods, both the state

variables and gradients are approximated on each element. As a result, HDG methods

converge at optimal order (p+1) in both the state variables and gradients. Additionally, the

state and gradient degrees of freedom may be locally eliminated to give a system of equations

where the only globally-coupled degrees of freedom are associated with the trace values of the

state variables on the element boundaries. Thus, for higher-order solutions HDG methods

have much a smaller number of globally-coupled degrees of freedom compared to traditional
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DG methods [41, 96].

1.2.2 Scalable Implicit CFD

A key use of massively parallel computers is to perform large-scale simulations in similar

amount of time as typical industrial simulations on desktop machines. In addition to being

able to partition the computational work among large numbers of processors, “optimal”

algorithms are required for which the work scales linearly with the number of degrees of

freedom. Two definitions of parallel scaling are commonly used: “strong scaling” and “weak

scaling”. Strong scaling, discussed in reference to Amdahl’s Law [2], refers in general to

parallel performance for fixed problem size, while weak scaling, discussed in reference to

Gustafson’s Law [61], refers to parallel performance in terms of fixed problem size per pro-

cessor. While the parallel performance of a particular CFD code depends upon an efficient

implementation, the performance is limited by the scalability of the underlying algorithm.

Thus, this work focuses primarily on the algorithmic aspects to ensure scalability. In the

context of high-fidelity CFD simulations, weak scaling is more important than strong scaling,

as weak scaling relates closely to the ability of an algorithm to be optimal. Thus, unless oth-

erwise stated the term “scalable” is used to imply “weakly scalable”. An iterative solution

algorithm is said to be scalable if the rate of convergence is independent of the number of

subdomains into which the mesh has been partitioned, for a fixed number of elements on each

subdomain. Thus, for a fixed number of elements on each subdomain, a scalable algorithm

may be viewed as being optimal on a macro scale. A scalable algorithm is truly optimal if

the rate convergence is also independent of the number of elements on each subdomain.

DG discretizations have long been associated with the use of explicit Runge-Kutta time

integration schemes, due to the simplicity of implementation, relatively small memory re-

quirements, and small stencils [42]. While explicit methods are relatively simple to imple-

ment, the largest allowable time step is limited by the CFL condition, hence the number

of iterations required for a particular simulation depends upon the mesh size. Thus, while

explicit methods have the potential for very good strong scaling, these methods are not

optimal. Implicit methods, on the other hand, do not have such a time step restriction.

As a result, implicit methods have become the method of choice when the time step re-

quired for numerical stability is well below that required to resolve the unsteady features
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of the flow. Implicit schemes have also become widely used for the solution of steady-state

problems obtained through pseudo-transient continuation [66], where time-stepping enables

reliable convergence for nonlinear problems [3, 10, 26, 59, 60, 69, 83, 95, 122]. While most

portions of an implicit code, such as residual and Jacobian evaluations, are trivially paral-

lelized, implicit methods require at each iteration the solution of a globally coupled system

of equations. Thus, implicit algorithms are optimal only if the globally coupled system may

be solved in an optimal manner.

For aerodynamic problems, the most successful solution techniques have been nonlinear

multigrid methods [3, 57, 82, 90, 93, 94] and preconditioned Newton-Krylov methods [59,

60, 69, 95, 103, 122]. Mavriplis showed that using a multigrid method as a preconditioner to

a Newton-Krylov approach results in significantly faster convergence in terms of CPU time

than a full nonlinear multigrid scheme [88]. Thus, in this work Newton-Krylov methods

are considered, where the nonlinear system is solved using an approximate Newton method,

while the linear system at each Newton iteration is solved using a preconditioned Krylov

subspace method. In this context, multigrid methods may be viewed as one possible choice

for the preconditioner. Thus, the development of an optimal solution method hinges on the

ability to develop scalable preconditioners.

1.2.3 Domain Decomposition Theory

The desire to perform large scale simulations has led to an increased interest in domain

decomposition methods for the solution of large algebraic systems arising from the dis-

cretization of partial differential equations (PDEs). The term domain decomposition in the

engineering community has often been used simply to refer to the partitioning of data across

a parallel machine. However, data parallelism alone is insufficient to ensure good paral-

lel performance. In particular, the performance of a domain decomposition preconditioner

for the solution of large linear systems is strongly coupled to the discretization and the

underlying PDE.

While high-fidelity simulations of aerodynamic flows involve solutions of the nonlinear

compressible Euler and Navier-Stokes equations, performance of the algorithms developed

for the systems resulting from the discretization of these equations are often analyzed in

reference to simple scalar linear model equations for which the mathematical analysis is
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possible.

Early aerodynamic simulations involved potential flow calculations. Thus, the Poisson

equation has often been used as a model problem. In particular, the elliptic nature of the

Poisson equation is appropriate for the analysis of acoustic modes in low speed, incom-

pressible flows. Convective modes, on the other hand are hyperbolic and thus a convection

equation is a more appropriate model for the analysis of these modes. A singularly per-

turbed convection-diffusion equation is often used as a model problem for high Reynolds

number compressible flows, where convective behaviour is dominant in most regions of the

flow, while elliptic behaviour is dominant in the boundary layer region. Since much of the

grid resolution is introduced in the boundary layer region, it is important to understand the

elliptic behaviour present in these regions.

For elliptic PDEs, the Green’s function extends throughout the entire domain decaying

with increasing distance from the source. This implies that a residual at any point in the

domain affects the solution everywhere else. In an unpreconditioned Krylov method, the

application of the Jacobian matrix to a residual vector at each Krylov iteration exchanges

information only to the extent of the numerical stencil. Thus, the number of iterations for an

error to be transmitted across a domain of unit diameter is O( 1
h), where h is the characteristic

element size. In general, the convergence rate for symmetric problems is bounded by the

condition number of the preconditioned system. An efficient preconditioner attempts to

cluster the eigenvalues of the preconditioned system to ensure rapid convergence of the

Krylov method. In particular, an efficient preconditioner for elliptic problems requires a

means of controlling the lowest frequency error modes which extend throughout the domain.

Domain decomposition methods precondition the system of equations resulting from the

discretization of a PDE by repeatedly solving the PDE in subdomains of the original domain.

If at each iteration information is exchanged only to neighbouring subdomains, the number

of iterations for an error to be transmitted across a domain of unit diameter is O( 1
H ), where

H is the characteristic subdomain size. Thus the condition number of the preconditioned

system, and hence the number of iterations required to converge the linear system, will

depend on the number of subdomains. In order to ensure that the condition number of the

preconditioned system is independent of H scalable preconditioners include a coarse space

able to control the low frequency error modes which span the entire domain [118].
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While elliptic problems are characterized by Green’s functions that extend throughout the

entire domain, convection-dominated problems have a hyperbolic behaviour where the errors

propagate along characteristics in the flow. Thus, for convection-dominated problems, the

resulting discretization is strongly coupled along the characteristics with little dissipation of

errors across characteristics. Control of these errors is often accomplished by preconditioners

that maintain strong coupling and often can be interpreted as increasing the propagation of

errors out of the domain in the purely hyperbolic case.

For convection-diffusion problems, domain decomposition methods with a coarse space

have been shown to be scalable, provided the diameter of the subdomains are sufficiently

small [27, 29, 31]. Namely, if the Peclet number, defined using the subdomain length scale,

H, is sufficiently small, then the behaviour matches the symmetric, diffusion-dominated

limit. In the convection-dominated limit, the errors are propagated along characteristics

in the domain. Thus, the number of iterations required to converge is proportional to the

number of subdomains through which a characteristic must cross before exiting a domain.

In the case of unsteady convection-diffusion problems, solved using implicit time inte-

gration, analysis of domain decomposition methods shows that a coarse space may not be

necessary to guarantee scalability if the time step is sufficiently small relative the size of the

subdomains [28, 30]. This behaviour may be interpreted using physical intuition. Namely,

for small time steps the evolution of the flow is mostly local, thus a coarse space is not re-

quired for the global control of error modes. From a linear algebra standpoint, the presence

of the large temporal term leads to a diagonally dominant system, which tend to be easier

to solve using iterative methods.

1.2.4 Large Scale CFD simulations

As aerodynamic flows involve both elliptic and hyperbolic features, the most successful

serial algorithms have combined effective solvers for elliptic and hyperbolic problems. For

example multigrid methods have been used in combination with tri-diagonal line solvers

by Mavriplis and Pirzadeh [90] and Fidkowski et al. [57]. The success of these algorithms

may be attributed to the ability of line solvers to control error modes in strongly coupled

directions (either along characteristics or in regions of high anisotropy), while low frequency

errors are corrected through the multigrid process. An alternative approach which appears
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to be very successful for higher-order discretizations is a two-level method using an ILU(0)

preconditioner with a minimum discarded fill ordering combined with a coarse grid correction

presented by Persson and Peraire [103].

The development of efficient parallel preconditioners for aerodynamic flows builds upon

successful algorithms in the serial context. While multigrid methods have been employed for

large-scale parallel simulations, Mavriplis notes that special care must be taken in forming

the nested coarse grid problems to ensure good performance [90, 94]. Domain decomposition

preconditioners presented in this thesis may be viewed as two-level preconditioners, where

local solvers are employed on each subdomain, while specially constructed coarse spaces are

used to ensure the control of low frequency (global) modes throughout the domain.

The most widely used domain decomposition methods for CFD applications are addi-

tive Schwarz methods [25, 32, 33, 35, 59, 60, 102, 122]. For cell-centered finite-volume, or

higher-order discontinuous Galerkin discretizations, where degrees of freedom are naturally

associated with element interiors, a non-overlapping additive Schwarz method corresponds

to a subdomain-wise block-Jacobi preconditioner [45, 60, 102]. An overlapping additive

Schwarz method may be developed by extending the size of the subdomain problems by

layers of elements. Gropp et al. showed that adding a very small overlap corresponding only

to a few layers of elements results in a significant improvement in the number of iterations

required to converge a finite volume discretization of inviscid compressible flows [60]. How-

ever, as increasing the amount of overlap lead to increased communication costs, the lowest

CPU times were achieved using an overlap region of just two layers of elements. A variant

presented by Cai et al, known as the restricted additive Schwarz method, updates only lo-

cally owned degrees of freedom, eliminating communication during the solution update [35].

Numerical results have shown that this method actually requires fewer iterations to converge

than the basic additive Schwarz preconditioner for both scalar convection-diffusion [35] and

compressible Euler problems [33].

The use of domain decomposition methods for large scale applications involves additional

considerations in order to achieve good performance. Large scale CFD applications may be

both memory and CPU limited, making the exact solution of the local problems using LU

factorization intractable. Thus, the local solvers are replaced with an iteration of an efficient

serial preconditioner, such as an ILU factorization or a multigrid cycle. The performance
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of the Schwarz method will, in general, depend upon the strength of the local solver. For

example, Venkatakrishnan showed significant improvement using block-ILU(0) as opposed to

block-Jacobi for the local solvers for an additive Schwarz method with zero overlap [122]. ILU

factorizations have been particularly popular as local solvers for additive Schwarz methods

with or without a coarse correction [25, 32, 33, 59, 60, 102, 122]. Cai, Farhat and Sarkis also

employed a preconditioned GMRES method to solve the local problem on each subdomain

[25, 32]. In particular, this allowed for different number of iterations to be used in each

subdomain ensuring that each local problem was solved with sufficient accuracy.

For practical aerodynamic flows, the question remains whether a coarse space is neces-

sary for a scalable preconditioner. For the solution of steady compressible Euler equations,

Venkatakrishnan used a coarse space developed using an algebraic multigrid-type scheme

[122]. In numerical simulations with up to 128 processors, Venkatakrishnan showed that the

presence of the coarse grid gives some improvement in the performance of the preconditioner

in terms of number of iterations, though this did not necessarily translate into faster solu-

tion time. Gropp et al. did not employ a coarse space, and showed only modest increase

in the number of linear iterations for strong scaling results from 32 to 128 processors [60].

In particular, Anderson, Gropp, and collaborators have performed large scale inviscid CFD

simulations using over 3000 processors without employing a coarse space [4, 59, 60]. For

unsteady simulations for the compressible Navier-Stokes equations, Cai, Farhat, and Sarkis

found only a small increase in the number of iterations for strong scaling results up to 512

subdomains without the presence of a coarse space [25, 33]. Similarly, Persson showed good

strong scaling performance up to 512 processors for the unsteady Navier-Stokes equations

using a subdomain wise block-Jacobi preconditioner without a coarse space [102]. This ob-

servation is consistent with the theoretical result for the time-dependent convection-diffusion

problems, where a coarse space is not necessary if the time step is sufficiently small.

As the time step is allowed to increase, Persson showed that the performance of the pre-

conditioner without a coarse space degrades significantly [102]. For steady state problems

solved with little or no pseudo-temporal contributions, Diosady showed very poor strong

scaling results using a similar preconditioner, particularly for viscous problems [45]. A par-

titioning strategy weighted by the strength of the coupling between elements was introduced

in order to improve the parallel scaling of this preconditioner [45]. A similar strategy was
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also employed by Persson [102]. However, the resulting partitions had larger surface area to

volume ratios resulting in more communication per computation. While such a technique

improves parallel performance on a moderate number of processors, the use of a coarse space

may be essential for obtaining a scalable method for steady state viscous flow problems on

massively parallel systems.

Inexact Schur complement methods have been used as an alternative means of obtaining a

global correction for CFD simulations [10, 64]. Schur complement methods reduce the size of

the global system to a system corresponding only to the degrees of freedom on ( or near ) the

interfaces between subdomains. Inexact Schur complement methods solve an approximate

Schur complement problem in order to precondition the global system. The solution of the

approximate Schur complement problem acts as a global coarse grid correction. For example,

Barth et al. developed a global preconditioner based on an approximate Schur complement

for the solution of the conforming finite element discretization of the Euler equations, where

approximate Schur complements were computed using ILU preconditioned GMRES [10].

Similarly, Hicken and Zingg developed a preconditioner for a finite-difference discretization

of the compressible Euler equation by computing an approximate Schur complement using an

ILU factorization. Both Barth et al. and Hicken and Zingg used a preconditioned GMRES

method to iteratively solve the inexact Schur complement system leading to non-stationary

preconditioners which were applied to the flexible variant of GMRES [109]. While much

smaller than the entire global system, the Schur complement system is still globally coupled

and an effective preconditioner for the Schur complement problem requires a coarse space in

order to effectively control the low frequency error modes.

1.2.5 Balancing Domain Decomposition by Constraints

In order to solve the Schur complement problem, this work considers a class of domain

decomposition preconditioners known as Neumann-Neumann methods which were originally

developed to solve elliptic problems [21, 44, 116]. While all of the methods discussed have

defined local problems based on blocks of the fully assembled discrete system, Neumann-

Neumann methods exploit the finite element residual assembly to define the local problem.

While the original Neumann-Neumann methods lacked a coarse space, Mandel introduced

a coarse space leading to the Balancing Domain Decomposition (BDD) method [73, 74].
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The BDD method was later shown to be closely related to the Finite Element Tearing and

Interconnecting (FETI) method [54, 58]. FETI methods are among the most widely used

and well tested methods for structural mechanics problems. For example Bhardwaj et al.

used FETI methods to solve structural mechanics problems on up to 1000 processors [18].

The most advanced of the FETI and Neumann-Neumann class of methods are the dual-

primal FETI (FETI-DP) [53, 80] and the Balancing Domain Decomposition by Constraints

(BDDC) method [47, 75]. Like FETI and BDD, FETI-DP and BDDC methods are closely

related and have essentially the same eigenvalue spectra [71, 76]. The analysis of these

preconditioners have been extended to the case where inexact local solvers are used in [48,

67, 72]. Additionally, several authors have presented multi-level versions of the BDDC

method [78, 79, 120]. An adaptive method for adding primal degrees of freedom to ensure

rapid convergence has also been presented[77]. Practical implementations of the FETI-DP

method has been used to solve structural mechanics problems on up to 3000 processors

[19, 104].

While originally developed for elliptic problems, Achdou et al. modified the Neumann-

Neumann interface condition to Robin-Robin interface conditions for a convection-diffusion

problem, ensuring that the local bilinear forms were coercive [1]. A Fourier analysis, on a

partitioning of the domain into strips normal to the stream-wise direction, showed that in

the convective limit, the resulting algorithm converges in a number of iterations equal to

half the number of subdomains in the stream-wise direction. The Robin-Robin interface

conditions have been used along with a FETI method to solve linear convection-diffusion

problems by Toselli [117]. Similarly, Tu and Li used the Robin-Robin interface condition to

extend the BDDC method to convection-diffusion problems [121].

Neumann-Neumann and FETI methods have in general not been used for large scale CFD

simulations, however recent work is beginning to make these methods available to the systems

of equations for compressible flows. Dolean and collaborators have extended the Robin-Robin

interface condition to the isentropic Euler equations using a Smith factorization [50, 51].

Yano and Darmofal also provided a generalization of the Robin-Robin interface condition to

the Euler equations based on entropy symmetrization theory [123, 124]. However, detailed

analysis of the performance of this algorithm has yet to be performed.
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1.3 Thesis Overview

1.3.1 Objectives

The objective of this work is to develop a scalable high-fidelity solver for higher-order dis-

cretizations of convection-dominated flows. In order to meet this objective, this work presents

a solution strategy based on an implicit Newton-Krylov method using domain decomposition

preconditioners.

1.3.2 Thesis Contributions

The contributions of this thesis are the following:

• An additive Schwarz preconditioner with a coarse space based on harmonic extensions

is developed for higher-order hybridizable discontinuous Galerkin discretizations. The

coarse space correction is shown to improve the convergence relative to a single level

additive Schwarz preconditioner for convection dominated flows solved on anisotropic

meshes.

• A Balancing Domain Decomposition by Constraints (BDDC) preconditioner is devel-

oped for higher-order hybridizable discontinuous Galerkin (HDG) discretizations. The

BDDC method is proven to converge at a rate independent of the number of subdo-

mains and only weakly dependent on the solution order and the number of elements per

subdomain, for a second-order elliptic problem. The BDDC preconditioner is extended

to the solution of convection-dominated problems using a Robin-Robin interface con-

dition. Numerical results show that the BDDC preconditioner reduces the number of

local linear solves required to converge relative the additive Schwarz preconditioner

with or without coarse space for convection-dominated problems solved on anisotropic

meshes.

• An inexact BDDC preconditioner is developed based on incomplete factorizations and

a p-multigrid type coarse grid correction. It is shown that the incomplete factorization

of the singular linear systems corresponding to local Neumann problems results in a

non-singular preconditioner. Numerical results show that the inexact BDDC precon-

ditioner converges in a similar number of iterations as the exact BDDC method, with
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significantly reduced CPU time.

• An analysis is performed to assess the effect of far-field boundary conditions on the

convergence of domain decomposition methods for the compressible Euler equations.

It is shown that, even in the one-dimensional case, applying reflecting boundary con-

ditions leads to exponential convergence (as opposed to convergence in a finite number

of iterations).

• The BDDC preconditioner is extended to the solution of the compressible Euler equa-

tions using optimized interface conditions. Numerical results show that the optimized

interface conditions significantly improve the performance of the BDDC preconditioner

relative to the standard Robin-Robin interface condition.

• A restricted overlapping Schwarz preconditioner is developed for a higher-order dis-

continuous Galerkin (DG) discretization of the compressible Euler and Navier-Stokes

equations. It is shown that using an overlap of consisting of only a single layer of

elements significantly improves relative to a non-overlapping preconditioner.

• A BDDC preconditioner is developed for a large class of higher-order discontinuous

Galerkin discretizations. The BDDC method is proven to converge at a rate indepen-

dent of the number of subdomains and only weakly dependent on the solution order

or the number of elements per subdomain, for a second-order elliptic problem.

The thesis is organized as follows. Chapter 2 presents the HDG discretization. Chapter

3 presents the domain decomposition and develops the additive Schwarz preconditioner.

Chapter 4 introduces the BDDC preconditioner, while Chapter 5 presents an inexact variant

of the BDDC preconditioner. Chapter 6 provides an analysis of the performance of the

domain decomposition preconditioners for the Euler and Navier-Stokes systems of equations.

Chapter 7 presents numerical results for several fundamental aerodynamic flows. Finally,

Chapter 8 gives conclusions and recommendations for future work.
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Chapter 2

Discretization and Governing

Equations

2.1 HDG Discretization

The hybridizable discontinuous Galerkin discretization is presented for a general system of

conservation equations. Let u(x, t) : Rd × R+ → Rm be the vector of m-state variables in

d-dimensions. A general conservation law in a physical domain, Ω ⊂ Rd, d = 2, 3, is given

by:

uk,t + (Fik(u) +Gik(u, u,x)),xi = fk(u, u,x, x), (2.1)

where k ∈ {1, . . . ,m} is the component index of the governing equations, i ∈ {1, . . . , d} is

the spatial index, (·),t is the temporal derivative, and (·),xi is the spatial derivative with

respect to xi. F (u) : Rm → Rm×d and G(u, u,x) : Rm × Rm×d → Rm×d are the viscous and

inviscid fluxes, respectively. (2.1) may be rewritten as the following first order system of

equations:

qik − uk,xi = 0 (2.2)

uk,t + (Fik(u) +Gik(u, q)),xi = fk(u, q, x). (2.3)
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The HDG discretization is obtained from a weak form of (2.2)-(2.3). Let the tessellation Th
be a partition of Ω into triangles or quadrilaterals (if d = 2) or tetrahedra or hexahedra (if d =

3). Define E to be the union of edges (if d = 2) or faces (if d = 3) of elements, κ. Additionally,

define E Int ⊂ E and E∂ ⊂ E to be the set of interior and boundary edges, respectively. Any

edge e ∈ E Int is shared by two adjacent elements κ+ and κ− with corresponding outward

pointing normal vectors n+ and n−.

Let Pp(D) denote the space of polynomials of order at most p onD. Given the tessellation

Th, define the following finite element spaces:

Vp
h := {v ∈

(
L2(Ω)

)m×d : v|κ ∈ (Pp(κ))m×d ∀κ ∈ T } (2.4)

W p
h := {w ∈

(
L2(Ω)

)m : w|κ ∈ (Pp(κ))m ∀κ ∈ T } (2.5)

Mp
h := {µ ∈

(
L2(E)

)m : µ|e ∈ (Pp(e))m ∀e ∈ E}. (2.6)

Consider the steady state solution to (2.2)-(2.3). The weak form is given by: Find

(q, u) ∈ Vp
h ×W

p
h such that for all κ ∈ Th,

(qik, vik)κ + (uk, vik,xi)κ − 〈ûk, vikni〉∂κ = 0 ∀v ∈ Vp
h (2.7)

−(Fik(u) +Gik(u, q), wk,xi)κ +
〈

(F̂ik + Ĝik)ni, wk
〉
∂κ

= (fk, wk)κ ∀w ∈W p
h , (2.8)

where (w, v)κ :=
∫
κwv and 〈w, v〉∂κ :=

∫
∂κwv. In the case of unsteady problems, or steady

problems driven to steady-state using pseudo-transient time continuation, (2.8) also includes

temporal terms appropriate to the time stepping scheme used. In (2.8), (F̂ik + Ĝik)ni is the

numerical flux which approximates (Fik(u)+Gik(u, q))ni on ∂κ, while û ∈Mp
h approximates

the trace of u on E . The numerical flux takes on the form:

(F̂ik + Ĝik)ni = (Fik(û) +Gik(û, q))ni + Skl(û, n)(ul − ûl) on ∂κ, (2.9)

where S(û, n) is a local stabilization matrix. The local stabilization matrix has the form:

S(û, n) = |An|+ SDiff, (2.10)

where An = ∂Fi(û)ni
∂û , while SDiff is a diagonal matrix with diagonal values given by the
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coefficients of the diffusive terms [39].

Elements in the HDG discretization are coupled by ensuring that the numerical flux

is continuous across faces in E Int. Specifically, the HDG discretization enforces that the

jump in the numerical flux, (F̂ik + Ĝik)+n+
i + (F̂ik + Ĝik)−n−i , between elements κ+ and

κ− is orthogonal to all functions in Mp
h(E Int). Summing over all element gives the HDG

discretization: Find (q, u, û) ∈ Vp
h ×W

p
h ×M

p
h such that

(qik, vik)T + (uk, vik,xi)T − 〈ûk, vikni〉∂T = 0 ∀v ∈ Vp
h (2.11)

−(Fik(u) +Gik(u, q), wk,xi)T +
〈

(F̂ik + Ĝik)ni, wk
〉
∂T

= (fk, wk)T ∀w ∈W p
h (2.12)

−
〈

(F̂ik + Ĝik)ni, µk
〉
∂T \∂Ω

= 0 ∀µ ∈Mp
h,i (2.13)

〈
B̂k, µk

〉
∂Ω

= 0 ∀µ ∈Mp
h,∂ , (2.14)

where (·, ·)T :=
∑

κ∈T (·, ·)κ, 〈·, ·〉∂T :=
∑

κ∈T 〈·, ·〉∂κ and 〈·, ·〉∂T \∂Ω :=
∑

κ∈T 〈·, ·〉∂κ\∂Ω,

while Mp
h,i and Mp

h,∂ are subsets of Mp
h corresponding to edge functions interior to Ω and on

∂Ω, respectively. B̂ is a boundary term used to enforce the desired boundary conditions on

∂Ω. The specific form of B̂ for different types of boundary conditions is discussed in Section

2.3. Specifying a basis for Vp
h, W p

h and Mp
h , (2.11) - (2.13) leads to a non-linear system of

equations for the coefficients of the basis functions. Applying Newton’s method results in a

discrete linear system at each Newton iteration of the form:




Aqq Aqu Aqλ Aqλb

Auq Auu Auλ Auλb

Aλq Aλu Aλλ Aλλb

Aλbq Aλbu Aλbλb Aλbλb







∆q

∆u

λ

λb




=




bq

bu

bλ

bλb



, (2.15)

where ∆q, ∆u, λ, λb denote the vector of updates for the coefficients of basis functions

corresponding to q, u and û on e ∈ E Int and e ∈ E∂ respectively. The system (2.15) has

an element-wise block diagonal form such that ∆q, ∆u and λb in (2.15) may be eliminated

element by element to get the following system:

Âλ = b, (2.16)
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where

Â = Aλλ −
[
Aλq Aλu Aλλb

]



Aqq Aqu Aqλb

Auq Auu Auλb

Aλbq Aλbu Aλbλb




−1 


Aqλ

Auλ

Aλbλ


 (2.17)

b = bλ −
[
Aλq Aλu Aλλb

]



Aqq Aqu Aqλb

Auq Auu Auλb

Aλbq Aλbu Aλbλb




−1 


bq

bu

bλb


 . (2.18)

The superscript in Â is used to denote the globally assembled finite element matrix consistent

with the notation in Chapter 4. Alternatively, λ = ∆û may be viewed as the solution of

linearized form:

a(λ, µ) = b(µ) ∀µ ∈Mp
h,i, (2.19)

where a(λ, µ) and b(µ) are given by:

a(λ, µ) =
∑

κ∈T
aκ(λ, µ) =

∑

κ∈T
−
〈

(∆F̂ λ,0ik + ∆Ĝλ,0ik )ni, µ
〉
∂κ\∂Ω

(2.20)

b(µ) =
∑

κ∈T
bκ(µ) =

∑

κ∈T

〈
(∆F̂ 0,R

ik + ∆Ĝ0,R
ik )ni, µ

〉
∂κ\∂Ω

. (2.21)

Here, (∆F̂ λ,0ik + ∆Ĝλ,0ik )ni is the change in numerical flux obtained by solving the linearized

problem about (q̄, ū, ¯̂u) corresponding to (2.7) - (2.8) with ∆û = λ and zero right-hand

side. Similarly, (∆F̂ 0,R
ik + ∆Ĝ0,R

ik )ni is the change in numerical flux obtained by solving the

linearized problem with ∆û = 0 and right-hand sides corresponding to the residual of (2.7)

- (2.8) at the linearization point.

2.2 Compressible Navier-Stokes Equations

The compressible Euler and Navier-Stokes equations are systems of non-linear conserva-

tion equations of the form (2.1). In particular, the Euler equations are obtained from the

Navier-Stokes equations by setting the viscous flux vector to zero and omitting (2.11) for the

gradient. The conservative state vector is given by u = [ρ, ρvi, ρE]T , where ρ is the density,
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vi the velocity in direction i, and E the total internal energy. The inviscid flux vector is

given by:

Fi(u) =




ρvi

ρvivj + δijp

ρviH


 , (2.22)

where p is the static pressure, H = E + p
ρ is the total enthalpy, and δij is the Kronecker

delta:

δij =





1 i = j

0 otherwise.
(2.23)

The pressure is given by:

p = (γ − 1)ρ
(
E − 1

2
ρvivi

)
, (2.24)

where γ is the specific heat ratio (γ = 1.4 for air). The viscous flux vector is given by:

Gi(u, u,x) = −




0

τ ij

vjτ ij + κTT,xi


 , (2.25)

where τ is the shear stress tensor, κT is the thermal conductivity, T = p/ρR is the temper-

ature, and R is the gas constant. The shear stress tensor, τ , is given by:

τ ij = µ
(
vi,xj + vj,xi

)
− δijλvk,xk , (2.26)

where µ is the dynamic viscosity and λ = 2
3µ is the bulk viscosity coefficient. The dynamic

viscosity is given by Sutherland’s Law:

µ = µref

(
T

Tref

) 3
2 Tref + Ts

T + Ts
. (2.27)
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The thermal conductivity is a function of the dynamic viscosity:

κT =
γµR

(γ − 1)Pr
, (2.28)

where Pr is the Prandtl number. For air, Tref = 288◦ K, Ts = 110.4◦ K and Pr = 0.71.

2.3 Boundary Conditions

This section gives the exact form of the boundary term B̂ used to define various boundary

conditions for the compressible Euler and Navier-Stokes equations.

Flow Tangency BC

A slip boundary condition is enforced on a symmetry plane or at a solid surface in inviscid

flow. The boundary condition may be written as:

B̂ =




ρ− ρ̂
ρvi − (ρvknk)ni − ρ̂vi

ρE − ρ̂E


 (2.29)

where ρvknk is the normal component of the velocity. Thus setting B̂ = 0 weakly enforces

ρ̂ = ρ, ρ̂E = ρE, and ρ̂vi has zero component in the normal direction (since ρvi − (ρvknk)ni

is the interior momentum with the normal component removed).

Adiabatic No-slip BC

At a solid surface for viscous flow an adiabatic no slip boundary condition is set by enforcing

zero velocity and heat flux. Namely, the boundary condition is written as:

B̂ =




(F̂i1 + Ĝi1)

ρ̂vi

(F̂im + Ĝim)


 (2.30)

The first condition enforce zero mass flux through the boundary, the second condition ensures

zero momentum at the surface, while the third condition ensures the heat flux into the
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domain is zero.

Isothermal No-slip BC

In order to set an isothermal no slip boundary condition at a solid surface for viscous flow, the

boundary condition is similar to the adiabatic no slip condition except the last component

of the boundary condition is set to Tw − T (û). Tw is the desired surface temperature and

T (û) is the temperature computed as a function of û.

Characteristic Inflow/Outflow BCs

At an inflow/outflow boundary, a free-stream condition, u∞, is specified and the boundary

condition is given by:

B̂ =
[
(F̂i + Ĝi)ni

]
−
[
Fi(û)ni +A−n (u∞ − u) + (Gini)∞

]
. (2.31)

where An = ∂(Fi(û)ni)/∂(û), with A±n = (An± |An|)/2. Here (Gini)∞ is a specified normal

viscous flux at the boundary, usually assumed to be zero. This choice of B̂ ensures that the

mathematically correct number of boundary conditions are specified at inflow and outflow

boundary conditions. Namely, for two-dimensional subsonic inviscid flow three inflow and

one outflow boundary conditions are set, while for viscous flow four inflow and three outflow

conditions are set [62]. In the case of inviscid flow this boundary condition simplifies to the

expression given by Peraire et al. [100]:

B̂ = A+
n (u− û)−A−n (u∞ − û) (2.32)

Other Inflow/Outflow BCs

It is often convenient to specify inflow and outflow BCs without complete knowledge of the

boundary state. For example total pressure, total temperature and angle of attack may be

specified at an inflow boundary or a desired static pressure may be specified at an outflow

boundary. For these types of boundary conditions, a boundary state u∞ is reconstructed as

a function of the interior state u and the desired boundary condition. The boundary flux B̂

is then set in the same manner as the characteristic the BCs given above.
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2.4 Solution Method

While the focus of this work is primarily to obtain steady-state solutions, pseudo-transient

continuation is used to improve the transient behaviour of the solver. Specifically, a local

time-stepping procedure is employed whereby the time step for each element ∆tκ is set using

a global CFL number:

∆tκ = CFL
hmin

λmax
(2.33)

where λmax is the largest characteristic speed in element κ, while hmin is the minimum

altitude of κ. At each pseudo time-step a single Newton iteration is used to update (q, u, û),

while the global CFL number is incrementally increased as the solution approaches its steady

state value.

Each Newton iteration requires the solution of a linear system of the form (2.15). As

noted in Section 2.1, the HDG discretization allows for the degrees of freedom corresponding

to ∆q and ∆u to be locally eliminated on each element. Thus, storage of the entire linear

system is not necessary. In particular, the solution updates ∆qκ and ∆uκ for an element κ

are given by:


 ∆qκ

∆uκ


 =


 Aκqq Aκqu

Aκuq Aκuu



−1 
 bκq

bκu


−


 Aκqq Aκqu

Aκuq Aκuu



−1 
 Aκqλ

Aκuλ


λκ

=


 ∆qκlocal

∆uκlocal


+


 ∆qκglobal

∆uκglobal


λκ (2.34)

Thus, for each element only the local update vectors ∆qκlocal and ∆uκlocal and global update

matrices ∆qκglobal and ∆uκglobal along with the globally coupled reduced system (2.16) need

to be stored. For a linear problem ∆qκlocal and ∆uκlocal will be zero after the first iteration,

even if the global reduced system is not solved exactly. Thus ∆qκlocal and ∆uκlocal provide a

measure of the nonlinearity of the system and may be used as an indicator to drive an inner

nonlinear iteration on an element-wise level.

The contribution to the global reduced system and residual due to element κ are given
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by:

Aκ = Aκλλ −
[
Aκλq Aκλu

]

 Aκqq Aκqu

Aκuq Aκuu



−1 
 Aκqλ

Aκuλ


 (2.35)

bκ = bκλ −
[
Aκλq Aκλu

]

 Aκqq Aκqu

Aκuq Aκuu



−1 
 bκq

bκu


 (2.36)

In general, the linear system (2.16) is too large to solve directly, thus a preconditioned

GMRES algorithm is used to iteratively obtain a solution. In particular, this work develops

domain decomposition preconditioners for the efficient parallel solution of (2.16). Note,

that the local solve and solution updates are trivially parallelized as these operations are

completely independent on each element.
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Chapter 3

Domain Decomposition and the

Additive Schwarz Method

In this chapter an additive Schwarz method (ASM) is developed for the solution of the

HDG discretization. Section 3.1 presents the domain decomposition and introduces nota-

tion. Section 3.2 presents a minimum overlapping additive Schwarz preconditioner with and

without a coarse space for the parallel solution of the HDG discretization. In Section 3.3,

the performance of the ASM preconditioners is assessed for several scalar PDE problems.

3.1 Domain Decomposition

Consider a partition of the domain Ω into subdomains Ωi such that the closure of Ω, Ω̄, is

given by Ω̄ = ∪Ni=1Ω̄i. The subdomains Ωi are disjoint regions of diameter O(H), consisting

of a union of elements in T . Define Ei to be the union of edges and faces on Ωi. The interface

of subdomain Ωi is defined as Γi = ∂Ωi\∂Ω while the collection of subdomain interfaces Γ

is defined as Γ = ∪Ni=1Γi. Figure 3-1 depicts graphically a sample grid partitioned into three

non-overlapping subdomains.

Denote by Λ̂ the space of finite element functions on edges in E , while Λ(i) denotes finite

element functions on edges in Ei. A Lagrange nodal basis is used to define Λ(i) and Λ̂. Define

restriction operator R(i) : Λ̂→ Λ(i) which maps global vectors on E to its local components

on Ei. Thus, the local solution vector λ(i) = R(i)λ is defined by nodal values on Ei. The
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Ω

Ω1

Ω2

Ω3Γ

Γ1

Γ2

Γ3

h H

R(1)

R(2)

Figure 3-1: Sample grid and non-overlapping partition

local stiffness matrices, A(i), and load vectors, b(i), correspond to local forms:

ai(λ, µ) =
∑

κ∈Ωi

aκ(λ, µ) bi(µ) =
∑

κ∈Ωi

bκ(µ) (3.1)

which may be computed independently on each subdomain. Note that the local bilinear form

ai(λ, µ) has natural boundary conditions on Γi. Thus the system, A(i)λ(i) = b(i), corresponds

to a problem with Neumann boundary conditions on Γi.

The global stiffness matrix and load vector are obtained by assembling with respect to

the interface degrees of freedom:

Â =
N∑

i=1

R(i)TA(i)R(i) and b =
N∑

i=1

R(i)T b(i) (3.2)

3.2 Additive Schwarz method

Consider the domain decomposition presented in Section 3.1. Denote by Ω
′
i the region

obtained by extending Ωi by a single element across each edge e ∈ Γi. Figure 3-2

Denote by Â(i) := R(i)ÂR(i)T the block extracted from Â corresponding to edge degrees

of freedom on interior to Ω
′
i. While A(i) and Â(i) have the same size, A(i) 6= Â(i). As noted

previously A(i) corresponds to a finite element problem in Ωi with Neumann boundary con-

dition on Γi. On the other hand, Â(i) corresponds to a finite element problem on Ω
′
i with
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2
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′
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Figure 3-2: Overlapping partition

homogeneous Dirichlet boundary condition on ∂Ω
′
i. The additive Schwarz method involves

the solution of N independent Dirichlet problems corresponding to each overlapping subdo-

main, Ω
′
i, which may be performed in parallel, by assigning a subdomain to each processor.

Using the notation previously defined, the overlapping additive Schwarz preconditioner is

written as:

M−1
ASM =

N∑

i=1

R(i)T Â(i)−1
R(i) (3.3)

This preconditioner is called minimum overlapping since if GA is the adjacency graph corre-

sponding to Â, then R(i) extracts nodes of GA with overlap corresponding only to nodes on

Γ. Figure 3-3 depicts the solution obtained by applying one iteration of the additive Schwarz

method to solve a p = 5 discretization of the Poisson problem presented in Section 3.3 on

the sample partitioned grid.

The basic form of the additive Schwarz method lacks a global correction and thus is

not scalable for elliptic problems. Such a coarse space correction is necessary in order to

control low frequency error modes that span multiple subdomains [118]. Additive Schwarz

preconditioners with coarse spaces have been widely studied for continuous finite element

discretizations of elliptic problems [29, 52], as well as for mixed finite elements [22], spectral

elements [36], and discontinuous Galerkin discretizations [5–7, 55, 70]. In a typical analysis

the condition number of the preconditioned system, M−1
ASMÂ, is bounded as κ

(
M−1

ASMÂ
)
≤

C
(
1 + H

δ

)
, where H is the diameter of a subdomain Ωi, while δ is the amount of overlap
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R(i)T

Â(i)−1

R(i) M−1
ASM

Figure 3-3: Additive Schwarz method applied to sample Poisson problem

and C is a constant independent of H or δ [29, 52]. The condition number does not depend

directly upon H but only upon the factor H
δ . If the overlap is such that δ ≥ cH for some

constant c, the subdomains are said to have “generous” overlap. With generous overlap, the

condition number of the preconditioned system becomes independent of 1
H and H

h and the

method is both scalable and optimal. On the other hand, this work considers an additive

Schwarz method with overlap, δ, proportional to the element size, h. Thus, the condition

number bound has the form κ ≤ C
(
1 + H

h

)
, hence the preconditioner with coarse space is

scalable, but not optimal.

In many cases, the coarse space for Schwarz methods is based on a discretization of the

finite element problem on a coarser mesh [118]. In particular, it is often assumed that finite

element mesh on which the solution is desired is obtained from successive refinements of a

coarse mesh. This allows for very simple definition of restriction and prolongation operators.

However, for problems involving complex geometries solved on unstructured meshes, an

appropriate coarse problem may be much more difficult to define as the subdomains may have

arbitrary shape. A possible approach involves generating a coarse problem by agglomerating

elements of the fine mesh as in an agglomeration multigrid approach [81, 86, 90]. However,

the particular choice of agglomeration strategy may significantly impact the performance of

the solver [90]. Additionally, the communication pattern of the restriction and prolongation

operators may be quite complicated [90].

In this work a coarse space problem is defined algebraically using a projection of the
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global system matrix. Denote by Λ0 the coarse finite element space. The coarse space is

defined by a set of coarse primal basis functions {ΦEk} and coarse adjoint basis functions

{Φ∗Ek}. For now the exact form of the coarse basis functions is left undefined, except to

note that each coarse basis function, ΦEk or Φ∗Ek , is associated with a subdomain interface

Ek = ∂Ωi ∩ ∂Ωj , i 6= j. Define by Φ and Φ∗ the matrices of coarse basis functions such

that Φ : Λ0 → Λ̂ defines prolongation operator from the coarse space to the fine space while

Φ∗
T

: Λ̂ → Λ0 defines a restriction operator to the coarse space. The coarse system, A0, is

given by the projection:

A0 = Φ∗
T
ÂΦ (3.4)

The additive Schwarz preconditioner with additive coarse grid correction is written as:

M−1
ASMA

= ΦA−1
0 Φ∗

T
+

N∑

i=1

R(i)T Â(i)−1
R(i) (3.5)

A simple variant of this preconditioner is obtained by applying the coarse grid correction

in a multiplicative manner [113]. Namely, this preconditioner involves two sequential steps:

1) the solution of the coarse grid problem followed by a corresponding update of the residual,

2) the solution of N independent subdomain problems. The additive Schwarz preconditioner

with multiplicative coarse grid correction is written as:

M−1
ASMM

= ΦA−1
0 Φ∗T +

N∑

i=1

R(i)T Â(i)−1
R(i)

(
I − ÂΦA−1

0 ΦT
)

(3.6)

It remains to define the coarse basis functions {φEk} and {φ∗Ek}. As noted previously, each

coarse basis function, φEk or φ∗Ek , is associated with a subdomain interface Ek. The value of

the coarse basis functions on each edge e is given by:

φEk =





δkk′ e ∈ Ek′
Hi (φEk |∂Ωi) e ∈ Ωi,∀i

φ∗Ek =





δkk′ e ∈ Ek′
H∗i (φEk |∂Ωi) e ∈ Ωi,∀i

(3.7)

where δkk′ is the Kronecker delta, while Hi and H∗i are harmonic extension operators to the

interior of Ωi. In order to define the harmonic extension operators, the degrees of freedom
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Figure 3-4: Coarse basis functions for additive Schwarz method

on each subdomain are partitioned into interior, λ(i)
I ∈ Λ(i)

I , and interface, λ(i)
Γ ∈ Λ(i)

Γ , parts.

The subspace of Λ(i) consisting of functions which vanish on Γi is denoted by Λ(i)
I , while

Λ(i)
Γ denotes the space of edge function on Γi. The local solution vector, stiffness matrix and

load vector are written as:

λ(i) =


 λ

(i)
I

λ
(i)
Γ


 , A(i) =


 A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ


 , and b(i) =


 b

(i)
I

b
(i)
Γ


 , (3.8)

The harmonic extension operators Hi and H∗i which define mappings Λ(i)
Γ → Λ(i) are given

by:

Hi =


 −A

(i)−1

II A
(i)
IΓ

I
(i)
Γ


 and H∗i =


 −A

(i)−T

II A
(i)T

ΓI

I
(i)
Γ


 (3.9)

For elliptic problems, the harmonic extension operators are energy minimizing extensions of

the interface values on Γi to all of Ωi. The definition of the coarse space is purely algebraic,

as the coarse basis functions is obtained from the global system matrix and its connectivity

graph without relying on any geometry information of the underlying mesh. Figure 3-4

depicts a particular coarse basis function, while Figure 3-5 depicts the solution obtain by

applying a single iteration of the ASMA preconditioner to the Poisson model problem.
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Figure 3-5: Additive Schwarz method with coarse space applied to sample
Poisson problem

3.3 Numerical Results

In this section the performance of the ASM preconditioners are assessed for two linear scalar

model problems in a square domain Ω = [0, 1]2 ∈ R2. The first model problem is the Poisson

problem:

−∆u = f (3.10)

where u(x, y) is the state while f is a source function so that the exact solution is given by:

u = sin(πx) sin(πy) (3.11)

The second model problem is the advection-diffusion problem:

∇ · (cu)− µ∆u = f in Ω (3.12)

where c = (1, 0) is the convective velocity, and µ is the diffusivity and f is set such that the

exact solution is given by:

u = e−y/
√
µx̄ where x̄ = x+ 0.1 (3.13)

Figures 3-6(a) and 3-6(b), respectively, plot the solution for the Poisson and advection-

diffusion problems.
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(a) Poisson (b) Advection-Diffusion (µ = 10−1)

Figure 3-6: Plot of solution for 2d scalar model problems

The relative performance of the different ASM algorithms is assessed in terms of the

number of GMRES iterations required to converge. It is assumed that the cost of each

GMRES iteration is dominated by the cost of the local solves, which are the same for all

ASM variants presented.

In the first numerical experiment, the Poisson model problem is solved on an isotropic

structured mesh, using a structured partition of the domain. The domain Ω is partitioned

into N subdomains in a
√
N ×

√
N structured pattern. Locally, each subdomain consists of

n elements obtained by dividing Ωi into squares of equal size and splitting each square into

two triangular elements. Figure 3-7(a) plots the isotropic structured mesh.

The performance of the preconditioners are assessed for varying N and n for solutions

with polynomial orders p = 2 and 5. Table 3.1 shows the number of GMRES iterations

required to decrease the l2-norm of the residual by a factor of 106. For a fixed number of

elements per subdomain, n = 128, the performance of the ASM preconditioner without a

coarse space degrades as the number of subdomains, N , increases. This behaviour is due to

the lack of a coarse space able to control the lower frequency error modes. On the other hand

for the additive (ASMA) and multiplicative (ASMM ) preconditioners with coarse spaces, the

number of iterations appears to be bounded as the number of subdomains increases. For
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(a) Isotropic Mesh (b) Anisotropic Mesh

Figure 3-7: Plot of meshes used 2d scalar model problems

p = 2 p = 5
N n ASM ASMA ASMM ASM ASMA ASMM

4 128 19 20 19 23 24 22
16 128 33 29 27 39 38 34
64 128 52 35 30 63 43 38
256 128 78 36 33 96 45 41
1024 128 107 37 35 139 46 43
64 8 30 22 16 36 26 21
64 32 40 27 22 47 32 28
64 128 52 35 30 63 43 38
64 512 66 48 42 78 60 52
64 2048 77 66 59 92 82 72

Table 3.1: Number of GMRES iterations for Poisson problem on isotropic
structured mesh
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a fixed number of subdomains N = 64, the performance of the ASM preconditioner de-

grades with increasing number of elements per subdomain, due to the non-optimality of this

preconditioner in the case of small overlap. The ASMM preconditioner with multiplicative

coarse grid correction is, generally, slightly superior to the ASMA preconditioner with addi-

tive coarse grid correction. However, the use of a multiplicative coarse grid correction does

not alter the scaling of the preconditioner with N or n. Finally, note that the number of

iterations appears only weakly dependent on the solution order for all three preconditioners.

In the second numerical experiment, the advection-diffusion model problem is solved

on the same structured mesh as for the Poisson problem. The performance of the ASM

preconditioners are assessed over a large range of diffusivity, µ, highlighting the difference

between the diffusion- and convection-dominated limits. Tables 3.2 and 3.3 show the number

of linear solves required to converge the l2-norm of the residual by a factor of 106 for µ = 1

and µ = 10−6, respectively.

In the diffusion-dominated limit, (µ = 1), the behaviour of all preconditioners closely

match that of the purely elliptic Poisson problem. Namely, a coarse space is necessary to

ensure good scaling as the number of subdomains is increased, while the number of iterations

grows with the number of elements per subdomain.

p = 2 p = 5
N n ASM ASMA ASMM ASM ASMA ASMM

4 128 24 20 18 28 23 21
16 128 45 27 23 52 31 26
64 128 82 27 23 93 31 26
256 128 152 27 22 168 31 26
1024 128 239 27 23 261 31 26
64 8 43 19 14 49 22 16
64 32 61 21 18 69 24 20
64 128 82 27 23 93 31 26
64 512 110 34 29 122 38 33
64 2048 146 42 37 162 47 41

Table 3.2: Number of GMRES iterations for advection-diffusion boundary
layer problem with µ = 1 on isotropic structured mesh

In the convection-dominated limit, µ = 10−6, all three ASM preconditioners converge in

a small number of iterations proportional to the number of subdomains in the stream-wise
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direction (
√
N). For this test case, the boundary layer is restricted to a small region near the

bottom of the domain. The elemental Peclet number, Peh = ch
µ � 1 and there is insufficient

resolution to accurately resolved the boundary layer profile. As the Peh � 1 the diffusion

effects do not play a significant role in the convergence of the different preconditioners. The

coarse space does not provides any benefit in this case as it is unable to resolve the high-

frequency convective modes. In particular, a coarse space is not justified as the ASM method

without coarse space converges in fewer iterations than the slightly more expensive ASMA

and ASMM preconditioners.

p = 2 p = 5
N n ASM ASMA ASMM ASM ASMA ASMM

4 128 3 6 5 3 6 5
16 128 5 10 7 5 11 8
64 128 10 17 12 11 18 13
256 128 19 30 20 19 29 21
1024 128 35 46 36 35 44 37
64 8 9 16 11 9 17 12
64 32 9 17 11 10 17 12
64 128 10 17 12 11 18 13
64 512 11 17 12 11 17 13
64 2048 10 17 13 11 18 14

Table 3.3: Number of GMRES iterations for advection-diffusion boundary
layer problem with µ = 10−6 on isotropic structured mesh

In order to better understand the performance of the preconditioner in the convection-

dominated limit, Figure 3-8 plots the convergence history for p = 2, n = 128, and N = 64

or 256. The residual essentially does not decrease until iteration
√
N at which point high

frequency errors have essentially convected out of the domain and the residual drops rapidly.

While the results of Table 3.3 suggest that a coarse space may not be necessary for

convection-dominated problems, the diffusive effects are masked by the lack of resolution in

the boundary layer region. In practice, a significant portion of the mesh should be clustered

near the bottom surface to ensure that the boundary layer region is fully resolved. In a

third numerical experiment an anisotropic boundary layer mesh is employed, with uniform

spacing in the x-direction and an exponential spacing in the y-direction. The aspect ratio

of the elements at y = 0 is given by AR = 1/
√
Pe, where Pe = |c|/µ is the Peclet number.
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(b) N = 256

Figure 3-8: GMRES convergence history for advection-diffusion boundary
layer problem with µ = 10−6, p = 2 and n = 128 on isotropic
structured mesh

Figure 3-7(b) gives an example of one of the anisotropic meshes. Table 3.4 shows the number

of iterations required for the GMRES algorithm to converge by a factor of 106 for µ = 10−6.

In this case there is sufficient resolution in the boundary layer region to resolve boundary

layer profile near the bottom of the domain such that Peh ≈ 1, where Peh is the Peclet

number based on the element length scale in the cross-stream direction. Thus, the diffusive

effects play a significant role in the convergence of the different preconditioners. Compared

to Table 3.3, the performance of the ASM preconditioner without a coarse space is seen to

degrade relative to the ASMA and ASMM preconditioners.

Table 3.5 shows the performance on both the isotropic and anisotropic meshes over a

range of viscosities, for fixed N and n. Table 3.5 also gives the H1-norm of the error in the

solution using both sets of meshes. On the isotropic meshes, the relative performance of

the ASM preconditioner without coarse space improves rapidly as the viscosity is reduced.

However, on these meshes the boundary layer region is under-resolved. On the other hand, for

the anisotropic meshes on which the boundary layer is resolved, a coarse space is important

throughout the range of viscosities.
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p = 2 p = 5
N n ASM ASMA ASMM ASM ASMA ASMM

4 128 3 7 6 3 8 7
16 128 16 14 12 16 14 11
64 128 33 24 19 31 22 17
256 128 65 34 27 60 31 25
1024 128 126 40 37 118 37 35
64 8 18 17 13 18 16 12
64 32 25 19 15 23 18 14
64 128 33 24 19 31 22 17
64 512 46 32 25 42 29 23
64 2048 63 41 34 57 37 30

Table 3.4: Number of GMRES iterations for advection-diffusion boundary
layer problem with µ = 10−6 on anisotropic structured mesh

p = 2 p = 5

µ
‖u−u∗ ‖H1
‖u∗ ‖H1

ASM ASMA ASMM
‖u−u∗ ‖H1
‖u∗ ‖H1

ASM ASMA ASMM

Is
ot

ro
pi

c
M

es
h

1 1.2× 10−6 82 27 23 4.2× 10−11 93 31 26
10−1 2.7× 10−6 80 30 25 2.5× 10−11 90 34 29
10−2 2.8× 10−5 39 29 23 3.4× 10−10 43 33 27
10−3 6.0× 10−4 20 22 17 5.2× 10−8 21 23 18
10−4 1.2× 10−2 11 20 15 1.9× 10−5 11 21 15
10−5 1.4× 10−1 11 19 13 3.4× 10−3 11 19 15
10−6 3.1× 10−1 10 17 12 7.8× 10−2 11 18 13

A
ni

so
tr

op
ic

M
es

h 1 1.2× 10−6 82 27 23 4.2× 10−11 93 31 26
10−1 8.8× 10−7 85 31 24 2.3× 10−11 99 35 27
10−2 1.9× 10−6 68 30 22 1.6× 10−11 74 32 24
10−3 4.2× 10−6 51 29 23 1.7× 10−11 51 26 22
10−4 5.0× 10−6 41 28 22 2.1× 10−11 40 26 21
10−5 6.6× 10−6 36 26 20 2.6× 10−11 34 24 19
10−6 7.2× 10−6 33 24 19 3.8× 10−11 31 22 17

Table 3.5: Number of GMRES iterations on both isotropic and anisotropic
meshes with N = 64, n = 128
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Chapter 4

Balancing Domain Decomposition

by Constraints

This chapter develops the BDDC preconditioner for the parallel solution of the HDG dis-

cretization. Section 4.1 derives a Schur complement problem involving degrees of freedom

on the subdomain interfaces. Section 4.2 presents the BDDC preconditioner for the Schur

complement problem, while Section 4.3 presents the BDDC algorithm as a preconditioner for

the entire finite element problem. Section 4.4 provides a theoretical analysis of the BDDC

preconditioner for second-order elliptic problems. Section 4.5 extends the BDDC precondi-

tioner for the solution of advection-diffusion problems and presents the Robin-Robin interface

condition. Finally, Section 4.6 presents numerical results using the BDDC preconditioner.

4.1 A Schur Complement Problem

In order to define the Schur complement system, the degrees of freedom on each subdomain

are partitioned into interior and interface parts as in Section 3.2. The subspace of Λ(i)

consisting of functions which vanish on Γi is denoted by Λ(i)
I , while Λ(i)

Γ denotes the space of

edge functions on Γi. Also define ΛI , the space of functions which vanish on Γ, and Λ̂Γ which

corresponds to the space of edge functions associated with edges on Γ. Note that ΛI is equal

to the product of spaces Λ(i)
I (i.e. ΛI := ΠN

i=1Λ(i)
I ), while in general Λ̂Γ ⊂ ΛΓ := ΠN

i=1Λ(i)
Γ .
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The assembled system, (2.16), may be rewritten as:


 AII AIΓI

AΓI AΓΓ




 λI

λΓ


 =


 bI

bΓ


 . (4.1)

where λI and λΓ corresponds to degrees of freedom associated with ΛI and Λ̂Γ respectively.

Since the degrees of freedom associated with Λ(i)
I ( and ΛI) are local to a particular sub-

domain they may be locally eliminated. The local harmonic extension operators (3.9) are

used to restrict (4.1) to a Schur complement system corresponding only to interface degrees

of freedom. The local Schur complement matrices and load vectors are given by:

S
(i)
ΓΓ = H∗Ti A(i)Hi = A

(i)
ΓΓ −A

(i)
ΓIA

(i)−1

II A
(i)
IΓ, (4.2)

g
(i)
Γ = H∗Ti b(i) = b

(i)
Γ −A

(i)
ΓIA

(i)−1

II b
(i)
I . (4.3)

Define local operators R(i)
Γ : Λ̂Γ → Λ(i)

Γ which extract the local degrees of freedom on Γi from

those on Γ. Additionally define a global operator RΓ : Λ̂Γ → ΛΓ which is formed by a direct

assembly of R(i)
Γ . The global Schur complement problem may then be written as:

ŜΓΓλΓ = gΓ, (4.4)

where

ŜΓΓ = AΓΓ −AΓIA
−1
II AIΓI =

N∑

i=1

R
(i)T

Γ S
(i)
ΓΓR

(i)
Γ , (4.5)

gΓ = bΓΓ −AΓIA
−1
II bΓI =

N∑

i=1

R
(i)T

Γ g
(i)
Γ . (4.6)

Alternatively, the fully assembled Schur complement may be written as:

ŜΓΓ = RTΓSΓΓRΓ, (4.7)
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where SΓΓ is the block diagonal matrix where each block corresponds to S(i)
ΓΓ. Namely:

SΓΓ =




S
(1)
ΓΓ

. . .

S
(N)
ΓΓ


 . (4.8)

In practice, the Schur complement system need not be formed explicitly for a preconditioned

GMRES algorithm. Instead, the action of ŜΓΓ on a vector vΓ ∈ Λ̂Γ is computed by solving

local Dirichlet problems corresponding to A(i)−1

II and summing the resulting vectors.

Finally, note that (4.4) is the discrete equivalent of a weak form: find λΓ ∈ Λ̂Γ such that

sΓ(λΓ, µΓ) = gΓ(µΓ) ∀µΓ ∈ Λ̂Γ, (4.9)

where sΓ(λΓ, µΓ) and gΓ(µΓ) are given by

sΓ(λΓ, µΓ) =
N∑

i=1

si(λΓ, µΓ) =
N∑

i=1

−
〈

(∆F̂ λΓ,0
ik + ∆ĜλΓ,0

ik )ni, µ
〉

Γi
, (4.10)

gΓ(µΓ) =
N∑

i=1

gi(µΓ) =
N∑

i=1

〈
(∆F̂ 0

ik + ∆Ĝ0
ik)ni, µ

〉
Γi
, (4.11)

where (∆F̂ λΓ,0
ik + ∆Ĝλ,0ik )ni is the change in numerical flux on Γ obtained by solving the

linearized problem corresponding to (2.11) - (2.13) in Ωi with zero right-hand side and

boundary condition ∆u = λΓ on Γi. Similarly, (∆F̂ 0,R
ik +∆Ĝ0,R

ik )ni is the change in numerical

flux obtained by solving the linearized problem in Ωi with ∆û = 0 on Γi and right-hand

sides corresponding to the residuals of (2.11) - (2.13).

4.2 The BDDC Preconditioner

In order to define the BDDC preconditioner for the Schur complement problem, (4.4), Λ(i)
Γ

is partitioned into two orthogonal spaces Λ(i)
∆ and Λ(i)

Π . The dual space, Λ(i)
∆ , corresponds to

the subset of function in Λ(i)
Γ constrained to have zero average on all subdomain interfaces,
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Ek. Namely, every function λ(i) ∈ Λ(i)
∆ satisfies:

∑

e∈Ek

∫

e
λ(i) = 0 ∀Ek ∈ Γi. (4.12)

The primal space, Λ(i)
Π , is spanned by basis functions {ψ(i)

Ek } associated with each subdomain

interface Ek:

∑

e∈Ej

∫

e
ψ

(i)
Ek = δjk. (4.13)

For conforming finite element methods, subdomain corner degrees of freedom are also in-

cluded in the primal space. However, for the HDG discretization there are multiple degrees

of freedom at subdomain corners, corresponding to the endpoints of each subdomain inter-

face, Ek meeting at the corner. As each degree of freedom in Λ̂Γ is associated with exactly

two subdomains, and there is no need to add any corner degrees of freedom to the primal

space for the HDG discretization.

Define the partially assembled space as:

Λ̃Γ = Λ̂Π ⊕
(

ΠN
i=1Λ(i)

∆

)
, (4.14)

where Λ̂Π is the assembled global primal space, single valued on Γ, which is formed by

assembling the local primal spaces, Λ(i)
Π . The BDDC preconditioner may be viewed as

solving a finite element problem on a partially assembled finite element space, Λ̃Γ, in order

to precondition the Schur complement problem whose solution lies in the fully assembled

space Λ̂Γ [71].

A key component of the BDDC preconditioner is an averaging operator which restricts

functions from ΛΓ to Λ̂Γ [71]. A positive scaling factor δ†i (Ek) is defined for each interface

Ek of subdomain Ωi such that δ†i (Ek) + δ†j(Ek) = 1 where Ek = ∂Ωi ∩ ∂Ωj . For elliptic

problems with discontinuous coefficients across subdomains, δ†i (Ek) should be weighted by

the coefficients on subdomains Ωi and Ωj to obtain good performance [118]. However, in

this work δ†i (Ek) is simply set to 1/2, unless otherwise specified. Define D(i)
Γ : Λ(i)

Γ → Λ(i)
Γ

as the diagonal matrix formed by setting the diagonal entries corresponding to each nodal

54



degree of freedom on Ek to δ†i (Ek). Also define DΓ : ΛΓ → ΛΓ as the diagonal matrix with

diagonal blocks D(i)
Γ . Finally, define RD,Γ : Λ̂Γ → ΛΓ as the product RD,Γ := DΓRΓ.

The BDDC preconditioner is given by:

M−1
ΓBDDC

= RTD,ΓS̃
−1
ΓΓRD,Γ. (4.15)

The operator S̃−1
ΓΓ : Λ̃Γ → Λ̃Γ corresponds to the solution of the finite element problem on

the partially assembled space. The action of S̃−1
ΓΓ may be efficiently computed as:

S̃−1
ΓΓ = ΨΓS

−1
ΠΠΨ∗

T

Γ +




S̃
(1)−1

ΓΓ 0
. . .

0 S̃
(N)−1

ΓΓ


 , (4.16)

where ΨΓ, Ψ∗Γ, SΠΠ and S̃
(i)−1

ΓΓ are defined below. Denote by Ψ(i)
Γ and Ψ∗(i)Γ ∈ Λ(i)

Π the local

coarse basis functions defined by:


 S

(i)
ΓΓ B

(i)T

Γ

B
(i)
Γ 0




 Ψ(i)

Γ

∗


 =


 0

I
(i)
Π


 and


 S

(i)
ΓΓ B

(i)T

Γ

B
(i)
Γ 0



T 
 Ψ∗(i)Γ

∗


 =


 0

I
(i)
Π


 , (4.17)

where each row of B(i)T

Γ defines a constraint corresponding to a subdomain interface Ek ∈ Γi,

such that the second block row of (4.17) corresponds to satisfying the zero-mean condition,

(4.12). In (4.17) and throughout this chapter, “∗” denotes any term which is not used and,

thus, not defined. Define local operators R(i)
Π : Λ̂Π → Λ(i)

Π which extract the local coarse

degrees of freedom on Γi from those on Γ. The global coarse basis functions ΨΓ and Ψ∗Γ are

the matrices formed by concatenating the local coarse basis functions; namely:

ΨΓ =




Ψ(1)
Γ R

(1)
Π

...

Ψ(N)
Γ R

(N)
Π


 and Ψ∗Γ =




Ψ∗(1)
Γ R

(1)
Π

...

Ψ∗(N)
Γ R

(N)
Π


 . (4.18)

The global coarse system matrix SΠΠ is given by:

SΠΠ = Ψ∗
T

Γ SΓΓΨΓ =
N∑

i=1

R
(i)T

Π Ψ∗(i)
T

Γ S
(i)
ΓΓΨ(i)

Γ R
(i)
Π . (4.19)
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The application of S̃(i)−1

ΓΓ to a vector v(i)
Γ ∈ Λ(i)

Γ corresponds to the solution of a constrained

Neumann problem, defined by:


 S

(i)
ΓΓ B

(i)T

Γ

B
(i)
Γ 0




 S̃

(i)−1

ΓΓ v
(i)
Γ

∗


 =


 v

(i)
Γ

0


 . (4.20)

As discussed previously, S(i)
ΓΓ is usually not formed explicitly. Instead the solution of the

constrained Neumann problem is computed as




A
(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ B

(i)T

Γ

0 B
(i)
Γ 0







∗
S̃

(i)−1

ΓΓ v
(i)
Γ

∗


 =




0

v
(i)
Γ

0


 . (4.21)

The BDDC preconditioner may be applied efficiently in parallel as the constrained Neumann

problems are solved independently on each subdomain. Thus, the only globally coupled solve

corresponds to the primal correction, Ψ∗
T
S−1

ΠΠΨ, which has only a small number of degrees

of freedom, on the order of the number of subdomains.

In Section 4.4 a condition number bound

κ
(
M−1

ΓBDDC
ŜΓΓ

)
≤ C(1 + log(p2H/h))2, (4.22)

is given for the preconditioned operator M−1
ΓBDDC

ŜΓΓ of a second-order elliptic problem. The

constant C is independent of solution order, p, element size, h, and the subdomain size,

H. Thus the condition number and hence number of iterations required to converge is

independent of the number of subdomains and only weakly dependent on the solution order

and the size of the subdomains.

4.3 The BDDC Preconditioner Revisited

Section 4.2 presented the BDDC preconditioner for the Schur complement problem (4.4).

In this section the BDDC preconditioner is reformulated as a preconditioner for the entire

finite element problem, (2.16). This formulation is necessary in order to be able to develop

inexact BDDC preconditioners for which only an approximate Schur complement problem
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is formed using inexact local solves.

Consider the global fully-assembled system (2.16) written as in Equation (4.1). This

system may be rewritten as:


 AII AIΓ

AΓI AΓΓ


 =


 II 0

AΓIA
−1
II IΓ




 AII 0

0 ŜΓΓ




 II A−1

II AIΓ

0 IΓ


 , (4.23)

with corresponding inverse


 AII AIΓ

AΓI AΓΓ



−1

=


 II −A−1

II AIΓ

0 IΓ




 A−1

II 0

0 Ŝ−1
ΓΓ




 II 0

−AΓIA
−1
II IΓ


 . (4.24)

The BDDC preconditioner for the global system may be obtained by replacing Ŝ−1
ΓΓ in (4.24)

with M−1
ΓBDDC

. Namely, the BDDC preconditioner for the global system (4.1) may be written

as:

M−1
BDDC =


 II −A−1

II AIΓ

0 IΓ




 A−1

II 0

0 M−1
ΓBDDC




 II 0

−AΓIA
−1
II IΓ


 . (4.25)

The BDDC preconditioner for the global system may be viewed as solving a finite-element

problem on the partially assembled space Λ̃ = Λ̃Γ ⊕ ΛI in order to precondition the finite

element problem whose solution lies in the fully assembled space Λ̂. It has been shown that

the preconditioned operator, M−1
BDDCA, has the same eigenvalue spectrum as the precon-

ditioned Schur complement operator M−1
ΓBDDC

ŜΓΓ [71]. Inserting the expression for M−1
BDDC

and performing a simple algebraic manipulation (4.25) may be rewritten as:

M−1
BDDC = H̃Ã−1H̃∗T . (4.26)

Here H̃ and H̃∗T : Λ̃→ Λ̂ are harmonic averaging operators defined as:

H̃ =


 II A−1

II ÃIΓJD,Γ

0 RTD,Γ


 and H̃∗ =


 II 0

JTD,ΓÃΓIA
−1
II RD,Γ


 , (4.27)

with ÃIΓ and ÃΓI corresponding to the unassembled stiffness matrix components (i.e AIΓ =

57



ÃIΓRΓ and AΓI = RTΓ ÃΓI) and jump operator JD,Γ =
(
I −RD,ΓRTΓ

)
. The solution of the

partially assembled system Ã−1 may be written in the same form as (4.16):

Ã−1 = ΨS−1
ΠΠΨ∗

T
+ diag

(
{Ã(i)−1}

)
, (4.28)

where Ψ, Ψ∗ and Ã(i)−1
take on a similar form as ΨΓ, Ψ∗Γ and S̃

(i)−1

ΓΓ , respectively. Namely,

the global primal basis functions are obtained by concatenating local primal basis functions

defined by:


 A(i) B(i)T

B(i) 0




 Ψ(i)

∗


 =


 0

I
(i)
Π


 and


 A(i) B(i)T

B(i) 0



T 
 Ψ∗(i)

∗


 =


 0

I
(i)
Π


 , (4.29)

where constraints B(i) are obtained by expanding B
(i)
Γ by zeros to all interior degrees of

freedom. The application of Ã(i)−1
to a vector v(i) ∈ Λ(i) is defined by the solution of a

constrained Neumann problem:


 A(i) B(i)T

B(i) 0




 Ã(i)−1

v(i)

∗


 =


 v(i)

0


 . (4.30)

The primal Schur complement SΠΠ may also be written as:

SΠΠ =
N∑

i=1

R
(i)T

Π Ψ∗(i)
T
A(i)Ψ(i)R

(i)
Π . (4.31)

As in Section 3.2 the action of the BDDC preconditioner is depicted graphically for the

sample Poisson problem presented in Section 3.3. Figure 4-1 depicts the coarse basis function

associated with interface E1. Note that coarse basis function is in the partially assembled

space, such that only the primal degree of freedom (i.e. the edge average) match between

Ω1 and Ω2. Figure 4-2 depicts the partially assembled solve, while Figure 4-3 depicts the

solution upon applying the harmonic extensions.
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Ω1

Ω2

Ω3E1

ψ
(1)
E1

ψ
(2)
E1

Figure 4-1: Coarse basis functions for BDDC

+

ΨS−1
ΠΠΨ∗

T

Ã(i)−1 Ã−1

Figure 4-2: Partially Assembled solve applied to sample Poisson problem

H̃

Figure 4-3: Effect of harmonic extensions for sample Poisson problem
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4.4 Convergence Analysis

This section provides an analysis of the BDDC preconditioner for elliptic problems and proves

a condition number bound for the preconditioned system. As a model problem, consider the

following linear second-order scalar elliptic equation in a domain Ω ⊂ R2

−∇ · (µ∇u) = f in Ω,

u = 0 on ∂Ω, (4.32)

with positive µ ∈ L∞(Ω) and f ∈ L2(Ω). Additionally, assume that µ takes on a constant

value on each subdomain Ωi. The BDDC preconditioner presented in the previous sections

is used to solve the HDG discretization of (4.32). In order to allow for large jumps in the

coefficient µ across subdomains, the weighting function δ† is modified to be:

δ†i (Ek) =
µγi

µγi + µγj
Ek = Ωi ∩ Ωj γ ∈ [1/2,∞] . (4.33)

The HDG discretization of (4.32) results in a linear system which has the same struc-

ture and connectivity as a hybridized-mixed Raviart-Thomas (RT) or Brezzi-Douglas-Marini

(BDM) finite element discretization of the same problem. The development and analysis of

the BDDC preconditioner for hybridized-mixed finite element methods has already been

presented in [119]. Given the similarities between hybridized versions of mixed methods and

HDG methods, highlighted in [40] and [39], it is not surprising that the BDDC algorithm

may be extended to HDG methods. Specifically, the analysis presented here builds upon the

results of [119] which in turn builds upon [43] to show that the BDDC algorithm applied to

the HDG discretization results in a preconditioned system with the usual condition number

bound κ ≤ C(1 + log(p2H/h))2. Using a similar analysis, the same condition number is

derived for a large class DG methods in Appendix B.

A key component in the analysis of the BDDC method is to connect the HDG discretiza-

tion to a continuous finite element discretization on a sub-triangulation T̃ of T (See [43]).

The following lemmas allow this connection to be drawn.
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Lemma 4.4.1. The local bilinear form aκ(λh, λh) satisfies

aκ(λh, λh) ≥ 0, (4.34)

with aκ(λh, λh) = 0 iff λh is constant on ∂κ.

Proof. Follows from Proposition 3.3 in [40] Proposition 3.3.

Lemma 4.4.2. There exist constants c and C independent of p, h, H and µκ = µ|κ such

that for all λh ∈Mh(κ)

caκ(λh, λh) ≤ µκp4hn−2
∑

xi,xj∈κ(λh(xi)− λh(xj))2 ≤ Caκ(λh, λh), (4.35)

where xi,xj are the nodes defining the basis for λh on κ.

Proof. Lemma 4.4.2 is a direct consequence of Lemma 4.4.1 and a scaling argument. See

[43] Lemma 4.3 for the equivalent proof for a mixed finite element discretization.

Lemma 4.4.3. For any region ω ∈ Ω composed of elements κ in T , there exist constants c

and C independent of p, h, |ω| and µ such that for all λh ∈Mh(ω)

caω(λh, λh) ≤∑κ∈ω µκp
4hn−2

∑
xi,xj∈κ(λh(xi)− λh(xj))2 ≤ Caω(λh, λh). (4.36)

Proof. See [43] Theorem 4.1.

Define Uh(Ω) to be the continuous linear finite element space defined on the triangulation

T̂ . Additionally define Uh(Ωi) and Uh(∂Ωi), as the restriction of Uh(Ω) to Ωi and ∂Ωi

respectively. Define IΩi
h as the interpolant of any function into the space Uh(Ω) using the

function values at the nodes xi. Similarly define I∂Ωi
h which maps functions into the space

Uh(∂Ω) using nodal values at nodes xi on ∂Ωi. Finally, define Ũh(Ωi) and Ũh(∂Ωi) as the

range of IΩi
h and I∂Ωi

h respectively.

The following lemmas which are the equivalent of those presented in [43] for mixed finite

elements, allow the quadratic form given in Lemma 4.4.2 to be connected to a continuous

finite element discretization.

61



Lemma 4.4.4. There exists a constant C > 0 independent of p, h and H such that

∣∣∣I∂Ωi
h φ

∣∣∣
H1(Ωi)

≤ C |φ|H1(Ωi)
∀φ ∈ Uh(Ωi), (4.37)

‖ I∂Ωi
h φ ‖L2(Ωi) ≤ C‖φ ‖L2(Ωi) ∀φ ∈ Uh(Ωi). (4.38)

Proof. See [43] Lemma 6.1.

Lemma 4.4.5. There exist constants c, C > 0 independent of p, h and H such that for any

φ̂ ∈ Ũh(∂Ωi)

c‖ φ̂ ‖H1/2(∂Ωi)
≤ infφ∈Ũh(Ωi),φ|∂Ωi

=φ̂ ‖φ ‖H1(Ωi) ≤ C‖ φ̂ ‖H1/2(∂Ωi)
, (4.39)

c
∣∣∣φ̂
∣∣∣
H1/2(∂Ωi)

≤ infφ∈Ũh(Ωi),φ|∂Ωi
=φ̂ |φ|H1(Ωi)

≤ C
∣∣∣φ̂
∣∣∣
H1/2(∂Ωi)

. (4.40)

Proof. See [43] Lemma 6.2.

Lemma 4.4.6. There exists a constant C > 0 independent of p, h and H such that

‖ I∂Ωi
h φ̂ ‖H1/2(∂Ωi)

≤ C‖ φ̂ ‖H1/2(∂Ωi)
∀φ̂ ∈ Uh(∂Ωi). (4.41)

Proof. See [43] Lemma 6.3.

Lemma 4.4.7. There exist constants c and C independent of p, h, H and µi such that for

all λ(i)
Γ ∈ Λ(i)

Γ ,

cµi

∣∣∣I∂Ωi
h λ

(i)
Γ

∣∣∣
2

H1/2(∂Ωi)
≤ λ(i)T

Γ S
(i)
ΓΓλ

(i)
Γ ≤ Cµi

∣∣∣I∂Ωi
h λ

(i)
Γ

∣∣∣
2

H1/2(∂Ωi)
. (4.42)

Proof. See [43] Theorem 6.5.

Using known results for continuous finite element discretizations gives the main theoret-

ical result.

Theorem 4.4.8. The condition number of the preconditioner operator M−1
ΓBDDC

ŜΓΓ is bounded

by C(1 + log(p2H/h))2 where C is a constant independent of p, h, H and µ.

Proof. See for example [75] Theorem 3 or [119] Theorem 6.1.
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4.5 Robin-Robin Interface Condition

The BDDC preconditioner was originally developed for the solution of symmetric positive-

definite system and must be modified for the solution of non-symmetric systems. In [1],

Achdou et al. replaced the Neumann-Neumann interface condition corresponding to natural

boundary conditions on Γ, with a Robin-Robin interface condition for a continuous finite

element discretization of an advection-diffusion problem. The Robin-Robin interface condi-

tion ensures the coercivity of the local bilinear form, ai(λ, µ). Additionally, Fourier analysis,

on a partitioning of the domain into strips in the cross-stream direction, showed that in the

convective limit, the resulting algorithm converges in a number of iterations equal to half the

number of subdomains in the stream-wise direction. The Robin-Robin interface conditions

have been used along with a FETI method to solve linear convection-diffusion problems

by Toselli [117]. Similarly, Tu and Li used the Robin-Robin interface condition to extend

the BDDC method to convection-diffusion problems [121]. Tu and Li introduced additional

primal degrees of freedom corresponding to “flux” constraints and showed that the resulting

BDDC algorithm was scalable if the subdomain length scale, H, was sufficiently small rela-

tive the viscosity. Namely, the behaviour of BDDC preconditioner matches the symmetric,

diffusion dominated limit if the subdomain Peclet number is sufficiently small. Yano and

Darmofal generalized the Robin-Robin interface condition to the Euler equations discretized

using entropy variables by deriving a local bilinear for which conserves the energy stability

of the global bilinear form[123, 124].

As in the case of continuous finite elements, the local bilinear forms for the HDG dis-

cretization are not in general coercive for convection-diffusion problems. In the remainder of

this section, a Robin-Robin interface condition is derived for the HDG discretization which

modifies the local bilinear form to ensure its positivity. Consider the linearized problem:

(
Aiklul −Kijklul,xj

)
xi

= fk, (4.43)

with symmetric flux Jacobian and viscosity tensor (i.e. Aikl = Ailk and Kijkl = Kjilk).
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Equations (2.7)-(2.8) are rewritten as:

(qik, vik)κ + (uk, vik,xi)κ − 〈ûk, vikni〉∂κ = 0 ∀v ∈ Vp
h, (4.44)

−(Aikluk −Kijklqjl, wk,xi)κ +
〈

(F̂ik + Ĝik)ni, wk
〉
∂κ

= (fk, wk)κ ∀w ∈W p
h , (4.45)

with numerical flux:

(
F̂ik + Ĝik

)
ni = Aiklniul −Kijklniqjl + Skl(ul − ûl). (4.46)

The element wise contribution to the HDG bilinear form, (ignoring boundary contributions

on ∂Ω), is given by:

aκ(λ, λ) = −〈(Aiklλl −Kijklqjl)ni + Skl(ul − λl), λk〉∂κ (4.47)

= −〈Aiklλlni, λk〉∂κ + 〈Kijklqjlni, λk〉∂κ − 〈Skl(ul − λl), λk〉∂κ .

From (4.44) with vjl = Kijklqjl (and switching i,j and k,l) gives

〈λk,Kijklqjlni〉∂κ =
(
uk, (Kijklqjl),xi

)
κ

+ (qik,Kijklqjl)κ (4.48)

= − (uk,xi ,Kijklqjl)κ + 〈uk,Kijklqjl〉∂κ + (qik,Kijklqjl)κ .

From the conservation equation (4.45) with wk = uk (and fk = 0):

0 = −(Aiklul −Kijklqjl, uk,xi)κ +
〈
F̂ikni, uk

〉
∂κ

(4.49)

= −(Aiklul, uk,xi)κ + (Kijklqjl, uk,xi)κ

+ 〈Aiklλl, niuk〉∂κ − 〈Kijklqjl, niuk〉∂κ + 〈Skl(ul − λl), uk〉∂κ .

Adding (4.47) and (4.49), using the substitution in (4.48), and then integrating by parts

gives:

aκ(λ, λ) = (qik,Kijklqjl)κ +
〈(

Skl −
1
2
Aiklni

)
(ul − λl), (uk − λk)

〉

∂κ

−1
2
〈Aiklniλl, λk〉∂κ . (4.50)
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While the first two terms of (4.50) are positive, −1
2 〈Aiklniλl, λk〉∂κ, in general, is not. Con-

sider a modified local bilinear form ãκ(λ, µ) which is obtained from aκ(λ, µ) by subtracting

the term which may be negative from each face ∂κ\∂Ω:

ãκ(λ, µ) := aκ(λ, µ) +
1
2
〈Aiklniλl, µk〉∂κ . (4.51)

By construction ãκ(λ, λ) ≥ 0. Note that on each edge e shared by elements κ±, 1
2

〈
Aikln

+
i λl, λk

〉
∂κ++

1
2

〈
Aikln

−
i λl, λk

〉
∂κ− = 0, since n− = −n+. Thus, the sum of the modified local bilinear forms

ãκ(λ, µ) gives exactly the sum of the original local bilinear forms aκ(λ, µ) namely:

a(λ, µ) =
∑

κ

aκ(λ, µ) =
∑

κ

ãκ(λ, µ). (4.52)

A corresponding subdomain-wise bilinear form may thus be defined as:

ãi(λ, µ) :=
∑

κ∈Ωi

ãκ(λ, µ), (4.53)

where the positivity of ãi(λ, λ) is guaranteed by construction:

ãi(λ, λ) =
∑

κ∈Ωi

(qik,Kijklqjl)κ +
〈(

Skl −
1
2
Aiklni

)
(ul − λl), (uk − λk)

〉

∂κ

≥ 0. (4.54)

In practice, the element-wise forms only need to be modified on edges e ∈ Γ as the subdo-

main interior contributions cancel. While the original subdomain-wise bilinear form ai(λ, µ)

corresponds to setting a Neumann boundary condition on Γi for an advection-diffusion prob-

lem, the modified subdomain-wise form ãi(λ, µ) corresponds to setting a Robin boundary

condition on Γi. Thus, the interface condition corresponding to the use of the modified

subdomain-wise bilinear form is called a Robin-Robin interface condition. In the case of a

purely hyperbolic system of equations (eg. the Euler equations) the interface conditions are

not strictly speaking Neumann or Robin. Nonetheless, throughout this thesis the algorithm

using the original local bilinear form, ai(λ, µ), will be referred to as the Neumann-Neumann

algorithm (having Neumann interface conditions), while the algorithm using the modified

bilinear form, ãi(λ, µ), will be referred to as the Robin-Robin algorithm (having Robin in-
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terface conditions).

While the Robin-Robin interface condition required to ensure the positivity of the local

bilinear form is unique for a scalar PDE, other choices are possible when considering a system

of equations. In the case of a system of equations, the local bilinear form may be modified

to be:

ăκ(λ, µ) = −
〈
F̂iklni, µk

〉
∂κ

+
1
2
〈Aiklniλl, µk〉∂κ + 〈Ziklniλl, µk〉∂κ , (4.55)

where Ziklni is skew-symmetric matrix (i.e Ziklni = −Zilkni). The addition of the skew

symmetric term does not change the positivity of the local bilinear form as:

ăκ(λ, λ) = −
〈
F̂iklni, λk

〉
∂κ

+
1
2
〈Aiklniλl, λk〉∂κ + 〈Ziklniλl, λk〉∂κ

= −
〈
F̂iklni, λk

〉
∂κ

+
1
2
〈Aiklniλl, λk〉∂κ +

��
���

���
�:1

2
〈Ziklniλl, λk〉∂κ −����

���
��:1

2
〈Zilkniλl, λk〉∂κ

= ãκ(λ, λ). (4.56)

In Chapter 6 the Euler system is further analyzed in order to choose a form for Zikl which

improves the convergence of the BDDC algorithm.

4.6 Numerical Results

This section presents numerical results to assess the performance of the BDDC precondi-

tioner.

In the first numerical experiment, the Poisson model problem, (3.10), is solved on the

structured mesh described in Section 3.3. Table 4.1 shows the number of GMRES iterations

required to decrease the l2-norm of the residual by a factor of 106, varying p, n and N . As

predicted by the analysis in Section 4.4 the number of iterations is bounded as the number

of subdomains, N , increases. Additionally, the number of iterations grows only weakly when

increasing the number of elements per subdomain, n, or the solution order p.

The second numerical experiment examines the behaviour of the BDDC preconditioner

for the elliptic problem (4.32), with large jumps in the coefficient µ. The domain is parti-

tioned in a checkerboard pattern with µ = 1 in half of the subdomains and µ = 1000 in the

remaining subdomains. Initially the weighting function δ†i is set such that δ†i (Ek) = δ†j(Ek) =
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N n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
4 128 2 1 1 1 1 1
16 128 7 8 8 9 9 9
64 128 10 12 12 14 14 16
256 128 9 12 13 14 15 16
1024 128 10 12 13 14 15 16
64 8 5 8 10 10 12 12
64 32 7 10 11 12 13 14
64 128 10 12 12 14 14 16
64 512 11 13 14 16 16 17
64 2048 13 15 16 17 18 19

Table 4.1: Number of GMRES iterations using BDDC preconditioner for
Poisson problem on isotropic structured mesh

1/2 on each subdomain interface Ek = Ωi ∩Ωj , which corresponds to setting γ = 0 in (4.33).

This choice of γ does not satisfy the assumption γ ∈ [0,∞), and poor convergence of the

BDDC algorithm is seen. Table 4.2 shows the corresponding iteration counts for varying p,

and N with fixed n = 128. Next δ†i is set as in (4.33) with γ = 1. With this choice of δ†i the

good convergence properties of the BDDC algorithm are recovered.

N p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

δ† i
(x

)
=

1 2 4 5 7 6 6 5 5
16 18 24 26 29 32 39
64 48 78 101 118 135 149
256 73 112 143 166 187 237
1024 79 124 157 209 231 251

δ† i
(x

)
=

µ
i

µ
i
+
µ
j 4 2 2 1 1 1 1

16 5 5 5 6 6 7
64 9 10 10 11 11 11
256 15 15 17 17 17 17
1024 15 16 18 18 18 18

Table 4.2: Iteration count for BDDC preconditioner with µ = 1 or µ = 1000, n = 128

For the third numerical experiment, the advection-diffusion boundary layer problem,

(3.12), is solved on the isotropic mesh. Tables 4.3 and 4.4 give the number of iterations

required to converge for µ = 1 and µ = 10−6, respectively. In the diffusion-dominated case,

(µ = 1), the behaviour is similar to the purely elliptic case. Namely, the number of iterations

depends weakly on n and p, and is bounded as N increases. In the convection-dominated
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case, (µ = 10−6), the number of iterations is approximately half the number of subdomains

in the convective direction (i.e.
√
N/2).

N n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
4 128 4 4 5 5 5 5
16 128 6 7 8 8 8 9
64 128 7 7 8 8 9 9
256 128 6 7 8 8 8 9
1024 128 7 7 8 8 8 9
64 8 4 6 7 7 8 8
64 32 5 7 7 8 8 9
64 128 7 7 8 8 9 9
64 512 7 8 8 8 9 10
64 2048 7 8 8 9 10 10

Table 4.3: Number of GMRES iterations for advection-diffusion boundary
layer problem with µ = 1 on isotropic structured mesh

N n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
4 128 1 1 1 1 1 1
16 128 2 2 3 3 3 3
64 128 4 5 5 5 6 6
256 128 9 9 10 10 11 12
1024 128 17 17 18 18 19 19
64 8 4 4 4 5 5 5
64 32 4 4 5 5 5 5
64 128 4 5 5 5 6 6
64 512 5 5 5 6 7 7
64 2048 5 5 6 7 7 7

Table 4.4: Number of GMRES iterations for advection-diffusion boundary
layer problem with µ = 10−6 on isotropic structured mesh

As noted in Section 3.3, the boundary layer is not resolved on the isotropic mesh and an

anisotropic mesh should be used. Table 4.5 gives the number of GMRES iterations required

to converge the boundary layer problem with µ = 10−6 on the set of anisotropic meshes

introduced in Section 3.3. Table 4.5 shows only slight increase in the number of iterations

relative Table 4.4. Table 4.6 shows the iteration count on both isotropic and anisotropic

meshes over a wide range of µ. The BDDC preconditioner performs well over the entire

range of µ for both isotropic and anisotropic meshes.
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N n p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
4 128 1 1 1 1 1 1
16 128 4 4 4 4 4 4
64 128 7 8 8 8 8 8
256 128 11 12 12 12 12 11
1024 128 19 20 20 20 20 20
64 8 6 8 8 8 8 8
64 32 7 8 8 8 8 8
64 128 7 8 8 8 8 8
64 512 8 8 8 8 8 7
64 2048 7 7 7 7 7 7

Table 4.5: Number of GMRES iterations for advection-diffusion boundary
layer problem with µ = 10−6 on anisotropic structured mesh

µ p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 ‖u−u∗ ‖H1
‖u∗ ‖H1

(p = 5)

Is
ot

ro
pi

c
M

es
h

1 7 7 8 8 9 9 4.2× 10−11

10−1 7 8 9 9 10 10 2.5× 10−11

10−2 9 10 11 11 11 12 3.4× 10−10

10−3 7 8 8 9 10 10 5.2× 10−8

10−4 6 7 7 7 7 7 1.9× 10−5

10−5 5 5 6 7 7 7 3.4× 10−3

10−6 4 5 5 5 6 6 7.8× 10−2

A
ni

so
tr

op
ic

M
es

h 1 7 7 8 8 9 9 4.2× 10−11

10−1 8 9 10 10 10 11 2.3× 10−11

10−2 8 9 10 10 11 11 1.6× 10−11

10−3 8 8 8 9 9 9 1.7× 10−11

10−4 7 8 8 8 7 7 2.1× 10−11

10−5 7 7 7 7 7 7 2.6× 10−11

10−6 7 8 8 8 8 8 3.8× 10−11

Table 4.6: Number of GMRES iterations on both isotropic and anisotropic
meshes with N = 64, n = 128
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In the final numerical experiment presented in this section, the performance of the BDDC

preconditioner is compared to the ASM and ASMA preconditioners developed in Chapter

3. The advection-diffusion boundary layer problem is solved with µ = 10−4 on a sequence

of anisotropic unstructured meshes generated using the Bidimensional Anisotropic Mesh

Generator (BAMG) [63]. An initial mesh with approximately 512 elements is generated

through an adaptive process, while finer meshes are obtained by refining the desired grid

metric and completely remeshing. The meshes are partitioned into N subdomains, with

approximately n elements each, using ParMetis [65]. Figure 4-4 plots the mesh with 512

elements as well its partition into four subdomains.

(a) Mesh (b) Partition

Figure 4-4: Unstructured mesh and partition for advection-diffusion bound-
ary layer problem

A single application of the BDDC preconditioner involves a local constrained Neumann

solve on each subdomain, and either a forward- or back-solve for the application of the

harmonic extensions. As it is assumed that the dominant cost of the application of any

of the preconditioners is the cost of the local solves, a single application of the BDDC

preconditioner is approximately twice that of the ASM or ASMA preconditioners. Thus the

relative performance of the different preconditioning algorithms is assessed in terms of the

number of local linear solves required to reduce the l2-norm of the residual by a factor of 104.

Figure 4-5 plots the number of local linear solves required to solve the advection-diffusion
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boundary layer problem for fixed n = 128 over a large range of N , while Figure 4-6 shows

the performance of the preconditioners for fixed, N = 64 with increasing number of elements

per subdomain. In general, the performance of the BDDC preconditioner is superior to the

ASM and ASMA preconditioners, for the range of N and n considered. The performance

of ASM preconditioner without a coarse space degrades much more rapidly than the ASMA

and BDDC preconditioners with coarse spaces as the number of subdomains is increased.
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Figure 4-5: Number of local linear solves for advection-diffusion boundary
layer problem with µ = 10−4, and n ≈ 128 on anisotropic un-
structured meshes

Unfortunately, the performance of all three preconditioners is much worse on the unstruc-

tured anisotropic meshes than that using the structured meshes. Table 4.7 gives the number

of local linear solves for this problem using both structured and unstructured meshes. For

example at n = 128 and N = 64 the unstructured mesh problem requires approximately 10

times as many iteration as for the structure mesh problem.
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Figure 4-6: Number of local linear solves for advection-diffusion boundary
layer problem with µ = 10−4, and N = 64 on anisotropic un-
structured meshes

p = 2 p = 5
N n ASM ASMA BDDC ASM ASMA BDDC

St
ru

ct
ur

ed

4 128 3 6 2 3 6 2
16 128 14 9 8 13 8 8
64 128 25 12 8 22 9 8
64 32 21 11 10 19 9 8
64 128 25 12 8 22 9 8
64 512 30 12 8 25 8 6

U
ns

tr
uc

tu
re

d 4 128 24 32 12 30 29 16
16 128 63 54 30 76 63 46
64 128 182 111 76 211 128 108
64 32 113 72 52 122 83 72
64 128 182 111 76 211 128 108
64 512 314 195 104 347 211 142

Table 4.7: Number of local linear solves both isotropic and anisotropic
meshes for scalar boundary layer problem with µ = 10−4
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Chapter 5

Inexact BDDC

The majority of the cost of the BDDC preconditioner comes from solving local Dirichlet

problems corresponding to A
(i)−1

II in the harmonic extension operators, and solving local

constrained Neumann problems corresponding to Ã(i)−1
to invert the partially assembled

finite element problem. For practical problems computing and storing exact factorizations

for the solution of these problems may be prohibitively expensive. Thus, the action of

these solvers may be replaced with inexact solvers. Inexact BDDC algorithms have been

previously studied for continuous finite element discretizations of elliptic problems in [48, 72].

In [72] h-multigrid V-cycles are used to replace the action of the local solvers, while in [48]

approximate local solvers are developed using both an inexact factorization, and an algebraic

multigrid solver. In [124] the action of the local solvers are replaced with a dual-threshold

incomplete factorization (ILUT) and a p = 1 coarse grid correction for the solution of the

advection-diffusion equations.

This chapter develops an inexact variant of the BDDC preconditioner presented in Chap-

ter 4 based on an incomplete factorization combined with a p-multigrid type coarse grid cor-

rection. Thus, the local solvers presented here most closely match those presented in [124]. A

key difference between the work of [124] and that presented here involves the implementation

of the BDDC algorithm which is discussed in Section 5.1. Section 5.2 presents inexact local

solvers using block ILU(0) and ILUT factorizations. Section 5.3 presents the coarse grid

correction. Finally, Section 5.4 presents numerical results using the inexact preconditioner.
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5.1 A Note on the BDDC Implementation

In [124] the BDDC algorithm is implemented using a change of basis where the degrees

of freedom spanning ΛΓ are reparameterized such that all primal and dual variables are

explicitly specified [68]. In this implementation the local degrees of freedom may be written

as λ(i) =
[
λ

(i)
I λ

(i)
∆ λ

(i)
Π

]T
, with local system matrices:

A(i) =




A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ


 =


 A

(i)
rr A

(i)
rΠ

A
(i)
Πr A

(i)
ΠΠ


 . (5.1)

The local constrained solves then simplify to an inversion of the blocks A(i)
rr corresponding

to interior and dual degrees of freedom. While the local systems A(i) may be singular, the

blocks A(i)
rr are guaranteed to be nonsingular as it is assumed that sufficient number of primal

degrees of freedom have been chosen such that the constrained Neumann problems are well

defined. The advantage of this approach is that saddle point problems of the form (4.30) do

not need to solved. In particular, when exact solvers are used, the change of basis approach

ensures that zero pivots will not be encountered during the factorization, allowing the use

of standard Cholesky factorization for symmetric problems [68].

Unfortunately, the change of basis to make explicit the dual and primal degrees of freedom

destroys some of the nice properties of the local system matrices. In particular, for elliptic

problems, discretized using standard nodal basis functions, A(i)’s are (possibly singular) M -

matrices. On the other hand when a change of basis is performed as described in [68], neither

the systems (5.1), nor the blocks A(i)
rr are M -matrices. While ILU and common smoothers

such as Jacobi or Gauss-Seidel are well defined for M -matrices [91], these iterative methods

may perform poorly or break down for other type of matrices (even if they are symmetric

positive definite). In particular, numerical experiments, not presented here, show very poor

performance when using an ILU factorization to solve the local system A
(i)
rr . Interestingly,

allowing additional fill-in does not necessarily improve the performance of the ILU solver,

and in some cases leads to a degradation in performance.

In order to be able to use common iterative methods such as ILU, Jacobi, or Gauss-Seidel

as smoothers, the inexact local solvers presented in the following sections are based on an
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implementation of the BDDC algorithm with the original variables and using constraints.

5.2 BDDC using Incomplete Factorizations

Incomplete factorizations have been extensively used as preconditioners to solve discretiza-

tions of the Euler and Navier-Stokes equations [3, 10, 20, 34, 46, 59, 69, 81, 95, 103, 105, 122].

ILU factorizations with an appropriate ordering have proven successful for convection-

dominated problems, where the inexact factorization is able to capture strong coupling

between elements in dominant directions in the flow. This work uses the dual-threshold

incomplete factorization ILUT(τ ,π), with drop tolerance, τ , and additional fill-in per row,

π[110]. In particular, the block variant of the ILUT algorithm is used where the fill-in is

introduced block-wise [123]. In the limit π →∞, τ = 0 the ILUT factorization gives an exact

factorization, while for π = 0, no additional fill-in is introduced such that the factorization

reduces to ILU(0). In this case, the ILU(0) factorization may be performed in-place in order

to save both memory and computational time [46].

5.2.1 Inexact Harmonic Extensions

The application of the discrete harmonic extensions H and H∗ require computing the action

of −A(i)−1

II A
(i)
IΓ and −A(i)

ΓIA
(i)−1

II respectively. In order to replace the action of these operators

with inexact solvers based on an incomplete factorization, consider first the exact block LU

factorization of the local stiffness matrices:


 A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ


 =


 L

(i)
II 0

L
(i)
ΓI I




 U

(i)
II U

(i)
IΓ

0 S
(i)
ΓΓ


 . (5.2)

Here, L(i)
IIU

(i)
II is the exact block LU factorization of A(i)

II while L(i)
ΓI = A

(i)
ΓIU

(i)−1

II , U (i)
IΓ =

L
(i)−1

II A
(i)
IΓ and S

(i)
ΓΓ = A

(i)
ΓΓ − L

(i)
ΓIU

(i)
IΓ . The action of −A(i)−1

II A
(i)
IΓ on a vector v(i)

Γ ∈ Λ(i)
Γ may

be computed by backwards substitution:

−A(i)−1

II A
(i)
IΓv

(i)
Γ = −U (i)−1

II U
(i)
IΓv

(i)
Γ or


 U

(i)
II U

(i)
IΓ

0 I




 −A

(i)−1

II A
(i)
IΓv

(i)
Γ

∗


 =


 0

v
(i)
Γ


 . (5.3)

75



Similarly the action of −A(i)
ΓIA

(i)−1

II on a vector vI ∈ Λ(i)
I may be computed by forwards

substitution:

−A(i)
ΓIA

(i)−1

II v
(i)
I = −L(i)

ΓIL
(i)−1

II v
(i)
I or


 L

(i)
II 0

L
(i)
ΓI I




 ∗
−A(i)

ΓIA
(i)−1

II v
(i)
I


 =


 v

(i)
I

0


 . (5.4)

Inexact harmonic extensions are developed by replacing the exact factorization in (5.2) with

an incomplete factorization. The inexact harmonic extensions are computed as in (5.3) and

(5.4). As fill-in is dropped in the computation of factors Ũ (i)
IΓ and L̃

(i)
ΓI , in general

−Ã(i)−1

II A
(i)
IΓ = −Ũ (i)−1

II L̃
(i)−1

II A
(i)
IΓ 6= −Ũ (i)−1

II Ũ
(i)
IΓ , (5.5)

−A(i)
ΓIÃ

(i)−1

II = −A(i)
ΓI Ũ

(i)−1

II L̃
(i)−1

II 6= −L̃(i)
ΓI L̃

(i)−1

II , (5.6)

where (̃·) correspond to the incomplete factorization.

5.2.2 Inexact Partially Assembled Solve

The creation of the primal basis functions and the partially assembled solve involves, on

each subdomain, inverting a system of the form:

Ã(i) =


 A(i) B(i)T

B(i) 0


 . (5.7)

Solving problems with the system (5.7) is complicated by the fact that A(i) is potentially

singular. Thus when an exact factorization of (5.7) is performed without reordering, a

zero pivot will be encountered and the factorization will fail. For continuous finite element

discretizations where subdomain corner degrees of freedom are included as primal variables,

simply removing the rows and columns corresponding to the corner degrees of freedom

ensures that the remaining block of A(i) is non-singular [48]. In this work, primal degrees

of freedom correspond only to averages on subdomain interfaces, thus such an approach is

not possible. A zero pivot may also be avoided by using a reordering where a small number

of row/columns from A(i) are placed after the constraint equations such that the remaining

block of A(i) is non-singular [68]. However, this approach relies on a good characterization

of the null-space of A(i), which, while obvious for linear elasticity problems, is less clear for
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Euler and Navier-Stokes systems.

In this work, inexact solvers for the partially assembled system are developed by replacing

the action of the exact solvers corresponding to (5.7) with inexact solvers of the form:

M̃(i) =


 M (i) B(i)T

B(i) 0


 , (5.8)

where M (i) is a nonsingular matrix. For now the procedure for obtaining M (i) has yet to be

specified. However, since M (i) is nonsingular it admits an LU factorization M (i) = L̃(i)Ũ (i).

After simple algebraic manipulation the inexact local primal basis functions may be written

as:

Ψ̃ = Ũ (i)−1
L̃(i)−1

B(i)T
(
B(i)Ũ (i)−1

L̃(i)−1
B(i)T

)−1
, (5.9)

Ψ̃∗ = L̃(i)−T Ũ (i)−TB(i)T
(
B(i)Ũ (i)−1

L̃(i)−1
B(i)T

)−T
. (5.10)

Similarly, the application of the inexact variant of (4.30) simplifies to

M̃ (i)−1
v(i) = Ũ (i)−1

L̃(i)−1
v(i) − Ψ̃

(
B(i)Ũ (i)−1

L̃(i)−1
B(i)T

)
Ψ̃∗

T
. (5.11)

At this point M (i) has yet to be specified. In the remainder of the section, an inexact

local solver is developed where M (i) is obtained from an inexact factorization of A(i). As

A(i) is potentially singular, the exact factorization of A(i) may result in a zero pivot and the

inverse A(i)−1
may not exist. Thus, initially it may seem inappropriate to use an inexact

factorization of A(i) to generate M (i) as an exact factorization will result in the failure of

the algorithm.

However, in the following it is shown that as long as some fill-in is dropped during

the inexact factorization, the factorization will not fail due to a zero pivot. Additionally,

the product of the resulting factors M̃ (i) = L̃(i)Ũ (i) is non-singular. The following lemmas

extend the analysis of incomplete factorization with zero fill, ILU(0), in [24] to incomplete

factorizations with arbitrary fill-in. This enables the proof of the desired result in Theorem

5.2.7.

Lemma 5.2.1. Let A = (aij) ∈ Rn×n be an M -matrix with real entries. Let the elements
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of B = (bij) satisfy the relations

aij ≤ bij ≤ 0 for i 6= j, and 0 ≤ aii ≤ bii. (5.12)

Then

1. B is an M -matrix.

2. If B is a singular M -matrix, then A is a singular M -matrix.

3. If A is an irreducible M -matrix and if bij = 0 for some i 6= j where aij 6= 0 then B is

nonsingular

Proof. See [24] Lemma 1.

The exact LU factorization algorithm may be given recursively as:

A0 = A,

Ck = Ak−1 (5.13)

Ak = LkCk,

where k > 0, and Lk is equal to the identity matrix except for the kth column which written

row-wise is as follows:

[
0 0 . . . 1 −ck−1

k+1,k/c
k−1
kk . . .− ck−1

nk /ck−1
kk

]
when ck−1

kk 6= 0,

otherwise Lk is the identity matrix. This gives the factorization A = LU where L =
(
L1
)−1 (

L2
)−1

. . .
(
Ln−1

)−1 (Ln)−1 and U = An. The exact LU factorization algorithm fails

for a singular matrix A, if ckkk = 0 and cktk 6= 0 for t > k.

Let GA denote the graph of any matrix A = (aij), consisting of the set of ordered pairs

of integers (i, j), with i ≤ n, j ≤ n such that aij 6= 0. Denote by PA = {(i, j) : aij = 0, i 6= j}
the graph of the off-diagonal zero entries of A. Let GM be the graph for the allowable fill

in the inexact factors L̃ and Ũ , while PM is the graph of the off-diagonal zero entries in

the inexact factors. The incomplete factorization algorithm is obtained from the inexact
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factorization by replacing (5.13) with:

A0 = A,

Ck = Ak−1 +Rk, (5.14)

Ak = LkCk, (5.15)

where

rkij =




−akij if (i, j) ∈ PM ,

0 otherwise.
(5.16)

Lemma 5.2.2. At any step in the incomplete factorization algorithm, let Ak−1 be an M -

matrix, then Ck is also an M -matrix.

Proof. From (5.14):

ckij =





0 if (i, j) ∈ PM ,
ak−1
ij otherwise.

(5.17)

Hence

ak−1
ij ≤ ckij ≤ 0 for i 6= j, and 0 ≤ ak−1

ii = ckii. (5.18)

Thus, from condition 1 of Lemma 5.2.1, Ck is an M -matrix.

Corollary 5.2.3. Let Ak−1 be an irreducible singular M -matrix. If Rk 6= 0 then Ck is

nonsingular.

Proof. Given (i, j) ∈ PM such that rkij 6= 0 then by definition ak−1
ij 6= 0, rkij = −ak−1

ij and

ckij = 0. Thus, from condition 2 of Lemma 5.2.1, Ck is a nonsingular M -matrix.

Lemma 5.2.4. Let Ck be an M -matrix. If the incomplete algorithm does not fail at (5.15)

on step k, then Ak is an M -matrix.

Proof. The proof follows directly from Theorem 2.1 of [91].
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Lemma 5.2.5. Let A be an M -matrix. If ak−1
kk = 0 at step k of the incomplete factorization

algorithm then A is a singular M -matrix.

Proof. Since the incomplete factorization algorithm does not fail through steps 1, . . . , k− 1,

Ak−1 and Ck are M -matrices by Lemmas and . Without loss of generality, assume k = 1.

For i, j > k, the Gaussian elimination step (5.2.2) gives:

a1
ij = c1

ij − c1
i1c

1
1j/c

1
11, c1

11 6= 0. (5.19)

Since c1
tq ≤ 0 for t 6= q, a1

ij ≤ c1
ij . Since C1 is an M -matrix all of its principle minors are

non-negative, thus c1
11c

1
ii − c1

i1c
1
1i ≥ 0. Hence

a1
ii = c1

ii − c1
i1c

1
1i/c

1
11 ≥ 0. (5.20)

Thus, by condition 2 of Lemma 5.2.1 Ak−1 is singular. The case for c1
11 = 0 is trivially

satisfied since L1 is then the identity matrix. Backtracking to A = A0 proves A is a singular

M -matrix.

Lemma 5.2.6. Let A be an M -matrix, while for any set of indices, s, A[s] denotes the block

of a corresponding to the rows and columns s. Denote by 〈k〉 the indices 1, . . . , k, and let

s = (s1, . . . , sk) be any subset of 〈n〉 for which A[s] is singular and irreducible. If

(t, p) ∈ PM ∀t > sk and ∀p ∈ s, (5.21)

then the incomplete factorization algorithm does not fail at any step.

Proof. The proof of Lemma 5.2.6 closely follows the proof of Theorem 4 in [24]. Assume

that (5.15) fails at step k. Then ckkk = 0 and ckrk 6= 0 for some r > k. However, since the

algorithm did work through k − 1 steps, Ak−1[〈k〉] exists and has the form:

Ak−1[〈k〉] =


 Ak−1[〈k − 1〉] ∗

0 ak−1
kk


 . (5.22)

Since ak−1
kk = ckkk = 0, Ak[〈k〉] = Ak−1[〈k〉] are singular M -matrices.

Set 1 ≤ s1 < s2 . . . < sj = k to be the largest subset of 〈k〉 for which A[s] is irreducible.
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Since sj = k and ak−1
kk = 0, then Ak−1[s] is singular, and by Lemma 5.2.1 A[s] is singular.

Now since crk 6= 0, (r, k) /∈ PM which contradicts (5.21).

Theorem 5.2.7. Let A be an irreducible n × n M matrix. Let PM satisfy the condition

(5.21). Then M = L̃Ũ produced by the incomplete factorization algorithm is nonsingular

provided R =
∑N

k=1R
k 6= 0.

Proof. Since PM satisfies the condition (5.21), Lemma 5.2.6 ensures that the incomplete

factorization algorithm will not fail. By construction L̃ is nonsingular, it remains to show

that Ũ is nonsingular. Since R 6= 0, there exists k, for which Rk 6= 0. By Corollary 5.2.3 Ck

is a non-singular M -matrix. Then Ak, . . . , An must be non-singular otherwise Lemma 5.2.2

is contradicted. Thus Ũ = An is non-singular.

Theorem 5.2.7 ensures that an inexact solver of the form (5.8) may be constructed

through an incomplete factorization algorithm, provided the incomplete factorization al-

gorithm is not exact. Since PM may be chosen in such a manner that GA ∩ PM 6= ∅,
Theorem 5.2.7 applies equally to Jacobi and Gauss-Seidel local solvers, as these are specific

instances of an inexact factorization.

5.2.3 One or Two matrix method

Both the inexact harmonic extensions and inexact constrained Neumann solves require an

inexact factorization of all or part of the block matrices A(i). In this work two strategies

are considered: a one-matrix and a two-matrix method. In the one-matrix method, the

same inexact factorization is used for both the inexact harmonic extensions and the inexact

constrained Neumann solve. In the two-matrix method, different factorizations are used for

the harmonic extensions and constrained Neumann solves, requiring the computation and

storage of two separate systems. The motivation behind considering the two matrix approach

is that the performance of the incomplete factorization algorithm is strongly dependent

on the ordering of the unknowns [17, 20, 45]. The ordering of unknowns is particularly

important in the case of convection-dominated flows where ordering degrees of freedom

along characteristic directions may significantly improve performance [45]. This work uses a

reordering based on the block minimum discarded fill (MDF) algorithm presented in [103].

The MDF method orders the unknowns by choosing in a greedy manner the block which
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produces the least discarded fill-in. In the one-matrix approach, the MDF algorithm must

be modified to ensure that the interior degrees of freedom are ordered before the interface

degrees of freedom, potentially resulting in an ordering which has large discarded fill. On

the other hand, the two-matrix approach allows for different orderings to be used for the

harmonic extensions and the constrained Neumann solves, potentially improving the quality

of the incomplete factorization.

5.3 Inexact BDDC with p-multigrid correction

While incomplete factorizations have been widely used for convection-dominated problems,

incomplete factorizations do not control the low frequency error modes present in elliptic

problems [91]. Multigrid methods, on the other hand, provide an efficient means of con-

trolling low frequency error modes which extend throughout the domain. Multigrid meth-

ods have also been widely used for the solution of the Euler and Navier-Stokes equations

[3, 46, 57, 81, 85, 88, 103]. This work uses a two-level method with a p-multigrid type coarse

correction similar to that presented in [103]. The coarse space is obtained by projecting the

higher-order solution to p = 0 or p = 1 and solving the coarse problem exactly.

5.3.1 Inexact Harmonic Extensions

As noted in the previous section the harmonic extensions involve the application of A(i)−1

II A
(i)
IΓ

and A
(i)
ΓIA

(i)−1

II . The inexact application of the harmonic extensions using the coarse grid

correction are given by:

A
(i)−1

II A
(i)
IΓ ≈ Ũ

(i)−1

II Ũ
(i)
IΓ + P

(i)
I A

(i)−1

0,II P
(i)T

I

(
AIΓ −A(i)

II Ũ
(i)−1

II Ũ
(i)
IΓ

)
, (5.23)

A
(i)
ΓIA

(i)−1

II ≈ A
(i)
ΓIP

(i)
I A

(i)−1

0,II P
(i)T

I + L̃
(i)
ΓI L̃

(i)−1

II

(
I −A(i)

IIP
(i)
I A

(i)−1

0,II P
(i)T

I

)
. (5.24)

where PI : Λ(i),p=0 or 1
I → Λ(i)

I projects the coarse interior degrees of freedom from p = 0 or

p = 1 to the higher-order solutions, while A(i)
0,II is given by the Galerkin projection:

A
(i)
0,II = P

(i)T

I A
(i)
IIP

(i)
I . (5.25)
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As in the case when using only the ILU factorization, the application of the harmonic

extensions involves either a backwards substitution or a forward substitution with the inexact

factorization.

5.3.2 Inexact Partially Assembled Solve

The inexact partially assembled solve requires the computation of constrained Neumann

problems of the form (4.30). The inexact solver with coarse grid correction for the con-

strained Neumann problem may be written as:

Ã(i)−1 ≈ P̃(i)Ã(i)−1

0 P̃(i)T + M̃(i)−1
(
I − ÃP̃(i)Ã(i)−1

0 P̃(i)T
)
, (5.26)

where

P̃(i) =


 P (i) 0

0 IΠ


 and Ã(i)

0 = P̃(i)T Ã(i)P̃(i) =


 P (i)TA(i)P (i) B(i)TP (i)T

P (i)B(i) 0


 , (5.27)

and P (i) : Λ(i),p=0 or 1 → Λ(i) projects all coarse interior of freedom on Ωi from p = 0 or p = 1

to the higher-order solutions. Since the coarse grid correction exactly satisfies the constraint

equation, the expression for the inexact constrained solves may be simplified, such that the

inexact primal basis functions are given by:

Ψ(i) ≈ P (i)Ψ(i)
0 − M̃ (i)−1

A(i)Ψ(i)
0 , (5.28)

Ψ∗(i) ≈ P (i)Ψ∗(i)0 − M̃ (i)−TA(i)TΨ∗(i)0 , (5.29)

where


 P (i)TA(i)P (i) B(i)TP (i)T

P (i)B(i) 0




 Ψ(i)

0

∗


 =


 0

I
(i)
Π


 , (5.30)


 P (i)TA(i)P (i) B(i)TP (i)T

P (i)B(i) 0




 Ψ∗(i)0

∗


 =


 0

I
(i)
Π


 . (5.31)
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Similarly,

Ã(i)−1 ≈ P (i)Ã
(i)−1

0 P (i)T − M̃ (i)−1
A(i)P (i)Ã

(i)−1

0 P (i)T , (5.32)

where Ã(i)−1

0 is defined by


 P (i)TA(i)P (i) B(i)TP (i)T

P (i)B(i) 0




 Ã

(i)−1

0 v
(i)
0

∗


 =


 v

(i)
0

0


 . (5.33)

The approach for the inexact partially assembled solve presented in this section resembles

most closely the approach taken in [48]. This approach differs from that taken in [72] or [124]

where the multigrid scheme acts on the global partially assembled system. In particular,

the two-level inexact BDDC method of Yano and Darmofal [124] requires two primal system

solves corresponding to the inexact solve and the coarse grid solve. In the following section,

numerical results are presented which show that both methods perform similarly in terms

of number of iterations, however, the approach described here requires communication and

computation of only a single primal solve for each application of the preconditioner.

5.4 Numerical Results

In this section, the performance of the inexact BDDC preconditioners is assessed for two 3D

model problems. The first model problem is the 3D extension of the 2D Poisson problem

(3.10) to the unit cube Ω = [0, 1]3 ∈ R3. Similarly, the second model problem is the extension

of the 2D scalar advection-diffusion boundary layer problem (3.12) to the unit cube. The

3D model problems are solved on a set of unstructured tetrahedral meshes generated using

TetGen [112]. The domain is partitioned into N subdomains of approximately n element

using ParMetis [65]. The performance of different inexact solvers are assessed in term of the

number of iterations required to converge the l2 norm of the residual by a factor of 106. The

simulations were performed on a Dell PowerEdge 1950 Linux cluster with 680 nodes, each

with two Quad Core Intel Xeon 2.33GHz 64-bit processors and 8 GB of memory, connected

with 10 Gb/sec Infiniband.
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5.4.1 Inexact BDDC using Incomplete Factorizations

3D Poisson Problem

In the first set of numerical experiments the 3D Poisson problem is solved using the BDDC

preconditioner with inexact solvers based on the block ILUT factorization. Table 5.1 gives

the number of iterations varying N and n for both the one-matrix and two-matrix methods.

A drop tolerance of 10−6 is used, while the allowable fill-in is varied from 0 → ∞. A fill-in

of 0 implies the ILU(0) algorithm is used, while fill-in ∞ implies the exact BDDC algorithm

is used.

(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 50 ∞ 0 2 5 10 20 50 ∞
4 400 39 29 24 20 18 15 14 57 43 32 27 22 19 19
16 400 62 47 41 35 28 22 22 95 61 55 45 36 28 24
64 400 114 102 65 52 39 28 22 172 121 89 69 52 37 29
256 400 198 148 105 81 59 37 25 316 266 147 111 79 49 33
1024 400 314 356 165 124 88 49 27 501 486 232 172 118 76 37
64 100 63 38 28 23 20 19 19 119 87 58 45 34 26 26
64 200 87 56 41 31 24 22 22 150 110 79 61 45 30 30
64 400 114 102 65 52 39 28 22 172 121 89 69 52 37 29
64 800 137 95 73 58 43 29 25 218 279 114 90 68 38 33
64 1600 172 117 92 72 55 35 24 244 339 134 107 87 * *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 50 ∞ 0 2 5 10 20 50 ∞
4 400 42 28 23 19 16 15 14 62 38 29 24 20 19 19
16 400 63 43 34 28 23 19 22 97 58 45 36 29 25 24
64 400 102 67 51 39 29 22 22 157 93 71 54 39 30 29
256 400 171 109 81 60 39 26 25 268 151 109 78 52 35 33
1024 400 273 171 124 88 55 29 27 435 242 178 124 73 39 37
64 100 63 38 28 23 20 19 19 100 55 40 31 27 26 26
64 200 87 56 41 31 24 22 22 135 78 57 42 33 30 30
64 400 102 67 51 39 29 22 22 157 93 71 54 39 30 29
64 800 137 95 73 58 43 29 25 210 130 99 76 56 38 33
64 1600 172 117 92 72 55 35 24 266 158 120 94 * * *

Table 5.1: Number of GMRES iterations for 3D Poisson problem using ILUT(τ ,π) inexact
solver, with τ = 10−6 and varying π

For fixed n = 400 with small allowable fill-in, π =0, 2 or 5, the inexact BDDC precon-
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ditioner performs poorly relative the exact BDDC method. The inexact BDDC algorithm

is not scalable as the number of iterations grows with increasing number of subdomains.

However, as the fill-in is allowed to increase, the performance of the inexact BDDC method

approaches that for the exact BDDC method.

Unfortunately, the fill-in required in order to maintain the good performance of the

exact BDDC preconditioner is dependent upon the number of elements per subdomain. For

N = 64 and n = 100 a fill-in of π = 10 is sufficient to maintain the good performance of the

exact BDDC algorithm. However, for fixed N = 64 and increasing number of elements per

subdomain, increasing amount of fill-in is required in order to maintain good performance.

In particular, for 1600 elements per subdomain, a fill-in of 50 is insufficient to maintain the

good performance of the exact BDDC algorithm.

A key advantage of using an inexact solver is the reduced storage required for the fac-

torization. For p = 5 and n = 1600 both the exact BDDC and the inexact BDDC with large

fill-in fail as the memory required exceed the 1Gb/core of available memory. The failure of

the BDDC algorithm due to insufficient memory is reported as * in Table 5.1. Using the

two-matrix method the inexact BDDC algorithm fails for π > 10 while using the one-matrix

method, a fill-in of up to π = 20 may be used without running out of memory. Com-

paring Tables 5.0(a) and 5.0(b) there is relatively little advantage of using the two matrix

factorization approach over the single matrix approach. Thus, for this test case, using the

one-matrix approach with larger fill-in is a more efficient approach than using the two-matrix

factorization approach.

3D Advection-Diffusion Boundary Layer Problem

In the second numerical experiment, the 3D advection-diffusion boundary layer problem is

solved on the isotropic unstructured meshes with varying µ. Tables 5.2 and 5.3 report the

corresponding number of iteration for µ = 1 and µ = 10−4 respectively. In the diffusion-

dominated case, (µ = 1) the behaviour is similar to that for the 3D Poisson problem.

Namely, the performance of the inexact preconditioner improves with increasing allowable

fill-in. However, increasing fill-in is required with increasing size of the subdomains. The

advantage of the two-matrix method over the one-matrix approach is again relatively small,

such that using the one matrix approach with more fill-in is a more efficient approach than
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(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 50 ∞ 0 2 5 10 20 50 ∞
4 400 35 27 22 18 15 12 12 49 37 27 22 18 15 14
16 400 56 43 36 30 24 17 15 81 53 46 37 29 21 18
64 400 107 93 58 45 34 23 17 154 105 75 57 42 29 22
256 400 182 135 96 72 51 30 19 276 230 125 94 52 33 24
1024 400 292 304 148 110 76 41 20 402 214 168 117 59 38 26
64 100 72 56 37 28 21 16 16 105 75 49 37 27 21 20
64 200 92 68 49 37 27 20 17 134 91 65 48 36 25 23
64 400 107 93 58 45 34 23 17 154 105 75 57 42 29 22
64 800 135 117 74 59 45 31 19 192 154 96 75 56 38 25
64 1600 153 130 91 72 54 35 18 215 161 114 90 65 * *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 50 ∞ 0 2 5 10 20 50 ∞
4 400 37 25 19 16 14 12 12 53 32 24 20 16 15 14
16 400 58 39 30 24 19 15 15 83 49 38 29 23 18 18
64 400 94 61 45 34 24 17 17 138 79 58 42 30 22 22
256 400 157 97 70 50 32 20 19 231 127 91 63 38 24 24
1024 400 246 149 105 73 42 21 20 373 198 138 94 54 27 26
64 100 57 34 24 18 16 16 16 85 45 32 24 21 20 20
64 200 74 47 34 25 19 17 17 109 62 44 33 25 23 23
64 400 94 61 45 34 24 17 17 138 79 58 42 30 22 22
64 800 124 82 62 48 35 23 19 183 106 80 60 43 28 25
64 1600 156 104 80 62 45 28 18 224 132 100 76 * * *

Table 5.2: Number of GMRES iterations for 3D advection-diffusion boundary layer problem
with µ = 1 on isotropic unstructured mesh using ILUT(τ ,π) inexact solver, with τ = 10−6

and varying π
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using the two-matrix method.

(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 50 ∞ 0 2 5 10 20 50 ∞
4 400 16 10 8 8 8 8 8 15 9 7 7 7 7 7
16 400 20 11 10 10 9 9 9 18 11 9 9 9 9 9
64 400 22 13 11 10 10 10 10 21 12 10 9 9 9 9
256 400 30 17 14 14 13 13 13 31 18 15 15 14 13 13
1024 400 42 23 19 18 17 17 17 44 24 20 19 19 18 18
64 100 19 12 11 10 10 10 10 18 11 10 10 10 10 10
64 200 20 12 11 10 10 10 10 19 12 10 9 9 9 9
64 400 22 13 11 10 10 10 10 21 12 10 9 9 9 9
64 800 25 15 12 11 11 11 11 24 14 12 11 10 10 10
64 1600 27 16 13 12 12 12 12 26 16 13 12 12 * *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 50 ∞ 0 2 5 10 20 50 ∞
4 400 8 8 8 8 8 8 8 7 7 7 7 7 7 7
16 400 10 10 10 9 9 9 9 9 9 9 9 9 9 9
64 400 11 11 10 10 10 10 10 11 10 10 10 9 9 9
256 400 15 13 13 13 13 13 13 15 14 13 13 13 13 13
1024 400 19 18 17 17 17 17 17 23 19 19 19 19 18 18
64 100 11 10 10 10 10 10 10 10 10 10 10 10 10 10
64 200 10 10 10 10 10 10 10 10 9 9 9 9 9 9
64 400 11 11 10 10 10 10 10 11 10 10 10 9 9 9
64 800 12 11 11 11 11 11 11 11 11 10 10 10 10 10
64 1600 13 12 12 12 12 12 12 13 12 12 12 * * *

Table 5.3: Number of GMRES iterations for 3D advection-diffusion boundary layer problem
with µ = 10−4 on isotropic unstructured mesh using ILUT(τ ,π) inexact solver, with τ = 10−6

and varying π

In the convection-dominated case, (µ = 10−4), the number of iterations required to

converge the BDDC algorithm is approximately half of the number of subdomains through

which the characteristics pass. The incomplete factorization with MDF reordering is able to

capture the strong coupling along characteristics. Thus much less fill-in is required compared

to the diffusion dominated case in order to maintain the good performance of the exact

BDDC algorithm. The ordering of the degrees of freedom in the ILUT factorization is

much more important than for the diffusion-dominated case. Thus, the two matrix method

performs much better than the one-matrix method. In particular, the iteration count for
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the two-matrix method with zero fill is within 1 or 2 iterations of the exact BDDC method.

Additionally, the fill-in required to maintain good performance using the two-matrix method

does not appear to grow with increasing n or N . On the other hand, significantly more fill-in

is required to maintain good performance using the one-matrix method. Additionally, the

amount of fill-in required increases with both N and n. Thus, for this convection-dominated

case, it is more efficient to use the two-matrix approach, than using the one-matrix approach

with additional fill-in.

5.4.2 Inexact BDDC with p-multigrid correction

3D Poisson Problem

In the third numerical experiment the 3D Poisson problem is solved using the inexact BDDC

algorithm with coarse grid correction. Table 5.4 gives the number of iterations using both

one- and two-matrix methods with p = 0 coarse grid correction. The use of the coarse grid

correction significantly improves the performance relative to only using the ILUT local solver.

As with the exact BDDC algorithm, the number of iterations required to converge the inexact

BDDC algorithm grows slowly with increasing subdomain size, n, for fixedN = 64. Similarly,

using either exact or inexact BDDC the number of iterations does not grow significantly as

the number of subdomains N increase for fixed n = 400. The number of iterations required

to converge using the inexact BDDC algorithm appears to be a constant multiple of the

number of iterations for the exact BDDC algorithm. In particular, using ILU(0) the number

of iterations using the inexact BDDC method is approximately twice that of using the exact

BDDC method, with the performance of the inexact BDDC algorithm improving as the

fill-in is allowed to increase. As was the case when using only the ILUT inexact solver, the

two-matrix method does not perform better than the one-matrix method, and in some cases

results in a larger number of iterations. Thus for this case the use of the two-matrix method

is not warranted.

Table 5.5 gives the number of iterations using both one- and two-matrix methods with

p = 1 coarse grid correction. The performance trends using the p = 1 correction is similar to

that using the p = 0 correction. Namely, the number of iterations grows slowly with N and n

with the number of iterations using the inexact BDDC appearing to be a constant multiple

of the number of iterations for the exact BDDC algorithm. For p = 2 the p = 1 coarse
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(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 22 21 19 14 36 30 26 19
16 400 30 27 25 22 46 37 36 24
64 400 37 35 30 22 65 53 44 29
256 400 45 41 35 25 79 67 51 33
1024 400 48 42 37 27 90 85 56 37
64 100 33 29 25 19 61 45 37 26
64 200 37 35 29 22 65 54 43 30
64 400 37 35 30 22 65 53 44 29
64 800 41 39 34 25 70 60 50 33
64 1600 41 46 36 24 70 61 52 *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 26 21 18 14 42 31 26 19
16 400 32 27 24 22 51 40 34 24
64 400 37 32 28 22 62 48 41 29
256 400 43 36 32 25 73 55 47 33
1024 400 46 39 35 27 81 60 51 37
100 64 32 25 22 19 55 39 32 26
200 64 37 30 27 22 62 46 39 30
400 64 37 32 28 22 62 48 41 29
800 64 42 37 34 25 69 55 48 33
1600 64 44 38 36 24 71 58 52 *

Table 5.4: Number of GMRES iterations for 3D Poisson problem using ILUT with p = 0
coarse grid correction, with τ = 10−6 and varying π
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(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 17 16 15 14 29 24 21 19
16 400 23 20 19 22 42 31 28 24
64 400 26 25 22 22 50 42 33 29
256 400 31 30 26 25 59 58 38 33
1024 400 33 31 28 27 65 54 42 37
64 100 24 22 20 19 47 37 30 26
64 200 27 25 23 22 51 42 34 30
64 400 26 25 22 22 50 42 33 29
64 800 30 28 26 25 55 46 37 33
64 1600 30 30 25 24 54 47 36 *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 17 15 15 14 28 23 20 19
16 400 22 20 19 22 37 29 26 24
64 400 25 23 22 22 43 35 32 29
256 400 29 26 26 25 52 40 36 33
1024 400 31 29 28 27 57 44 40 37
64 100 22 20 19 19 38 31 28 26
64 200 25 23 22 22 44 35 32 30
64 400 25 23 22 22 43 35 32 29
64 800 28 26 25 25 48 39 36 33
64 1600 28 26 25 24 51 39 35 *

Table 5.5: Number of GMRES iterations for 3D Poisson problem using ILUT(τ ,π) with
p = 1 coarse grid correction, with τ = 10−6 and varying π

91



grid correction provides a very strong local solver, such that even using ILU(0) the number

of iterations required to converge using the inexact BDDC method is within 4 iterations

of the exact BDDC method. For p = 5, using the p = 1 coarse grid correction provides

some improvement over the p = 0 coarse grid correction, though this is less significant than

for p = 2. As with previous cases, there is a slight performance improvement using the

two-matrix method as opposed to the one-matrix method, however the performance gain is

not sufficient to warrant the additional memory required for the two-matrix method.

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 17 15 15 14 28 23 20 19
16 400 22 20 19 22 37 29 26 24
64 400 25 23 22 22 43 35 32 29
256 400 29 27 26 25 52 40 36 33
1024 400 31 29 28 27 56 44 40 37
64 100 22 20 19 19 38 30 28 26
64 200 25 23 22 22 44 35 32 30
64 400 25 23 22 22 43 35 32 29
64 800 28 26 25 25 48 39 35 33
64 1600 28 26 25 24 51 39 35 *

Table 5.6: Number of GMRES iterations for 3D Poisson problem using ILUT(τ ,π) with
p = 1 coarse grid correction applied to global partially assembled problem, with τ = 10−6

and varying π

Table 5.6 gives the iteration count using the two-matrix method with the coarse grid

correction applied to the global problem as in [124]. Comparing with Table 5.5, both coarse

grid corrections schemes give similar iteration counts. Thus, the coarse grid correction

scheme presented in Section 5.3 is preferred as this scheme requires only a single global

primal solve for each application of the preconditioner.

3D Advection-Diffusion Boundary Layer Problem

In the next numerical experiment the performance of the inexact BDDC method with coarse

grid correction is assessed for the 3D scalar boundary layer problem. Tables 5.7 and 5.8

report, respectively, the number of iterations using the inexact BDDC with p = 0 and p = 1

coarse grid corrections with µ = 1. For this diffusion-dominated case the behaviour of the

inexact BDDC is similar to that for the 3D Poisson problem. Namely, even using little or
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no additional fill-in, good performance of the inexact BDDC preconditioner is seen over a

large range of N and n. As with the 3D Poisson problem, the two-matrix approach is not

advocated as both one- and two-matrix approaches perform similarly.

(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 16 15 14 12 24 22 19 14
16 400 22 20 18 15 31 26 24 18
64 400 26 27 21 17 41 38 29 22
256 400 29 29 24 19 46 37 33 24
1024 400 30 73 25 20 51 45 35 26
64 100 24 22 20 16 40 31 25 20
64 200 26 27 21 17 43 38 29 23
64 400 26 27 21 17 41 38 29 22
64 800 28 28 24 19 44 39 33 25
64 1600 27 33 23 18 43 39 32 *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 19 16 14 12 29 21 18 14
16 400 23 20 18 15 35 27 23 18
64 400 26 22 20 17 41 31 27 22
256 400 29 25 22 19 46 35 29 24
1024 400 31 26 24 20 50 38 33 26
64 100 22 19 17 16 37 27 23 20
64 200 24 22 20 17 41 31 27 23
64 400 26 22 20 17 41 31 27 22
64 800 29 25 24 19 44 36 32 25
64 1600 29 25 23 18 44 36 32 *

Table 5.7: Number of GMRES iterations for 3D advection-diffusion boundary layer problem
with µ = 1, using ILUT(τ ,π) with p = 0 coarse grid correction, with τ = 10−6 and varying
π

Tables 5.9 and 5.10 give the number of iterations using the inexact BDDC with p = 0

and p = 1 coarse grid corrections respectively for the 3D advection-diffusion problem with

µ = 10−4. In this advection-dominated case the coarse grid correction does not provide

any additional benefit over the inexact BDDC using only ILUT. As with the ILUT pre-

conditioner without p-multigrid correction, the ordering of the degrees of freedom plays a

significant role in the performance of the algorithm, such that the two-matrix approach
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(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 13 12 12 12 20 17 15 14
16 400 17 15 15 15 29 22 19 18
64 400 19 19 17 17 32 30 24 22
256 400 22 23 19 19 37 32 26 24
1024 400 23 22 20 20 40 38 28 26
64 100 18 17 16 16 31 26 22 20
64 200 20 19 17 17 33 30 24 23
64 400 19 19 17 17 32 30 24 22
64 800 22 21 19 19 37 31 26 25
64 1600 21 24 18 18 33 28 24 *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 13 12 12 12 20 16 15 14
16 400 16 15 15 15 26 20 19 18
64 400 19 17 17 17 30 24 22 22
256 400 21 19 19 19 33 27 25 24
1024 400 22 21 20 20 36 29 27 26
64 100 17 16 16 16 27 22 21 20
64 200 19 17 17 17 30 25 23 23
64 400 19 17 17 17 30 24 22 22
64 800 21 20 19 19 33 27 25 25
64 1600 20 18 18 18 31 26 23 *

Table 5.8: Number of GMRES iterations for 3D advection-diffusion boundary layer problem
with µ = 1, using ILUT(τ ,π) with p = 1 coarse grid correction, with τ = 10−6 and varying
π
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performs significantly better than the one-matrix approach.

(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 14 9 8 8 15 10 8 7
16 400 16 11 10 9 16 10 9 9
64 400 19 13 11 10 19 12 10 9
256 400 25 16 14 13 25 17 14 13
1024 400 32 22 20 17 35 23 20 18
64 100 16 11 11 10 16 11 10 10
64 200 18 12 10 10 18 12 10 9
64 400 19 13 11 10 19 12 10 9
64 800 21 14 12 11 22 13 11 10
64 1600 23 15 13 12 24 15 12 *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 8 8 8 8 8 7 7 7
16 400 10 10 9 9 9 9 9 9
64 400 11 10 10 10 11 10 10 9
256 400 14 13 13 13 15 14 13 13
1024 400 18 17 17 17 22 19 19 18
64 100 11 10 10 10 10 10 10 10
64 200 10 10 10 10 10 9 9 9
64 400 11 10 10 10 11 10 10 9
64 800 11 11 11 11 12 11 11 10
64 1600 13 12 12 12 13 12 12 *

Table 5.9: Number of GMRES iterations for 3D advection-diffusion boundary layer problem
with µ = 10−4, using ILUT(τ ,π) with p = 0 coarse grid correction, with τ = 10−6 and
varying π

While iteration counts may provide an estimate of how well the inexact BDDC methods

perform relative the exact BDDC method, the most important metric for evaluating the

performance of the inexact solver is the CPU time taken. Figures 5-1 and 5-2 plot the CPU

time required to solve the 3D advection-diffusion boundary layer problem with µ = 1 and

µ = 10−4 for p = 5 and n = 400 using several different local solvers using the two-matrix

method.

For µ = 1 the weak scalability of the exact BDDC method is reflected in the reported

CPU time as the simulation time does not grow significantly with the number of processes.
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(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 11 9 9 8 13 9 8 7
16 400 13 10 10 9 15 10 9 9
64 400 15 11 11 10 18 11 10 9
256 400 17 14 14 13 21 15 13 13
1024 400 20 18 17 17 27 20 19 18
64 100 13 11 11 10 15 10 10 10
64 200 14 11 10 10 16 11 9 9
64 400 15 11 11 10 18 11 10 9
64 800 16 12 11 11 20 12 11 10
64 1600 16 13 12 12 20 13 12 *

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 ∞ 0 2 5 ∞
4 400 8 8 8 8 7 7 7 7
16 400 10 10 9 9 9 9 9 9
64 400 11 10 10 10 11 10 10 9
256 400 14 13 13 13 14 14 13 13
1024 400 17 17 17 17 19 18 18 18
64 100 10 10 10 10 10 10 10 10
64 200 10 10 10 10 10 9 9 9
64 400 11 10 10 10 11 10 10 9
64 800 11 11 11 11 11 10 10 10
64 1600 12 12 12 12 12 12 12 *

Table 5.10: Number of GMRES iterations for 3D advection-diffusion boundary layer problem
with µ = 10−4, using ILUT(τ ,π) with p = 1 coarse grid correction, with τ = 10−6 and varying
π
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In particular, the CPU time for solving the problem on 1024 processor is only twice that

for solving a 256 times smaller problem on 4 processors. However, when the exact BDDC

algorithm is used, a significant portion of the run time is spent on the factorization and

GMRES solve. Using the inexact BDDC algorithm with ILU(0) the cost of the factorization

is significantly reduced. However, since this algorithm is not scalable, the cost of the GMRES

solve grows with increasing number of subdomains, such that for large numbers of processors,

the total CPU time using the inexact solver is greater than using the exact solver. However,

when a p = 0 or p = 1 coarse grid correction is used, the inexact BDDC algorithm remains

scalable, and the cost of both factorization and GMRES solve is lower than using the exact

BDDC algorithm. In this case the p = 1 coarse grid correction performs slightly better

than the p = 0 correction in terms of CPU time, as the increase in cost of the coarse grid

correction is offset by fewer GMRES iterations.

For µ = 10−4 the coarse grid correction is not necessary to obtain good performance.

Thus the inexact BDDC using only ILU(0) performs similarly to the case when a p = 0 or

p = 1 coarse grid correction is applied. As with µ = 1 the use of the inexact solver reduces

the cost of factorization and linear solve.

In the final numerical experiment, the performance of the inexact BDDC preconditioner

is assessed for the 3D advection-diffusion problem with µ = 10−4 using an unstructured

anisotropic mesh. The anisotropic mesh is generated from the unstructured isotropic 3D

meshes used previously in this section, by using an exponential scaling of the y-coordinate

such that the aspect ratio of the elements on the lower surface are approximately
√
Pe. Table

5.11 reports the number of iterations required to converge the l2 residual by a factor of 103

using the inexact BDDC algorithm with p = 1 coarse grid correction. For this anisotropic

unstructured mesh case, the performance of the BDDC algorithm degrades relative to the

isotropic case. Additionally, more fill-in is required in order for the inexact BDDC method

to maintain the performance of the exact BDDC preconditioner. In particular, for small

amount of fill-in the inexact BDDC algorithm is unable to converge in 500 GMRES iterations

( denoted by ** in Table 5.11). While diffusive effect are more important in this anisotropic

case, than in the isotropic case, the ordering of the degrees of freedom remains important,

such that the two-matrix method performs better than the one-matrix method.
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(a) Exact BDDC
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(b) ILU(0) Two-Matrix
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(c) ILU(0) Two-Matrix, p = 0 correction
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(d) ILU(0) Two-Matrix, p = 1 correction

Figure 5-1: CPU time for 3D advection-diffusion boundary layer problem
with µ = 1, and n = 400 on isotropic unstructured mesh

98



0 200 400 600 800 1000 1200
0

50

100

150

# Subdomains

T
im

e
 (

s
)

 

 

GMRES

Factorization

Residual & Local Solve

Other

(a) Exact BDDC
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(b) ILU(0)
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(c) ILU(0) with p = 0 correction
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(d) ILU(0) with p = 1 correction

Figure 5-2: CPU time for 3D advection-diffusion boundary layer problem
with µ = 10−4, and n = 400 on isotropic unstructured mesh
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(a) One-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 ∞ 0 2 5 10 20 ∞
4 400 5 5 4 4 4 4 8 9 7 6 6 6
16 400 47 31 11 11 11 11 57 52 40 19 19 19
64 400 464 316 81 22 22 22 ** ** ** 51 39 39
256 400 ** ** ** 179 34 33 ** ** ** ** 80 64
64 100 39 57 13 13 14 14 114 98 66 23 22 22
64 200 180 202 35 16 15 15 460 305 171 30 29 29
64 400 464 316 81 22 22 22 ** ** ** 51 39 39
64 800 ** ** 124 23 22 22 ** ** ** 82 41 42

(b) Two-matrix Method

p = 2 p = 5
N n 0 2 5 10 20 ∞ 0 2 5 10 20 ∞
4 400 5 4 4 4 4 4 8 7 7 6 6 6
16 400 12 12 11 11 11 11 33 32 19 19 19 19
64 400 81 32 22 22 22 22 486 481 59 39 39 39
256 400 ** ** 275 33 33 33 ** ** ** 141 64 64
64 100 15 14 14 14 14 14 46 35 23 22 22 22
64 200 40 48 15 15 15 15 103 88 29 29 29 29
64 400 81 32 22 22 22 22 486 481 59 39 39 39
64 800 ** 227 24 22 22 22 ** ** 153 58 42 42

Table 5.11: Number of GMRES iterations for 3D advection-diffusion boundary layer problem
with µ = 10−4, using ILUT(τ ,π) with p = 1 coarse grid correction, with τ = 10−6 and varying
π
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Chapter 6

Euler and Navier-Stokes Systems

In this chapter the performance of the domain decomposition preconditioners are analyzed

for the Euler and Navier-Stokes equations. Section 6.1 presents the linearized Euler equations

and a change of variables used throughout this chapter. In Section 6.2, a one dimensional

analysis is performed in order to demonstrate the effects of boundary conditions on the

performance of domain decomposition preconditioners. Section 6.3 presents Fourier analysis

of the two-dimensional Euler equations in order to estimate the performance of the BDDC

preconditioner. In Section 6.4, an optimal Robin-Robin interface condition is derived for the

Euler system. Finally, Section 6.5 presents numerical results for several model problems.

6.1 Linearized Euler Equations

Consider the semi-discrete two-dimensional linearized Euler equations using primitive vari-

ables:

uk
∆t

+Aiklul,xi = fk, (6.1)
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with state vector u =
[
δρ δv1 δv2 δP

]T
and

A1 =




v1 ρ 0 0

0 v1 0 0

0 0 v1
1
ρ

0 ρc2 0 v1




and A2 =




v2 0 ρ 0

0 v2 0 1
ρ

0 0 v2 0

0 0 ρc2 v2



, (6.2)

where c =
√

γP
ρ is the speed of sound. The flow is assumed to be subsonic, such that

0 < |v| < c. As opposed to working directly with primitive variables u, the linearized Euler

system (6.1) is written in terms of non-dimensional characteristic variables, W , with:

W =




w1

w2

w3

w4




=




1
2

(
δP
ρc2
− δv1

c

)

1
2

(
δP
ρc2

+ δv1
c

)

1√
2

(
δP
ρc2
− δρ

ρ

)

1√
2
δv2
c



, (6.3)

such that, non-dimensionalized by the speed of sound, (6.1) simplifies to

W

c∆t
+ Λ

∂W

∂x
+ Ā2

∂W

∂y
= f̄ , (6.4)

with

Λ =




Mx − 1 0 0 0

0 Mx + 1 0 0

0 0 Mx 0

0 0 0 Mx




Ā2 =




My 0 0 1√
2

0 My 0 1√
2

0 0 My 0
1√
2

1√
2

0 My



, (6.5)

and f̄ is the source in the transformed variables. The change of variables allows the en-

tropy equation (corresponding to w3) to be decoupled from the other three state variables.

However, while the change of variables diagonalizes A1, a similarity transformation cannot,

in general, simultaneously diagonalize both A1 and A2 [108]. Thus, the remaining state

equations cannot be decoupled.
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6.2 1D Analysis

The performance of the domain decomposition preconditioners for coupled systems of equa-

tions is significantly more complicated than in the case of a scalar equation. In the scalar

case, a purely hyperbolic advection problem converges in a number of iterations equal to the

number of subdomains through which the characteristics pass [106]. In [106], it is shown

that in one dimension this property is preserved for coupled hyperbolic systems of equations

when characteristic boundary conditions are imposed on all subdomain boundaries. This

result is trivially obtained for the Euler system, as (6.4) simplifies to

W

c∆t
+ Λ

∂W

∂x
= f̄ . (6.6)

Thus, the three state equations decouple into three scalar advection equations, provided

coupling is not introduced through the boundary conditions. In this section, the analysis

is extended to the case where boundary conditions other than characteristics are imposed,

which leads to coupling between different state equations. A simple additive Schwarz al-

gorithm without overlap is considered to solve (6.1). However, it is shown in Appendix A

that, an iteration of the Robin-Robin algorithm applied to the Euler system is essentially

equivalent to two iterations of the Schwarz method. Thus, the trends observed in this section

apply equally to the Robin-Robin family of algorithms.

Consider a partitioning of the domain Ω = [0, 1] into N subdomains Ωi = [xi, xi+1] of

size Hi = 1/N . The additive Schwarz algorithm updates the solution W
(i)
k on subdomain i

at iteration k by iteratively solving on each subdomain:





1
∆tW

(i)
k + Λ∂W

(i)
k

∂x = f̄ in Ωi,

B
(i)
LeftW

(i)
k = B

(i)
LeftW

(i−1)
k−1 at x = xi,

B
(i)
RightW

(i)
k = B

(i)
RightW

(i+1)
k−1 at x = xi+1.

(6.7)

where B(i)
Right and B(i)

Left respectively enforce the outflow and inflow boundary conditions on

Ωi. At domain boundaries x = 0 and x = xN+1, B(1)
LeftW

(0) and B
(N)
RightW

(N+1) denote the
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desired boundary quantities. Define

B(i) =


 B

(i)
Left

B
(i)
Right


 =


 BLeft,Up BLeft,Down

BRight,Up BRight,Down


 , (6.8)

where subscripts Up and Down denote, respectively, upstream or downstream traveling

characteristic variables. The boundary conditions are well posed if BLeft,Down and BRight,Up

are nonsingular. Additionally, an inflow boundary condition is said to be non-reflecting if

BLeft,Up = 0. Similarly, an outflow boundary conditions is non-reflecting if BRight,Down = 0.

Table 6.1 lists the outflow and inflow boundary conditions considered.

(a) Outflow BCs

Outflow BCs Reflecting
Upstream acoustic no
Upstream Riemann invariant yes
Pressure yes

(b) Inflow BCs

Inflow BCs Reflecting
Downstream acoustic and entropy no
Entropy and downstream Riemann invariant no
Entropy and total enthalpy yes
Total pressure and total temperature yes

Table 6.1: Boundary Conditions

Due to the linearity of the hyperbolic system (6.7), it is possible to consider only the

error equation, and solve for the decay of the error e(i)
k = W (i) −W (i)

k . The error function

on subdomain Ωi has the form:

e
(i)
k,j = α

(i)
k,je
−λj(x−xi), (6.9)

where α(i)
k,j are coefficients for each mode, while λj are eigenvalues:

λ1 =
1

(Mx − 1)c∆t
λ2 =

1
(Mx + 1)c∆t

λ3 =
1

Mxc∆t
. (6.10)

The additive Schwarz algorithm, (6.7), may be written as an iteration for the error coefficients
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αk = Tαk−1. In particular the iteration matrix has the form:




α
(1)
k

α
(2)
k
...

α
(N−1)
k

α
(N)
k




=




0 T
(1)
+ 0

T
(2)
− 0 T

(2)
+

. . . . . . . . .

T
(N−1)
− 0 T

(N−1)
+

0 T
(N)
− 0







α
(1)
k−1

α
(2)
k−1
...

α
(N−1)
k−1

α
(N)
k−1




, (6.11)

where T (i)
− and T

(i)
+ are determined by the interface conditions as:

T
(i)
− =


 B

(i)
RightE

(i)

B
(i)
Left



−1 
 0

B
(i)
Left


 T

(i)
+ =


 B

(i)
RightE

(i)

B
(i)
Left



−1 
 B

(i)
RightE

(i−1)

0


 , (6.12)

and E(i) = diag
([

e−λ1Hi e−λ2Hi e−λ3Hi

])
. The convergence rate of the additive Schwarz

methods is given by ρ(T ), the spectral radius of T . If ρ(T ) = 0 then T k = 0 for some k ≤ N ,

and the additive Schwarz method converges in k iterations. As noted previously, using char-

acteristic boundary conditions (which corresponds to setting all B(i)’s to the identity matrix)

results in convergence in N iterations. However, often the values of the characteristic vari-

ables are not known at the far field boundaries, and other types of boundary conditions must

be imposed.

Convergence of the Schwarz algorithm cannot, in general, be guaranteed in N iterations

when different types of far field boundary conditions are used. Convergence in a finite number

of iterations requires that certain interface and boundary conditions are non-reflecting. In

particular, if both upstream and downstream far field boundary conditions are reflecting

then, (except in the special case where the reflected wave at one end of the domain does

not cause a reflection at the opposite end), convergence is not achieved in a finite number of

iterations. Table 6.2 summarizes the convergence of the Schwarz algorithm in term of the

types of boundary and interface conditions imposed.

Generally, non-reflecting interface conditions corresponding to characteristics are set on

subdomain interfaces. Table 6.3 summarizes the convergence of the Schwarz algorithm using

characteristic interface conditions for the different types of boundary conditions considered

in Table 6.1.
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Iterations Type of Boundary and Interface Conditions
N 1. All ICs & BCs are non-reflecting

2N − 3 2. Inflow IC & BC are non-reflecting and outflow IC & BC are the same
3. Outflow IC & BC are non-reflecting and inflow IC & BC are the same

2N − 1 4. Inflow IC & BC are non-reflecting
5. Outflow IC & BC are non-reflecting

3N − 4 6. Inflow IC & BC are the same, outflow IC is non-reflecting and
reflected wave at outflow boundary is not reflected by inflow IC/BC

3N − 2 7. All ICs are non-reflecting and reflected wave at outflow boundary
is not reflected by inflow BC

8. Inflow BC & outflow IC are non-reflecting and reflected wave
at outflow boundary is not reflected by inflow IC

∞ Otherwise

Table 6.2: Number of iterations required for the Schwarz algorithm to con-
vergence using different interface and boundary conditions

Outflow BC
Inflow BC w1 J− P

w2, w3 N 2N − 1 2N − 1
S, J+ N 2N − 1 2N − 1
S, To 2N − 1 3N − 2 ∞
Po, To 2N − 1 ∞ ∞

Table 6.3: Number of iterations required for the Schwarz algorithm to con-
vergence using characteristic interface conditions and different
boundary conditions
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As noted previously, when the Schwarz algorithm does not converge in a finite number

of iterations, the convergence rate is given by the spectral radius of the iteration matrix T .

The convergence rate setting entropy, S, and total temperature, To, on the inflow and the

static pressure, P , on the outflow boundary is given by:

ρ (T ) =
(

1−Mx

1 +Mx

) 1
N−1

e
− 2(N−2)

N−1
1

1−M2
x

H
c∆t . (6.13)

Note, for fixed domain size, H = 1
N . Thus, the convergence rate degrades exponentially

as the number subdomains, N , increases. The convergence rate for other combinations of

reflecting boundary conditions have similar forms.

The one-dimensional results presented in this section have an implication on the ex-

pected performance of domain decomposition methods in multiple dimensions. As perfectly

non-reflecting boundary conditions are not generally available in multiple dimensions, con-

vergence is not likely in a finite number of iterations. Additionally, degradation in the

convergence rate is to be expected as the number of subdomains increases.

6.3 2D Analysis

In this section Fourier analysis is used to estimate the convergence rate of the Robin-Robin

algorithm in the case of two strip domains of finite width. The theoretical convergence rate

is compared with the discrete case to validate the analysis performed.

Consider the two-dimensional semi-discrete linearized Euler equation with zero forcing

function:

W

c∆t
+




Mx − 1 0 0 0

0 Mx + 1 0 0

0 0 Mx 0

0 0 0 Mx




∂W

∂x
+




My 0 0 1√
2

0 My 0 1√
2

0 0 My 0
1√
2

1√
2

0 My




∂W

∂y
= 0.

(6.14)
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Performing a Fourier transform in the y-direction gives:

W̃

c∆t
+




Mx − 1 0 0 0

0 Mx + 1 0 0

0 0 Mx 0

0 0 0 Mx




dW̃

dx
+




My 0 0 1√
2

0 My 0 1√
2

0 0 My 0
1√
2

1√
2

0 My



iξ̂W̃ = 0,

(6.15)

where ξ̂ is the wave number. Simplifying, (6.15) gives a system of ODEs of the form:

dW̃

dx
+ ÃW̃ = 0. (6.16)

Consider a partition of the domain Ω = [−H,H]×R into two subdomains Ω1 = [−H, 0]×R

and Ω2 = [0, H]×R. The Robin-Robin algorithm to solve for Ŵ , the Fourier coefficients of

state on the interface at x = 0, is given by:

Dirichlet Solve:

Ωi :





dW̃k
i

dx + ÃW̃ k
i = 0 in Ωi,

Λ−niW̃
k
i = Λ−niŴ

k at x = 0,

Λ−niW̃
k
i = 0 at x = ±H,

Robin Solve:

Ωi :





dṼ ki
dx + ÃṼ k

i = 0 in Ωi,

Λ−ni Ṽ
k
i = Λ−ni V̂

k
i at x = 0,

Λ−ni Ṽ
k
i = 0 at x = ±H,

1
2Λni V̂

k
i + |Λni |(Ṽ k

i − V̂ k
i ) + ZniV̂

k
i = −1

2 |Λni |
(
W̃ k

1 + W̃ k
2 − 2Ŵ k

)
at x = 0,

Update: Ŵ k+1 = Ŵ k +
ω

2

(
V̂ k

1 + V̂ k
2

)
. (6.17)

where ω is an under-relaxation parameter. In the Robin solve, Z is a skew symmetric term

which may be added to the interface condition without modifying the energy stability of the

Robin-Robin algorithm. In the following section an optimal choice of Z is derived which

minimizes the convergence rate.
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As in Section 6.2, it is possible to derive an iteration matrix for the Fourier coefficients

of the error. In Appendix A the eigenvalues are computed analytically for the case of

two infinite domains. However, in general it is not possible to compute analytically the

eigenvalues of the iteration matrix, thus these must be computed numerically for different

non-dimensional wave numbers, ξ := Hξ̂ and subdomain CFL number, CFLH := c∆t
H .

In order to assess the validity of the analysis in the discrete setting, a set of numerical

experiments are performed in an effort to mimic the conditions of the analysis. The domain

Ω = [−1, 1] × [0, 1] partitioned into two square subdomains with an interface at x = 0.

Each subdomain is discretized using a uniform structured mesh with 8192 triangular p = 5

elements. The boundary conditions are set such that the solution is periodic in the y-direction

with wave number ξ. The discrete convergence rate is determined from the decrease in the

l2-norm of the residual over 10 Richardson iterations using the BDDC preconditioner. (As

the initial error is orthogonal to constant functions, the BDDC and Robin-Robin algorithms

are equivalent for this problem).

Initially, the convergence behaviour of the Robin-Robin algorithm is assessed for the case

where Z = 0. Figure 6-1 plots both analytic and discrete convergence rates as a function

of ξ for CFLH = 1, 10 and 100. For small CFLH , the convergence rate is similar to that

obtained in the infinite subdomain case. This behaviour is expected as the far field boundary

conditions do not significantly effect the solution at the interface. On the other hand, for

CFLH = 10, or CFLH = 100, the boundary conditions have a significant effect on the solution

at the interface for low frequency modes and markedly different behaviour is observed for

ξ < 10. In the limit as ξ → ∞ the analytical convergence rate asymptotes to the same

value independent of CFLH . However, for large CFLH the convergence rate approaches the

asymptotic value at much lower wave numbers.

The discrete and analytical convergence rates match very well over a wide range of wave

numbers. As the wave number is increased, there is insufficient resolution for the discrete

solution to represent the high-frequency modes. In particular, high-frequency modes above

the Nyquist frequency of ≈ 200, are aliased and the discrete convergence rate deviates from

the asymptotic value. Additionally, in the discrete setting it is impossible to ensure that the

initial error has components corresponding only to a single frequency. Thus, for Mx = 1
3

the convergence rate for ξ →∞ is not zero but is limited by the convergence of the under-
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(a) Analytical, CFLH = 1
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(b) Discrete, CFLH = 1
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(c) Analytical, CFLH = 10
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(d) Discrete, CFLH = 10
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(e) Analytical, CFLH = 100
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(f) Discrete, CFLH = 100

Figure 6-1: Convergence rate versus wave number, ξ using basic Robin-
Robin algorithm

110



resolved modes.

6.4 Optimized Robin Interface Condition

In this section the Fourier analysis presented in the previous section is used determine an

optimal value for the skew symmetric term Z as a function of Mx and My.

Prior to setting up the optimization problem, a specific form for Z is chosen. As the

entropy equation decouples from the other three state equations, the interface term should

not introduce coupling between these states, thus the third row and column of Z should be

zero. Additionally, it is assumed that coupling should only be introduced between the two

acoustic modes, allowing Z to be specified by a single parameter z:

Z =




0 z 0 0

−z 0 0 0

0 0 0 0

0 0 0 0



. (6.18)

The convergence rate of the Robin-Robin algorithm is limited by the maximum conver-

gence rate over all wave numbers. For large CFLH , the convergence rate for ξ > π essentially

takes on the asymptotic value corresponding to ξ →∞. Additionally, it is assumed that the

primal correction in the BDDC algorithm is able to control the low frequency error modes.

Thus, initially, an optimal value zopt,1 is determined which minimizes the asymptotic con-

vergence rate. As under-relaxation may be applied to the Robin-Robin algorithm zopt,1, and

under-relaxation parameter, ωopt,1 are formally defined as:

(zopt,1, ωopt,1) = arg min
z,ω

[
lim
ξ→∞

ρ(T (ξ))
]
. (6.19)

In practice the optimization problem (6.19) is solved numerically, and the formal limit

limξ→∞ is replaced by setting ξ = 50.

Figure 6-2 plots the optimal values zopt,1 and ωopt,1 as a function of Mx and My, while

Figure 6-3 plots the corresponding optimal asymptotic convergence rate. Interestingly, the

optimal asymptotic convergence rate is zero for all 0 < Mx < 1 with My = 0. Moreover, the

optimal under relaxation parameter is ωopt,1 = 1. For finite My, even with under-relaxation,
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the optimal asymptotic convergence rate is finite, thus the Robin-Robin algorithm can not

converge in one iteration on the two-subdomain problem.
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Figure 6-2: Optimization of asymptotic wave number

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
x

C
o

n
v
e

rg
e

n
c
e

 R
a

te

 

 

M
y
 = 0.0

M
y
 = 0.1

M
y
 = 0.2

M
y
 = 0.3

M
y
 = 0.4

M
y
 = 0.5

M
y
 = 0.6

Figure 6-3: Minimum asymptotic convergence rate

Figure 6-4 plots both analytical and discrete convergence rate as a function of ξ for

Mx = 0.05 and My = 0.0 for a range of z = [−0.4,−0.3]. The optimal analytic value is

zopt,1 = −0.32. The analytical results show that for z = −0.32 a convergence rate of zero

is achieved as ξ → ∞. Unfortunately, in the discrete case the convergence rate at higher

frequencies is dominated by the convergence rate of the under-resolved modes. Thus the

optimal asymptotic convergence rate is not achieved. In the discrete setting the optimal
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value of z appears to be approximately −0.36. It is interesting to note that for z ≤ −0.36

the convergence rate of the under-resolved modes is better than the analytic asymptotic

convergence rate. While for z > −0.36 the convergence rate of the under-resolved modes is

generally worse than the asymptotic value.
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Figure 6-4: Convergence rate for different z, for M = 0.05, CFLH = 100

In order to assess the behaviour of the Robin-Robin algorithm in a more general problem,

a numerical experiment was performed on the two subdomain problem where the initial

solution error is a Gaussian. Figure 6-5 plots the convergence rate as a function of z. A

value of z = −0.34 gives best convergence rate, which matches well with the value of z which

minimizes the discrete asymptotic convergence rate in Figure 6-4. Thus simply minimizing

the asymptotic convergence rate may be sufficient to guarantee good performance of the

Robin-Robin algorithm.

As the convergence rate at any flow condition is actually dominated by the maximum

convergence rate over all frequencies, a second optimization problem is considered in which

the optimal zopt,2 and ωopt,2 are given by the solution of the following min-max problem:

(zopt,2, zopt,2) = arg min
z,ω

[
max
ξ
ρ(T (ξ))

]
. (6.20)

In practice, is not possible to perform the maximization problem over all wave numbers,

and the optimization problem is performed over 20 discrete wave numbers in the range

(10−2, 102).
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Figure 6-5: Convergence rate for different z, for M = 0.05, CFLH = 100

Figure 6-6 plots the optimal values zopt,2 and ωopt,2 as a function of Mx and My. Qualita-

tively, (zopt,2, ωopt,2) behave similarly to (zopt,1, ωopt,1) for Mx <
1
3 . At higher Mach number,

the analytical convergence rate becomes limited by the convergence rate for very small wave

numbers (ξ < 10−1), resulting in a kink in the curves for zopt,2 and ωopt,2. Figure 6-7 plots

the convergence rate using z = 0 and z = zopt. For z = 0 an optimal choice of the under-

relaxation parameter is determined by solving a similar max-min problem as (6.20). The

optimized interface conditions lead to significantly improved performance for Mx <
1
3 , while

the performance gains are less significant for larger Mach numbers. Particularly, unlike the

basic Robin interface condition, the convergence rate using the optimized interface condition

does not approach unity in the limit as Mx → 0.

In practice, the BDDC algorithm is not applied as a Richardson iteration, but instead as

a preconditioner to GMRES. The performance of the optimized Robin interface condition

is assessed in the discrete setting by solving a simple linearized Euler model problem in the

domain Ω = [0, 1]2 with homogeneous Dirichlet boundary conditions starting from a random

initial condition. The domain is partitioned into four vertical strips and solved with BDDC

preconditioned GMRES. An optimal value, zopt, is obtained by minimizing the l2 norm of the

residual after 10 GMRES iterations, averaging over four different initial random conditions.

Figure 6-8 plots the optimal value, zopt as a function of Mx and My. The optimal z from

the contour plots shows the same qualitative behaviour as zopt,1 and zopt,2.

Figure 6-9 plots the corresponding reduction in the residual after 10 GMRES iterations
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Figure 6-6: Optimization over all wave numbers
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Figure 6-7: Convergence rate using optimized interface conditions
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Figure 6-8: Discrete optimization of z

using z = 0 and the optimal z. For small Mx, using the optimized interface conditions result

in a significant improvement in the convergence rate. On the other hand, for larger Mx

and My = 0.5, z does not significantly affect the convergence behaviour, which matches the

analytical behaviour observed in Figure 6-7.

In order to provide a better understanding of the optimized Robin-Robin interface con-

dition, the effect of the optimized interface condition is shown graphically. Figure 6-10(a)

plots W1 of the exact solution of an Euler problem in Ω = [0, 1]2 with homogeneous bound-

ary conditions and a Gaussian source at (0.1, 0.5). The domain is partitioned into 4 strips

and a single iteration of the BDDC algorithm is used starting from zero initial condition.

Figure 6-10(b) gives the solution after a single iteration using the basic Robin interface

condition (z = 0), while Figure 6-10(c) gives the corresponding solution after one iteration

with z = −0.40, which corresponds to the value of z which minimizes the residual after 10

GMRES iterations. Using the basic interface conditions, the solution is poorly represented

in the all but the left-most domain. However, using the optimized conditions, the BDDC

algorithm is able to propagate the disturbance two subdomains in a single iteration.
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Figure 6-9: Residual reduction for linearized Euler problem after 10 GMRES
iterations

(a) Exact Solution (b) z = 0.00 (c) z = zopt = −0.40

Figure 6-10: Solution after one application of the BDDC preconditioner
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6.5 Numerical Results

In this section numerical results are presented for two simple 2D model problems.

Linearized Euler Model Problem

In the first model problem, the steady linearized Euler equations are solved on the unit

domain Ω = [0, 1]2 linearizing about a uniform flow with M = 0.2. A source function and

boundary conditions are specified such that the exact solution is given by:

W =




sin(πx) cos(πy)

cos(πx) sin(πy)

e
− y√

x

1− e−
y√
x



. (6.21)

The linearized Euler problem is solved on the set of isotropic structured meshes presented

in Chapter 3. The performance of the BDDC preconditioner with and without optimized

interface conditions is compared with the ASM and ASMA preconditioners developed in

Chapter 3. The relative performance of the different preconditioning algorithms is assessed

in terms of the number of local linear solves required to reduce the l2-norm of the residual

by a factor of 103. Figure 6-11 plots the number of local linear solves required to solve the

linearized Euler problem for p = 2 and p = 5 for fixed n = 512. Figure 6-12 plots the

corresponding number of linear solves for fixed N = 64. As with the convection-dominated

advection-diffusion problem, the number of iterations grows with the number of subdomains,

N . However, the number of linear solves appears to be bounded as the number of elements

per subdomain, n, increases. The ASMA preconditioner with coarse space performs some-

what better than the ASM preconditioner without coarse space. While the linearized Euler

equations are hyperbolic, the coarse space is believed to provide a benefit in controlling the

acoustic modes which exhibit an elliptic behaviour. The BDDC preconditioner with stan-

dard interface conditions performs poorly relative the ASMA preconditioner. However, using

the optimized interface conditions results in significantly improved performance, such that

the BDDC preconditioner with optimized interface conditions results in convergence in the

fewest number of local linear solves.
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Figure 6-11: Number of local linear solves for linearized Euler problem with
n = 512
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Figure 6-12: Number of local linear solves for linearized Euler problem with
N = 64
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In order to provide a better understanding of the convergence behaviour of the different

preconditioning algorithms, a second linearized Euler problem is solved with homogeneous

boundary conditions and a Gaussian forcing function near the inflow part of the domain.

The forcing function leads to a high-frequency perturbation in the solution which must be

convected downstream through the domain. Figure 6-13 shows the GMRES convergence

history for n = 512 and N = 16 and 64. As with the advection-dominated scalar problem,

the residual does not appear to converge until the high-frequency error modes have been

propagated out of the domain. However, unlike the scalar problem, the Euler system prop-

agates information in all directions due to the acoustic modes, as opposed to only along the

convective direction. Using the BDDC preconditioner with optimized interface conditions

or the ASM and ASMA preconditioners, the residual begins to drop off after 2
√
N local

linear solves. On the other hand using the standard BDDC algorithm the residual drops off

only after approximately 4
√
N local linear solves. While the residual begins to drop after a

finite number of iterations, the linearized Euler cannot converge in a finite number of itera-

tions. As predicted in Section 6.2 the convergence rate degrades with increasing number of

subdomains.
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Figure 6-13: GMRES convergence plot for linearized Euler problem with
p = 2 and n = 512
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Linearized Navier-Stokes Model Problem

In the second model problem, the steady linearized Navier-Stokes equations are solved on

the unit domain Ω = [0, 1]2 linearizing about a boundary layer flow with a Mach number

profile given by M = 0.2(1 − e−
y√
Re ) where Re is the Reynolds number. A source function

and boundary conditions are specified such that the exact solution is given by:

W =




sin(πx) cos(πy)

cos(πx) sin(πy)

e
− y√

Rex

1− e−
y√
Rex



. (6.22)

The linearized Navier-Stokes problem is solved on a set of anisotropic structured meshes

with the aspect ratio of elements at the lower surface given by 1/
√
Re.

Figures 6-14 - 6-16 plot the number of local linear solves required to reduce the l2 residual

by 103 for the linearized Navier-Stokes problem with Reynolds number Re = 106, 104 and

102, for fixed n = 512 with N ranging from 4 to 1024. For the high Reynolds number case,

Re = 106, the behaviour is similar to that with the linearized Euler problem. As the Reynolds

number is decreased, the viscous effects become more important and the performance of the

ASM preconditioner degrades relative to the ASMA and BDDC preconditioners which have

a coarse space. As the Reynolds number is decreased further, the performance of the BDDC

preconditioner degrades relative to the ASMA preconditioner.

Figure 6-17 shows the performance of the different preconditioners for fixed N = 64. In

the high Reynolds number case, Re = 106 the behaviour is again similar to the linearized

Euler problem. Namely, using any of the preconditioners the number of iterations does not

grow significantly as the number of elements per subdomain is increased. For Re = 102, the

number of linear solves required grows with increasing number of elements per subdomain.

However, the performance of the BDDC preconditioner again degrades with respect to the

ASMA preconditioner.

The degradation of the performance of the BDDC algorithm in the limit as the Reynolds

number goes to zero may be attributed to the fact that the viscosity matrix for the Navier-

Stokes system is not full rank. In the limit as the Reynolds number goes to zero, the local
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Figure 6-14: Number of local linear solves for linearized Navier-Stokes prob-
lem, Re = 106 with n = 512
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Figure 6-15: Number of local linear solves for linearized Navier-Stokes prob-
lem, Re = 104 with n = 512
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Figure 6-16: Number of local linear solves for linearized Navier-Stokes prob-
lem, Re = 102 with n = 512
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Figure 6-17: Number of local linear solves for linearized Navier-Stokes prob-
lem, with p = 2 and N = 64
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Neumann problems correspond to the bilinear form:

ai(λ, µ) =
∑

κ∈Ωi

aκ(λ, µ)

=
∑

κ∈Ωi

−〈−Kijklqjlni + Skl(ul − λl), λk〉∂κ (6.23)

Where, Kijkl is the viscosity matrix. The energy contribution of each element simplifies to:

aκ(λ, λ) = (qik,Kijklqjl)κ + 〈Skl(ul − λl), (uk − λk)〉∂κ
≥ 0 (6.24)

In the case where Kijkl is full rank aκ(λ, λ) = 0 implies qjl = 0 and ul = λl is constant.

However, in the case where Kijkl is not full rank, aκ(λ, λ) = 0 only implies that ul,xj is in

the null space of K. Hence, constraining only interface averages on subdomain boundaries

is not sufficient to ensure that the local constrained Neumann problems are well posed.

It is interesting to note that for p = 0 the null space of aκ(λ, λ) corresponds only to

constant functions. Thus for p = 0 at very small Reynolds numbers the BDDC preconditioner

behaves in the same manner as the diffusion-dominated scalar problem. Figure 6-18 and 6-

19 plot the number of local linear solves required to converge the linearized Navier-Stokes

problem with Re for p = 0 and p = 1, varying N and n respectively. For p = 0 the

number of linear solves is bounded as the number of subdomains increases using either the

BDDC or ASMA preconditioners, which matches the behaviour observed in the diffusion-

dominated scalar case. Additionally, the number of linear solves grows only weakly when

increasing the number of elements per subdomain. Similar behaviour is observed with the

ASMA preconditioner for p ≥ 1. This is in contrast to the performance of the BDDC

preconditioner which degrades relative the ASMA for p ≥ 1. Note that for this test case, the

standard and optimized BDDC algorithms perform similarly, as the convergence behaviour

is dictated by the viscous effects.
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(a) p = 0
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Figure 6-18: Number of local linear solves for linearized Navier-Stokes prob-
lem, Re = 0.01, n = 512
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Figure 6-19: Number of local linear solves for linearized Navier-Stokes prob-
lem, Re = 0.01, N = 64
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Chapter 7

Application to Aerodynamics Flows

This chapter presents numerical results using domain decomposition methods for the solution

of several fundamental aerodynamic flows. In Section 7.1 the additive Schwarz and BDDC

preconditioners are used for the solution of the HDG discretization for inviscid and laminar

viscous flows. In Section 7.2 an additive Schwarz preconditioner with and without overlap

is presented for the solution of the DG discretization of inviscid as well as both laminar and

turbulent viscous flows.

7.1 HDG Results

This section presents weak scaling results for the HDG discretization of two dimensional

aerodynamic flows. For each of test problems presented in this section an initial coarse mesh

is generated through an adaptive process, while finer meshes are obtained by refining the

grid metric and completely remeshing using BAMG [63]. The non-linear solution procedure

is started from an initial flow interpolated from a p = 0 solution on the coarsest mesh.

Pseudo-transient continuation is performed starting from an initial global CFL number of

1, which is increase by a factor of 5 after each successful non-linear update. The non-linear

solution procedure continues until the non-linear residual has been reduced to below 10−10.

At each non-linear iteration, the linear system is solved to a relative tolerance of 10−4

using preconditioned GMRES with a restart value of 200. The inexact local solvers use

an ILU(0) factorization with MDF reordering and a p = 0 correction, with the BDDC

preconditioner using the two matrix approach. Numerical results are presented with both
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(a) Mesh (b) Mach Number

Figure 7-1: Grid and flow solution for inviscid flow over NACA0012, M∞ =
0.3, α = 5.0◦, p = 5

non-optimized (z = 0) and optimized (z = zopt) Robin-Robin interface conditions. For the

optimized BDDC preconditioner, the value of z is evaluated as a function of the normal and

tangential Mach numbers at each point on the interface, using a quartic polynomial fit of

the discrete optimal z derived in Chapter 6. The appropriate interface condition is then

obtained using a transformation from characteristic variables (in the direction normal to the

interface) to the conservative variables.

NACA0012, Inviscid flow, M∞ = 0.3, α = 5.0◦

In the first test case, the inviscid flow over the NACA0012 airfoil is solved at a freestream

Mach number M∞ = 0.3 and angle of attack α = 5.0◦. Weak scaling results are presented

for p = 2 and p = 5 solutions from 4 to 512 processors. For p = 2 solutions each subdomain

has approximately 2000 elements, while for p = 5 each subdomain has approximately 500

elements. Thus, for either p = 2 or p = 5, the finest mesh problem has slightly more than

5 million degrees of freedom. Figure 7-1 gives a sample mesh with 1000 elements and plots

the Mach number for the p = 5 solution on this mesh.

Figures 7-2 and 7-3 presents the number of local linear solves and CPU time for p = 2

and p = 5 respectively. For p = 2, with small numbers of processors, the ASM, ASMA and
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Figure 7-2: Weak scaling results for inviscid flow over NACA0012, M∞ =
0.3, α = 5.0◦, p = 2, 2000 elements per subdomain

optimized BDDC preconditioner perform similarly in terms of the number of local linear

solves. However, the ASMA and BDDC preconditioners are slightly more expensive in terms

of CPU time, thus the ASM preconditioner performs the best in terms of CPU time for less

than 128 subdomains. As the number of subdomains is increased, the coarse space becomes

more important. With more than 128 processors, the ASMA preconditioner reduces both the

number of local linear solves and the CPU time relative to the ASM preconditioner. At 512

processors, both ASMA and optimized BDDC preconditioners perform similarly in terms of

CPU time, with significant improvement over the ASM preconditioner. The standard BDDC

preconditioner without optimized interface conditions performs significantly worse than the

other three preconditioners, and in fact is unable to converge the p = 2 problem on more

than 64 processors.

For p = 5, using more than 8 processors, the ASMA and optimized BDDC precondition-

ers reduce the number of local linear solves required in order to converge the linear system

relative to the ASM preconditioner without a coarse space. However, for relatively small

number of processors the ASM preconditioner is superior to the ASMA and BDDC precon-

ditioners in terms of CPU time, as the preconditioners with coarse space have the additional

cost of setting up the coarse space problem in the factorization step. As the number of

subdomains increases, the ASMA and optimized BDDC preconditioners also perform bet-

ter than the ASM preconditioner in terms of CPU time, as the additional cost of forming
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Figure 7-3: Weak scaling results for inviscid flow over NACA0012, M∞ =
0.3, α = 5.0◦, p = 5, 500 elements per subdomain

the coarse space is offset by reduced CPU time in the GMRES solve. Figure 7-4 plots the

portion of the run time spent in the residual evaluation, factorization and GMRES parts of

the solution procedure for the p = 5 solutions. The ASMA and BDDC preconditioners have

significantly larger factorization times than the ASM preconditioner, as the factorization

times for the preconditioners with coarse spaces includes the local linear solves required to

form the coarse basis functions. Early in the non-linear solution procedure, when the CFL

number is small, the number of local linear solves required to form the coarse basis functions

may be greater than the number of local solves performed during the GMRES solve. How-

ever, as the CFL number increases, and the linear system becomes more difficult to solve,

the number of linear solves required to form the coarse space is much smaller than that used

in the GMRES solve.

For small numbers of processors, the larger overhead in the factorization procedure for the

ASMA and BDDC preconditioners results in longer CPU time than the ASM preconditioner.

However, as the number of subdomains increases, the coarse space becomes more important

and the increased cost in the factorization procedure is offset by a smaller number of linear

iterations. The ASMA and optimized BDDC preconditioner perform similarly, with the

BDDC preconditioner performing slightly better with larger number of processors.
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Figure 7-4: Detailed timing for inviscid flow over NACA0012, M∞ = 0.3,
α = 5.0◦, p = 5, 500 elements per subdomain

NACA0005, M∞ = 0.2, α = 2.0◦, Rec = 5000

In the second test case, the viscous flow of over the NACA0005 airfoil is solved at a freestream

Mach number of M∞ = 0.2, angle of attack α = 2.0◦ and Reynolds number Rec = 5000.

As in the previous test case, the local inexact solver is a block-ILU(0) factorization with a

p = 0 coarse grid correction. The two matrix approach is used for the BDDC preconditioner.

Figure 7-5 plots a mesh with approximately 1000 elements and the Mach number of the p = 5

solution.

Weak scaling results are presented for higher-order p = 2 and p = 5 solutions. For p = 2

solutions, each subdomain has approximately 1000 elements, while for p = 5, each subdomain

has approximately 250 elements, such that the finest mesh problem has slightly more than

2.5 million degrees of freedom. Figures 7-6 and 7-7 plot the number of local linear solves

and CPU time for p = 2 and p = 5, respectively. For this viscous test case, the ASMA and

optimized BDDC preconditioner reduce the number of local linear solves required to converge

relative to the ASM preconditioner without coarse space even at small numbers of processors.

However, for small numbers of processors, the ASM preconditioner performs the best in

terms of CPU time, as the additional cost of the setup time for the coarse space problem

is not offset by the reduced number of linear solves during GMRES. On the other hand,

as the number of subdomains increases, the coarse space becomes more important and the

ASMA and optimized BDDC preconditioners are superior for more than 128 subdomains. As

with the previous test case, the standard BDDC preconditioner without optimized interface

conditions performs poorly and is not competitive with the other methods.
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(a) Mesh (b) Mach Number

Figure 7-5: Grid and flow solution for viscous flow over NACA0005, M∞ =
0.2, α = 2.0◦, Rec = 5000, p = 5

0 100 200 300 400 500 600
0

5000

10000

15000

Number of Subdomains

L
in

e
a
r 

S
o
lv

e
s

 

 

ASM
ASM

A

BDDC, z = 0
BDDC, z = z

opt

(a) Local Linear Solves

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Number of Subdomains

T
im

e
 (

s
)

 

 

ASM
ASM

A

BDDC, z = 0
BDDC, z = z

opt

(b) CPU Time

Figure 7-6: Weak scaling results for viscous flow over NACA0005, M∞ =
0.2, α = 2.0◦, Rec = 5000, p = 2, 1000 elements per subdomain
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Figure 7-7: Weak scaling results for viscous flow over NACA0005, M∞ =
0.2, α = 2.0◦, Rec = 5000, p = 5, 250 elements per subdomain

For both inviscid and viscous test cases the p = 2 and p = 5 solutions require ap-

proximately the same CPU time. As higher-order methods have the potential of reducing

the number of degrees of freedom required to achieve a desired error tolerance, the use of

higher-order methods may significantly reduce the computational time relative to standard

second-order methods.

7.2 DG Results

In this section an additive Schwarz preconditioner without overlap and a restricted additive

Schwarz preconditioner with overlap are presented for the DG discretization. This section

provides only a brief review of the DG discretization; a complete description may be found

in the thesis of Oliver [99].

The DG discretization is obtained by multiplying the conservation law (2.1) by test

functions w ∈W p
h and integrating by parts. The weak form is: Find u ∈W p

h such that

Rh(u,w) = 0, ∀w ∈W p
h , (7.1)

where

Rh(u,w) = Rh,I(u,w) +Rh,V (u,w) +Rh,S(u,w), (7.2)
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and Rh,I(u,w), Rh,V (u,w) and Rh,S(u,w) denote respectively the inviscid, viscous and

source terms of the discretization. In this work the inviscid discretization uses the Roe

flux [107], while the viscous discretization uses the second method of Bassi and Rebay

[14, 15]. Source terms which are functions of the gradient of the state are evaluated us-

ing the asymptotically dual consistent formulation of Oliver [99]. The DG discretization is

solved using the same pseudo-transient continuation scheme as for the HDG discretization.

At each non-linear iteration a linear system of the form

Ax = b, (7.3)

is solved for the solution update, x = ∆u. The system A has a block structure with each

block row/column corresponding to degrees of freedom on a single element. Additionally,

the DG discretization maintains a nearest neighbor stencil, such that each element is coupled

only to those elements with which it shares a common face.

Consider a decomposition of the domain Ω into N , non-overlapping subdomains Ωi con-

sisting of the union of elements in T , such that each element κ is associated a single subdo-

main. Denote by R(i) the restriction operator which extracts degrees of freedom on Ωi from

those on all of Ω. A non-overlapping additive Schwarz preconditioner for (7.3) is given by:

M−1
BJ =

N∑

i=1

R(i)TA−1
i R(i), (7.4)

where Ai = R(i)AR(i)T . The subscript BJ is used to denote this preconditioner as the non-

overlapping additive Schwarz preconditioner corresponds to a subdomain-wise block-Jacobi

preconditioner. The local solves involving the action of A−1
i correspond to the solution of a

Dirichlet problem in Ωi with fixed solution on neighboring subdomains Ωj . The application of

this preconditioner involves no communication as the local residuals and solves are performed

independently on each subdomain.

In order to define an overlapping preconditioner denote by Ω
′
i the region obtained by

extending each subdomain Ωi by a single element across each face on ∂Ωi. Denote by R
(i)
δ

the restriction operator which extracts degrees of freedom on Ω
′
i from those on all of Ω. The
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standard overlapping additive Schwarz preconditioner may be written as:

M−1
ASM =

N∑

i=1

R
(i)T

δ A−1
i,δR

(i)
δ , (7.5)

where Ai,δ = R
(i)
δ AR

(i)T

δ . This preconditioner involves the solution of N independent Dirich-

let problems on the overlapping regions Ω
′
i. Note that each application of this preconditioner

involves two communication steps: first in the residual assembly step ( i.e the action of R(i)
δ )

and second in the solution update step ( the action of R(i)T

δ ). In this work a restricted

additive Schwarz preconditioner is used which allows communication only in the residual

assembly step. In order to define the restricted additive Schwarz preconditioner a third

restriction operator R(i)
0 is defined which extends R(i) by zeros to the overlapping region Ω

′
i.

The restricted additive Schwarz preconditioner is given by:

M−1
RAS =

N∑

i=1

R
(i)T

0 A−1
i,δR

(i)
δ . (7.6)

The action of this preconditioner corresponds to solving N Dirichlet problem on the overlap-

ping regions Ω
′
i, while only updating the local part of the solution corresponding to elements

in Ωi. The restricted additive Schwarz preconditioner has been shown to decrease both

the communication cost as well as the number of iterations required to converge relative to

the standard additive Schwarz preconditioner for a finite volume discretization of inviscid

compressible flows [33, 35].

The remainder of this section presents weak scaling results for the DG discretization of

two dimensional flows. The non-linear solution procedure used for these test cases is the

same as those for the results using the HDG discretization.

NACA0012, Inviscid flow, M∞ = 0.3, α = 5.0◦

In the first test case, the inviscid flow over the NACA0012 airfoil is solved at freestream

Mach number M∞ = 0.3 and angle of attack α = 5.0◦. Weak scaling results are presented

for higher-order p = 2 and p = 5 solutions from 4 to 512 processors. For p = 2 solutions

each subdomain has approximately 2000 elements, while for p = 5 each subdomain has

approximately 500 elements. Figures 7-8 and 7-9 presents the number of local linear solves

135



0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Subdomains

L
in

e
a
r 

S
o
lv

e
s

 

 

BJ

RAS

(a) Local Linear Solves

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Subdomains

T
im

e
 (

s
)

 

 

BJ

RAS

(b) CPU Time

Figure 7-8: Weak scaling results for inviscid flow over NACA0012, M∞ =
0.3, α = 5.0◦, p = 2, 2000 elements per subdomain

and CPU time for p = 2 and p = 5 respectively.

For both p = 2 and p = 5 the restricted additive Schwarz preconditioner performs

significantly better than the subdomain-wise block-Jacobi preconditioner. Using more than

32 processors, the block-Jacobi preconditioner is unable to sufficiently solve the linear system

at each Newton iteration in order to converge the non-linear problem. On the other hand,

the restricted additive Schwarz preconditioner is able to converge the non-linear problem

with up to 512 processors. However, both the number of iterations and the CPU time grows

with increasing number of subdomains. Thus, a coarse space may be necessary when a larger

number of processors is used.

NACA0005, M∞ = 0.2, α = 2.0◦, Rec = 5000

In the second test case, the viscous flow of over the NACA0005 airfoil is solved at a freestream

Mach number of M∞ = 0.2, angle of attack α = 2.0◦ and Reynolds number Rec = 5000.

As in the previous test case, the local inexact solver is a block-ILU(0) factorization with a

p = 0 coarse grid correction.

Weak scaling results are presented for higher-order p = 2 and p = 5 solutions. For p = 2

solutions, each subdomain has approximately 1000 elements, while for p = 5, each subdo-

main has approximately 250 elements. Figures 7-10 and 7-11 plot the number of local linear

solves and CPU time for p = 2 and p = 5, respectively. Once again, the restricted additive
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Figure 7-9: Weak scaling results for inviscid flow over NACA0012, M∞ =
0.3, α = 5.0◦, p = 5, 500 elements per subdomain

Schwarz preconditioner performs significantly better than the non-overlapping block-Jacobi

preconditioner. In particular the subdomain-wise block-Jacobi is unable to converge this

problem on more that 8 processors. As with the previous test case, the number of itera-

tions using the restricted additive Schwarz preconditioner grows with increasing number of

subdomains.

RAE2822, RANS-SA, M∞ = 0.3, α = 2.31◦, Rec = 6.5× 106

In the third test case, the subsonic turbulent flow is solved over the RAE2822 airfoil at a Mach

number M∞ = 0.3, angle of attack α = 2.31◦ and Reynolds number Rec = 6.5×106. The flow

is solved using the Reynolds-Averaged Navier-Stokes equations with the Spalart-Allmaras

turbulence model in the fully turbulent mode [114, 115]. Details of the DG discretization of

the RANS-SA equations may be found in the thesis of Oliver [99]. Figure 7-12 plots a mesh

with 1000 elements and the corresponding eddy viscosity for the p = 2 solution.

The introduction of the turbulence model results in a system of equations which are

highly nonlinear. In order to ensure the convergence of the non-linear solution procedure,

the initial global CFL number is set to 10−2 and is allowed to increase by a factor of 2

each successful solution update. Additionally, a line-search is introduced to ensure that the

pseudo-unsteady residual decreases in each non-linear iteration [66].

Strong scaling results are presented in order to assess the performance of the additive
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Figure 7-10: Weak scaling results for viscous flow over NACA0005, M∞ =
0.2, α = 2.0◦, Rec = 5000, p = 2, 1000 elements per subdomain
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Figure 7-11: Weak scaling results for viscous flow over NACA0005, M∞ =
0.2, α = 2.0◦, Rec = 5000, p = 5, 250 elements per subdomain
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(a) Mesh (b) Eddy Viscosity

Figure 7-12: Grid and flow solution for turbulent flow over RAE2822,
M∞ = 0.3, α = 2.31◦, Rec = 6.5× 106, p = 2

Schwarz preconditioners on small numbers of processors. As a test problem a single iter-

ation of a fixed degree of freedom adjoint-based error estimation/adaptation procedure is

performed [92]. A single iteration of the adaptation procedure involves a flow solution and

linear adjoint solve at p = 2, and 10 Newton iterations at p = 3 followed by a p = 3 adjoint

solve. At each iteration of the non-linear solution procedure the linear system is solved to

a relative tolerance of 10−4, while the linear adjoint problems are solved to a tolerance of

10−10.

Figure 7-13 shows the number of linear iterations required throughout the solution proce-

dure as well as the parallel speed-up for meshes with 1000, 4000 and 16000 elements. As with

the previous test cases, the restricted additive Schwarz preconditioner performs superiorly to

the subdomain-wise block Jacobi preconditioner. Both preconditioners show an increase in

the number of linear iterations required to achieve convergence as the number of subdomains

increases. However, the increase in the number of linear iterations is much more severe using

subdomain-wise block-Jacobi preconditioner than the restricted additive Schwarz precondi-

tioner. In particular, using the subdomain-wise block-Jacobi preconditioner the number of

iterations jumps by a factor of two going from 1 to 2 processors. The increase in the number

of linear iterations is reflected in the reduced parallel speed-up using the subdomain-wise
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block-Jacobi preconditioner such that the parallel efficiency (Speed-Up/#Processors) on the

16000 element grid is less than 50%. On the other hand, using the restricted additive Schwarz

preconditioner a parallel efficiency of greater that 75% is observed using up to 30 processors.

Finally, weak scaling results are presented for the RAE2822 test case. Figure 7-14 plots

the number of local linear solves and CPU time required to obtain a p = 2 solution with

approximately 1000 elements per subdomain. As in the previous test cases, the restricted

additive Schwarz preconditioner performs better than the non-overlapping block-Jacobi pre-

conditioner. Using either preconditioner the number of iterations grows with increasing

number of subdomains. However, the growth in the number of iterations is less for this

test case than in the previous test cases. This is likely due to the fact that a much less

aggressive pseudo-transient continuation scheme is used resulting in many more non-linear

iterations, but which are easier to solve due to the large temporal component added to the

linear system. It is interesting to note that both the number of iterations and CPU time

decreases going from 2 to 4 processors. This reduction in CPU time is attributable to a sig-

nificant reduction in non-linear iterations as the solution procedure has difficulty obtaining

a steady-state solution on the coarsest mesh, due to insufficient resolution on this mesh.
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Figure 7-13: Strong scaling results for turbulent flow over RAE2822,
M∞ = 0.3, α = 2.31◦, Rec = 6.5 × 106, p = 2 adaptation
step
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Figure 7-14: Weak scaling results for turbulent flow over RAE2822,
M∞ = 0.3, α = 2.31◦, Rec = 6.5 × 106, p = 2, 1000 ele-
ments per subdomain
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Chapter 8

Conclusions

8.1 Summary and Conclusions

This thesis presented domain decomposition preconditioners for the solution of higher-order

discretizations of compressible flows.

In Chapter 3, an additive Schwarz preconditioner was developed with coarse space based

on local harmonic extensions. Using several scalar model problems it was shown that a

coarse space is necessary for high Peclet number flows solved on anisotropic meshes.

In Chapter 4, a BDDC preconditioner was developed for the HDG discretization. For a

second-order elliptic problem, it was proven that the condition number of the preconditioned

system is independent of the number of subdomains and only weakly dependent upon the

number of elements per subdomain and the solution order. Using a Robin-Robin interface

condition, the BDDC preconditioner was extended to the solution of a scalar advection-

diffusion problem. Numerical results show that the BDDC preconditioner performs superi-

orly to the additive Schwarz preconditioners with or without coarse space for the solution of

high Peclet number flows on unstructured anisotropic meshes.

In Chapter 5, an inexact BDDC preconditioner was developed based on an incomplete

factorization and a p-multigrid type coarse grid correction. It was shown that the incom-

plete factorization of possibly singular systems corresponding to local Neumann problems

results in a non-singular preconditioner. Numerical results show that the inexact BDDC

preconditioner with well-designed local solvers converges in similar number of iterations as

the exact BDDC method, with significantly reduced CPU time.
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Chapter 6 presented analysis of domain decomposition preconditioners for the linearized

Euler and Navier-Stokes systems. A one-dimensional analysis showed that domain decom-

position methods do not converge in a finite number of iterations for the hyperbolic Euler

system if reflecting boundary conditions are imposed at domain boundaries. A Fourier anal-

ysis was presented to analyze the performance of the Robin-Robin algorithm for the Euler

system. Optimized interface conditions were developed in the analytical and discrete setting

by coupling the two acoustic modes. Numerical results showed the optimized interface con-

dition resulted in significant improvements in the performance of the BDDC preconditioner.

For inviscid and high-Reynolds number flows the BDDC preconditioner performed similarly

to the additive Schwarz preconditioner with coarse space. It was shown that for very low

Reynolds number flows, the performance of the BDDC preconditioner degrades due to the

viscous matrix being rank deficient.

In Chapter 7, numerical results were presented to evaluate the performance of the ad-

ditive Schwarz and BDDC preconditioners for several fundamental aerodynamic flows. The

numerical results presented showed that a coarse space becomes important as the number

of subdomains is increased. For small numbers of subdomains, the use of the ASMA and

optimized BDDC preconditioners is not justified, as the additional cost of the factorization

is not offset by reduced time in the GMRES solve. As the number of subdomain is increased,

the coarse space becomes more important and ASMA and optimized BDDC preconditioners

with coarse spaces perform better than the ASM preconditioner. In general, the ASMA and

optimized BDDC preconditioners perform similarly for most test cases. Thus the optimized

BDDC preconditioner may be seen as an alternative approach to the ASMA approach.

Chapter 7 also presented numerical results for the DG discretization using additive

Schwarz preconditioners with and without overlap. The numerical results showed that an

overlap consisting only of a single layer of elements results in significantly improved parallel

performance over the non-overlapping case. The performance of the overlapping precon-

ditioner degrades as the number of processors becomes large and a coarse space may be

necessary for large numbers of processors:
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8.2 Recommendations and Future Work

While the BDDC algorithm has shown significant benefit for scalar advection-diffusion prob-

lems solved on structured meshes, the performance for the Euler and Navier-Stokes systems

on unstructured anisotropic meshes has been much less satisfactory despite the effort to

optimized the interface conditions. Several issues need to be resolved before BDDC may be

considered sufficiently mature to be used for practical aerodynamic simulations.

Unstructured Anisotropic Meshes

Each of the different domain decomposition methods presented performed significantly worse

for problems involving unstructured anisotropic meshes as compared with structured meshes.

As the performance degradation was observed even for scalar advection-diffusion problems,

initial investigation into the root causes of the loss in performance due to unstructured

meshes should focus on the scalar case.

Optimized Interface Conditions

The optimized interface conditions for the Euler system has been shown empirically to

improve the convergence of the BDDC algorithm. However, a complete understanding of

the mechanism by which the optimized interface conditions improve the transmission of

information across subdomain interfaces is still required. A more complete understanding

of the optimized interface conditions may allow for the simple extension of these conditions

to the three-dimensional Euler equations, as well as to other hyperbolic systems.

Rank-deficient Viscous Problems

In the low Reynolds number limit the performance of the BDDC algorithm degrades relative

to the ASMA preconditioner. This degradation in performance was attributed to the rank-

deficiency of the viscous tensor for the Navier-Stokes equations. Further work is required in

order to develop and analyze methods for these incompletely parabolic systems.
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BDDC for DG

While the BDDC algorithm has been extended to a large class of DG discretizations for

second order elliptic problems, the BDDC algorithm has yet to be successfully applied to

the solution of the DG discretization of convection-dominated flows. In particular, future

work is required in order to extend the BDDC algorithm to the solution of DG discretizations

of the scalar advection-diffusion equations.
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Appendix A

2D Euler Analysis: Infinite Domain

In this section Fourier analysis is used to estimate the convergence rate of the Robin-Robin

algorithm in the case of two infinite subdomains. The basic Robin-Robin algorithm is shown

to be equivalent to two iterations of the classical Schwarz algorithm.

After performing a Fourier transform the linearized Euler equations, (6.15), gives a sys-

tem of ODEs of the form:

dW̃

dx
+ ÃW̃ = 0, (A.1)

with

Ã =




a
Mx−1 0 0 iξ

(Mx−1)
√

2

0 a
Mx+1 0 iξ

(Mx+1)
√

2

0 0 a
Mx

0
iξ

Mx

√
2

iξ

Mx

√
2

0 a
Mx



, (A.2)

where ξ = c∆tξ̂, b = 1
c∆t and a = b + iξMy. This system has an eigenvalue decomposition

Ã = XΛ̃X−1 with eigenvalues:

µ1,2 =
−aMx ∓R

1−M2
x

, (A.3)

µ3,4 =
a

Mx
, (A.4)
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and eigenvectors:

X =




| | | |
X1 X2 X3 X4

| | | |


 =




− (R+a)(1+Mx)√
2

(R−a)(1+Mx)√
2

0 − iξMx√
2

(R−a)(1−Mx)√
2

− (R+a)(1−Mx)√
2

0 iξMx√
2

0 0 1 0

iξ(1−M2
x) iξ(1−M2

x) 0 a



,(A.5)

with R =
√
a2 + ξ2(1−M2

x). Thus the solution may be expressed as:

W̃ =
4∑

j=1

e−µjxαjXj . (A.6)

Consider a partition R2 into two non-overlapping domains: Ω1 = (−∞, 0] × R and Ω2 =

[0,∞)×R. The Robin-Robin algorithm to solve for, Ŵ , the state on the interface at x = 0,

is given by:

Dirichlet Solve:

Ωi :





dW̃k
i

dx + ÃW̃ k
i = 0 in Ωi,

Λ−niW̃
k
i = Λ−niŴ

k at x = 0,

Robin Solve:

Ωi :





dṼ ki
dx + ÃṼ k

i = 0 in Ωi,

Λ−ni Ṽ
k
i = Λ−ni V̂

k
i at x = 0,

1
2Λni V̂

k
i + |Λni |(Ṽ k

i − V̂ k
i ) = −1

2 |Λni |
(
W̃ k

1 + W̃ k
2 − 2Ŵ k

)
at x = 0,

Update: Ŵ k+1 = Ŵ k +
1
2

(
V̂ k

1 + V̂ k
2

)
. (A.7)

Using the eigenvalue decomposition, Ŵ k and V̂ k
i may be expressed as:

Ŵ k =
4∑

j=1

α̂kjXj and V̂ k
i =

4∑

j=1

γ̂ki,jXj . (A.8)

Similarly, W̃ k
i and Ṽ k

i and may be expressed in terms of the eigenvalue decomposition. How-

ever, to ensure the solution remains bounded as x→ ±∞, only the upstream characteristic

is allowed to be non-zero in Ω1 while only downstream characteristics are non-zero in Ω2.
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Namely,

W̃ k
1 = αk1,1e

−λ1xXj , W̃ k
2 =

4∑

j=2

αk2,je
−λjxXj ,

Ṽ k
1 = γk1,1e

−λ1xXj , Ṽ k
2 =

4∑

j=2

γk2,je
−λjxXj .

Solving for the coefficients αi,j from the Dirichlet step gives:




αk1,1

αk2,2

αk2,3

αk2,4




=




1 − (R−a)
(R+a) 0 iξMx

(R+a)(1+Mx)

− (R−a)(a+MxR)
(R+a)(a−MxR) 1 0 0

0 0 1 0
2iξR(1−M2

x)(1−Mx)
(R+a)(a−MxR) 0 0 1







α̂k1

α̂k2

α̂k3

α̂k4



. (A.9)

Combining the Robin solve and the solution update gives an iteration matrix of the form:




α̂k+1
1

α̂k+1
2

α̂k+1
3

α̂k+1
4




=




T11 0 0 0

0 T22 0 T24

0 0 0 0

0 T42 0 T44







α̂k1

α̂k2

α̂k3

α̂k4



, (A.10)

with

T11 =
(R+ a)(R(1− 3Mx)− a(1 +Mx))

(R+ a)2(1 +Mx)
, (A.11)

T22 =
(R+ a)(R(1− 3Mx)− a(1 +Mx))

(R+ a)2(1 +Mx)
, (A.12)

T24 =
iξMx(ξ2Mx(1 +Mx)− a2 +Ra)

(R+ a)(1 +Mx)(R+ a)(ξ2Mx(1 +Mx)− a2 −Ra)
, (A.13)

T42 =
2iξR(R− a)(1−M2

x)
(R+ a)(ξ2Mx(1 +Mx)− a2 −Ra)

, (A.14)

T44 =
2ξ2MxR(1−Mx)

(R+ a)(ξ2Mx(1 +Mx)− a2 −Ra)
. (A.15)

From (A.10) it is easily verified that the entropy equation (corresponding to the third row)

has zero error after one iteration of the Robin-Robin algorithm. Additionally the iteration

matrix T is identical to the iteration matrix corresponding to two steps of the classical
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Schwarz algorithm without overlap [49]. The corresponding spectral radius of T is:

ρ(T ) =
(R+ a)(R(1− 3Mx)− a(1 +Mx))

(R+ a)2(1 +Mx)
. (A.16)

From [49], ρ(T ) < 1, thus Robin-Robin algorithm converges. As the expression (A.16)

is quite complex, the convergence rate is plotted versus non-dimensional wave number to

provide a better understanding of the convergence rate of the Robin-Robin algorithm. Fig-

ure A-1 plots the convergence rate versus non-dimensional wave number varying Mx with

My = 0 and My = 0.5. As ξ → ∞, the convergence rate approaches a constant value inde-

pendent of ξ. It is interesting to note that for Mx = 1
3 and My = 0 the asymptotic value of

the convergence rate is zero, implying that convergence of those error modes is achieved in

one iteration.
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Figure A-1: Analytical convergence rate versus wave number, ξ using basic
Robin-Robin algorithm on two infinite domains

The convergence rate at any particular flow condition is given by the maximum conver-

gence rate over all wave numbers. Figure A-2 plots the maximum convergence versus Mx

for different values of My. The convergence rate degrades significantly for very small Mx,

with the convergence rate approaching 1 in the limit as Mx → 0. Similarly, the convergence

rate approaches 1 as M → 1.
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Figure A-2: Analytical convergence rate vs Mx using basic Robin-Robin al-
gorithm on two infinite domains
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Appendix B

BDDC for DG Discretizations

In this chapter the BDDC preconditioner is extended to the DG discretization of a second

order elliptic problem. A key component for the development and analysis of the BDDC

algorithm is a novel perspective presenting the DG discretization as the sum of element-

wise “local” bilinear forms. The element-wise perspective leads naturally to the appropriate

choice for the subdomain-wise local bilinear forms. Additionally, this new perspective enables

a connection to be drawn between the DG discretization and a related continuous finite

element discretization. By exploiting this connection, the condition number bound of κ ≤
C(1 + log(p2H/h))2 is proven for the BDDC preconditioned system for a large class of

conservative and consistent DG methods considered in the unified analysis of Arnold et al.

[8]

Section B.1 gives a classical presentation of the DG discretization. Section B.2 presents

the new perspective on the DG discretization. Section B.3 presents the domain decompo-

sition strategy and defines the constraints for the BDDC algorithm. The analysis of the

BDDC algorithm in presented in Section B.4, while Section B.5 presents numerical results

confirming the analysis.
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B.1 DG Discretization

Consider the following second order elliptic equation in a domain Ω ⊂ Rd, d = 2, 3.

−∇ · (µ∇u) = f in Ω,

u = 0 on ∂Ω, (B.1)

with positive µ > 0 ∈ L∞(Ω), f ∈ L2(Ω). Rewrite (B.1) to obtain the following first order

system of equations:

µ−1q +∇u = 0

∇ · q = f in Ω,

u = 0 on ∂Ω. (B.2)

Given the triangulation Th define the following finite element spaces:

Vp
h := {vh ∈

(
L2(Ω)

)d : vh|κ ∈ (Pp(κ))d ∀κ ∈ Ω}, (B.3)

W p
h := {wh ∈ L2(Ω) : wh|κ ∈ Pp(κ) ∀κ ∈ Ω}. (B.4)

Note that traces of functions uh ∈W p
h are in general double valued on each edge, e ∈ E i, with

values u+
h and u−h corresponding to traces from elements κ+ and κ− respectively. On e ∈ E∂ ,

associate u+
h with the trace taken from the element, κ+ ∈ Th, neighbouring e. Consider the

following weak form of (B.2): Find (qh, uh) ∈ Vp
h ×W

p
h such that for all κ ∈ Th,

(µ−1qh, vh)κ − (uh,∇ · vh)κ +
〈
ûhn

+, v+
h

〉
∂κ

= 0 ∀vh ∈ (Pp(κ))d , (B.5)

−(qh,∇wh)κ +
〈
q̂h, w

+
h n

+
〉
∂κ

= (f, wh)κ ∀wh ∈ Pp(κ), (B.6)

where (·, ·)κ :=
∫
κ and 〈·, ·〉∂κ :=

∫
∂κ. Superscript + is used to explicitly denote values on

∂κ, taken from κ. For all wh ∈ W p
h , ŵh = ŵh(w+

h , w
−
h ) is a single valued numerical trace

on e ∈ E i, while ŵh = 0 for e ∈ E∂ . Note that ûh = 0 on e ∈ E∂ , corresponds to weakly

enforced homogeneous boundary conditions on ∂Ω. Similarly q̂ = q̂(∇u+
h ,∇u−h , u+

h , u
−
h ) is a
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single valued numerical flux on e ∈ E . Using integration by parts on (B.5) gives

(µ−1qh, vh)κ + (∇uh, vh)κ −
〈
(u+
h − ûh)n+, v+

h

〉
∂κ

= 0 ∀vh ∈ (Pp(κ))d , (B.7)

such that qh may be eliminated locally on each element to give:

qh = −µ(∇uh − rκ((u+
h − ûh)n+)), (B.8)

where rκ(φ) ∈ (Pp(κ))d is defined by:

(rκ(φ), vh)κ =
〈
φ, v+

h

〉
∂κ

∀vh ∈ (Pp(κ))d . (B.9)

Replacing vh with ∇wh and substituting into (B.6) gives the primal formulation

(µ∇uh,∇wh)κ −
〈
µ(u+

h − ûh)n+,∇w+
h

〉
∂κ

+
〈
q̂h, w

+
h n

+
〉
∂κ

= (f, wh)κ ∀wh ∈ Pp(κ).

(B.10)

Summing over all elements gives the complete DG discretization: Find uh ∈W p
h such that

a(uh, wh) = (f, wh)Ω ∀wh ∈W p
h . (B.11)

The choice of the numerical trace ûh and flux q̂h define the particular DG method considered.

Table B.1 lists the numerical traces and fluxes for the DG methods considered. In the

definition of the different DG methods, the following average and jump operators are used

to define the numerical trace and flux on e ∈ E i:

{uh} =
1
2

(u+
h + u−h ) and JuhK = u+

h n
+ + u−h n

−. (B.12)

Additionally, define a second set of jump operators involving the numerical trace û:

JuhK+ = u+
h n

+ + ûhn
− and JuhK− = ûhn

+ + u−h n
−, (B.13)
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such that qh may be expressed as:

qh = −µ(∇uh − rκ(JuhK+)). (B.14)

Method ûh −µ−1q̂h
Interior Penalty {uh} {∇uh} − ηe

2h JuhK
Bassi and Rebay [13] {uh} {∇uh} − ηe

{
re(JuhK±)

}

Brezzi et al. [23] {uh} {qh} − ηe
{
re(JuhK±)

}

LDG [38] {uh} − β · JuhK {qh}+ β JqhK− ηe
h JuhK

CDG [101] {uh} − β · JuhK {qeh}+ β JqehK− ηe
h JuhK

Table B.1: Numerical fluxes for different DG methods

Note that in the definition of the different DG methods, ηe is a penalty parameter defined

on each edge in E , while re(φ) ∈ (Pp(κ))d is a local lifting operator defined by:

(re(φ), vh)κ =
〈
φ, v+

h

〉
e

∀vh ∈ (Pp(κ))d . (B.15)

Additionally qe is given by:

qeh = −µ(∇uh − re(JuK+)). (B.16)

For the Local Discontinuous Galerkin (LDG) and Compact Discontinuous Galerkin (CDG)

methods, β is a vector which is defined on each edge in E i as

β =
1
2

(
Sκ
−
κ+n

+ + Sκ
+

κ−n
−
)
, (B.17)

where Sκ
−
κ+ ∈ {0, 1} is a switch defined on each face of element κ+ shared with element κ−,

such that

Sκ
−
κ+ + Sκ

+

κ− = 1. (B.18)
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B.2 The DG discretization from a new perspective

A key component, required for the development and analysis of the BDDC algorithm pre-

sented, is to express the global bilinear form a(uh, wh) as the sum of element-wise contribu-

tions aκ(uh, wh) such that

a(uh, wh) =
∑

κ∈T
aκ(uh, wh), (B.19)

where aκ(uh, wh) is a symmetric, positive semi-definite “local bilinear form”. In particular,

the local bilinear form must have a compact stencil, such that aκ(uh, wh) is a function of

only uh, ∇uh in κ, and u+
h , ∇u+

h and ûh on ∂κ. In particular, note that in (B.10), which

is summed over all elements to give a(uh, wh), q̂ depends in general upon u+, u−, ∇u+ and

∇u−. The local bilinear form is written as:

aκ(uh, wh) = (µ∇uh,∇wh)κ −
〈
µ(u+

h − ûh)n+,∇w+
h

〉
∂κ

+
〈
q̂+
h , (w

+
h − ŵh)n+

〉
∂κ

= (µ∇uh,∇wh)κ −
〈
µ JuK+

h ,∇w+
h

〉
∂κ

+
〈
q̂+
h , JwhK

+〉
∂κ
, (B.20)

where q̂+
h = q̂+

h (∇u+
h , u

+
h , ûh) is a “local numerical flux”. In particular, in order to recover

the original global bilinear form, q̂±h must satisfy the following relationship on each edge, e:

q̂h JwhK = q̂+
h JwhK+ + q̂−h JwhK− ∀wh ∈W p

h . (B.21)

Table B.2 lists the numerical traces and local fluxes for the DG methods considered, while

Table B.3 lists the corresponding local bilinear forms. It is simple to verify that (B.21) holds

for each of the DG methods considered by using the identities:

JuhK = JuhK+ + JuhK− ,



JuhK+ = JuhK− = 1
2 JuhK if ûh = {uh} ,

JuhK+ = JuhK , JuhK− = 0 if ûh = {uh} − β JuhK and Sκ
−
κ+ = 1,

JuhK+ = 0, JuhK− = JuhK if ûh = {uh} − β JuhK and Sκ
−
κ+ = 0.

Consider using a nodal basis on each element κ to define W p
h . Figure B-1 shows the

degrees of freedom involve in the local bilinear form, aκ(uh, wh). For the Interior Penalty

167



Method ûh −µ−1q̂+
h

Interior Penalty {uh} ∇u+
h − ηe

h JuhK+

Bassi and Rebay [13] {uh} ∇u+
h − ηere(JuhK

+)
Brezzi et al. [23] {uh} q+

h − ηere(JuhK
+)

LDG [38] {uh} − β · JuhK q+
h − ηe

h JuhK+

CDG [101] {uh} − β · JuhK qe+h − ηe
h JuhK+

Table B.2: Numerical fluxes for different DG methods

Method aκ(uh, wh)
Interior Penalty g +

∑
e∈∂κ

ηe
he

〈
µ JuhK+ , JwhK+〉

e

Bassi and Rebay [13] g +
∑

e∈∂κ ηe
(
µre(JuhK+), re(JwhK+)

)
κ

Brezzi et al. [23] g +
(
µrκ(JuhK+), rκ(JwhK+)

)
κ

+
∑

e∈∂κ ηe
(
µre(JuhK+), re(JwhK+)

)
κ

LDG [38] g +
(
µrκ(JuhK+), rκ(JwhK+)

)
κ

+
∑

e∈∂κ
ηe
he

〈
µ JuhK+ , JwhK+〉

e

CDG [101] g +
∑

e∈∂κ
(
µre(JuhK+), re(JwhK+)

)
κ

+
∑

e∈∂κ
ηe
he

〈
µ JuhK+ , JwhK+〉

e

Where g = (µ∇uh,∇wh)κ −
〈
µ JuhK+ ,∇w+

h

〉
∂κ
−
〈
µ∇uh, JwhK+〉

∂κ

Table B.3: Elementwise bilinear form for different DG methods

(IP) method and the methods of Bassi and Rebay, and Brezzi et al., the numerical trace ûh

on an edge depends on both u+
h and u−h . Hence the local bilinear form corresponds to all

nodal degrees of freedom defining uh on κ as well as nodal values on all edges of ∂κ ∩ E i

corresponding to the trace of uh from elements neighbouring κ. On the other hand, for the

LDG and CDG methods, the numerical trace ûh takes on the value of u+
h if Sκ

−
κ+ = 0 or u−h

if Sκ
−
κ+ = 1. Hence the local bilinear form corresponds only to degrees of freedom defining

uh on κ and nodal values corresponding to the trace of uh on neighbouring elements across

edges of ∂κ ∩ E i for which Sκ
−
κ+ = 1.

(a) IP, BR2, Brezzi (b) CDG, LDG

Figure B-1: Degrees of freedom involved in “local” bilinear form. •: Element
Node, ◦: Neighbor Node, →: Switch (β)
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The following Lemmas characterize the local bilinear form:

Lemma B.2.1. The element-wise bilinear form aκ(uh, uh) satisfies

aκ(uh, uh) ≥ 0, (B.22)

with aκ(uh, uh) = 0 iff uh = ûh = K for some constant K.

Proof. The following proves Lemma B.2.1 for all of the DG methods considered. The proof

closely follows the proof of boundedness and stability of the different DG methods presented

in Arnold et al. [8], though here only the contribution of a single element is considered.

To show uh = ûh = K ⇒ aκ(uh, uh) = 0, note that uh = K ⇒ ∇uh = 0. Substituting

in to the bilinear form for the different DG methods considered gives the desired result. It

remains to prove aκ(uh, uh) ≥ 0 and aκ(uh, uh) = 0⇒ uh = ûh = K.

In order to prove the result for the interior penalty method consider the following result

from Arnold et al [8]:

c (µre(w), re(w))κ ≤
1
he
〈µw,w〉e ≤ C (µre(w), re(w))κ ∀w ∈W p

h , (B.23)

where c and C are constants which depend only upon the minimum angle of κ and the

polynomial order p. Choosing ηe sufficiently large for the interior penalty method

aκ,IP(uh, uh) ≥ aκ,BR2(uh, uh), (B.24)

and hence it is sufficient to show that Lemma B.2.1 holds for the method of Bassi and Rebay

[13]. Specifically, ηe may be chosen for the interior penalty method as described in Shahbazi
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[111]. For the method of Bassi and Rebay,

aκ,BR2(uh, uh) = (µ∇uh,∇uh)κ − 2
〈
µ∇uh, JuhK+〉

∂κ
+
∑

e∈∂κ
ηe
(
µre(JuhK+), re(JuhK+)

)
κ

= (µ∇uh,∇uh)κ −
∑

e∈∂κ
2
(
µ∇uh, re(JuhK+)

)
κ

+
∑

e∈∂κ
ηe
(
µre(JuhK+), re(JuhK+)

)
κ

≥
∑

e∈∂κ

1
Ne

(
µ(∇uh − re(JuhK+)),∇uh − re(JuhK+)

)
κ

+
∑

e∈∂κ
(ηe −Ne)

(
µre(JuhK+), re(JuhK+)

)
κ

≥ 0, (B.25)

given ηe > Ne, where Ne is the number of edges of κ. In order to show aκ,BR2(uh, uh) = 0⇒
uh = ûh = K, note that aκ,BR2(uh, uh) = 0 implies

∑

e∈∂κ

1
Ne

(
µ(∇uh − re(JuhK+)),∇uh − re(JuhK+)

)
κ

+
∑

e∈∂κ
(ηe −Ne)

(
µre(JuhK+), re(JuhK+)

)
κ

= 0.

(B.26)

Hence re(JuhK+) = 0 and ∇uh − re(JuhK+) = 0 which implies ûh = u+
h on ∂κ and ∇uh = 0

in κ.

Proof of the method of Brezzi et al. [23] follows in a similar manner. Namely:

aκ,Br(µuh, uh) = (µ∇uh,∇uh)κ − 2
〈
µ∇uh, JuhK+〉

∂κ
+
(
µrκ(JuhK+), rκ(JuhK+)

)
κ

+
∑

e∈∂κ
ηe
(
µre(JuhK+), re(JuhK+)

)
κ

≥
(
µ(∇uh − rκ(JuhK+)),∇uh − rκ(JuhK+)

)
κ

+
∑

e∈∂κ
ηe
(
µre(JuhK+), re(JuhK+)

)
κ

≥ 0, (B.27)

provided ηe > 0. In order to show aκ,Br.(uh, uh) = 0 ⇒ uh = ûh = K, note that

aκ,Br.(uh, uh) = 0 implies

(
µ(∇uh − rκ(JuhK+)),∇uh − rκ(JuhK+)

)
κ

+
∑

e∈∂κ
ηe
(
µre(JuhK+), re(JuhK+)

)
κ

= 0 (B.28)

Hence re(JuhK+) = 0 and ∇uh − rκ(JuhK+) = 0 which implies ûh = u+
h on ∂κ and ∇uh = 0
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in κ.

For the LDG method

aκ,LDG(uh, uh) = (µ∇uh,∇uh)κ − 2
〈
µ∇uh, JuhK+〉

∂κ
+
(
µrκ(JuhK+), rκ(JuhK+)

)
κ

+
∑

e∈∂κ

ηe
he

〈
µ JuhK+ , JuhK+〉

e

=
(
µ(∇uh − rκ(JuhK+)),∇uh − rκ(JuhK+)

)
κ

+
∑

e∈∂κ

ηe
he

〈
µ JuhK+ , JuhK+〉

e

≥ 0. (B.29)

Setting ηe > 0 ensures aκ,LDG(uh, uh) = 0 ⇒ uh = ûh = K. Namely, aκ,LDG(uh, uh) = 0

implies

(
µ(∇uh − rκ(JuhK+)),∇uh − rκ(JuhK+)

)
κ

+
∑

e∈∂κ

ηe
he

〈
µ JuhK+ , JuhK+〉

e
= 0. (B.30)

Hence JuhK+ = 0 and ∇uh + rκ(JuhK+) = 0, which implies ∇uh = 0.

Finally for the CDG method, using (B.23) and noting that if ηe is chosen sufficiently

large for the CDG method then

aκ,CDG(uh, uh) ≥ aκ,BR2(uh, uh) (B.31)

Hence, proof of Lemma B.2.1 for the CDG method follows directly from the proof for the

method of Bassi and Rebay.

Assume that in each element κ, µ has a constant value µ = µκ. The following lemmas

show that the bilinear form is equivalent to a quadratic form based on the value of uh at the

nodes x.

Lemma B.2.2. There exist constants c and C independent of h and µκ such that for all

uh ∈W p
h

caκ(uh, uh) ≤ µκp4hn−2
∑

xi,xj∈κ∪κ′ (uh(xi)− uh(xj))2 ≤ Caκ(uh, uh), (B.32)

where xi, xj are the nodes on κ defining the basis for uh and nodes on ∂κ
′

defining a basis

for the trace u−h from neighbours κ
′

of κ. (Note that for the LDG and CDG methods, nodes
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xi, xj include nodes defining a basis for u−h only on faces for which Sκ
−
κ+ = 1.)

Proof. Lemma B.2.2 is a direct consequence of Lemma B.2.1 and a scaling argument. See

[43] Lemma 4.3 for the equivalent proof for a mixed finite element discretization.

Lemma B.2.3. For any region ω ⊂ Ω composed of elements in T , there exist constants c

and C independent of h, |ω| and µκ such that for all uh ∈W p
h

caω(uh, uh) ≤∑κ∈ω µκh
n−2

∑
xi,xj∈κ∪κ′ (uh(xi)− uh(xj))2 ≤ Caω(uh, uh). (B.33)

Proof. Lemma B.2.3 follows directly from Lemma B.2.2 and a summation over all element

κ ∈ ω.

B.3 BDDC

The Schur complement problem and the BDDC algorithm for the DG discretization have

the same structure as that for the HDG discretization. It remains to define the space of

interior and interface degrees of freedom and the primal constraints.

Consider a partition of the domain Ω into subdomains Ωi. Assume the following assump-

tion holds for all subdomains.

Assumption B.3.1. Each element κ in Ωi with an edge e on ∂Ωi ∩ ∂Ωj has neighbours

only in Ωi ∪ Ωj.

Note that while this assumption may appear limiting, in practice it is always possible

to locallly split elements on corners/edges in 2D/3D respectively in order to satisfy this

requirement.

Denote by W
(i)
Γ the space of discrete nodal values on Γi which correspond to degrees

of freedom shared between Ωi and neighbouring subdomains Ωj , while W
(i)
I denotes the

space of discrete unknowns local to a single substructure Ωi. In particular, note that for

the Interior penalty method, and the methods of Bassi and Rebay, and Brezzi et al. W (i)
Γ

includes for each edge e ∈ Γi degrees of freedom defining two sets of trace values u+ from

κ+ ∈ Ωi and u− for κ− ∈ Ωj . Thus, W (i)
I corresponds to nodal values strictly interior to Ωi
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or on ∂Ωi\Γi. On the other hand, for the CDG and LDG methods W (i)
Γ includes for each

edge e ∈ Γi degrees of freedom defining a single trace value corresponding to either u+ from

κ+ ∈ Ωi if Sκ
−
κ+ = 0 or u− from κ− ∈ Ωj if Sκ

−
κ+ = 1. Hence, W (i)

I corresponds to nodal

values interior to Ωi and on ∂Ωi\Γi as well as nodal values defining u+ on e ∈ Γi for which

Sκ
−
κ+ = 1.

Similarly, define the spaces ŴΓ and WI which correspond to the space of discrete un-

knowns associated with coupled degrees of freedom on Γ and local degrees of freedom on

substructures Ωi respectively. Local operators R(i)
Γ : ŴΓ →W

(i)
Γ extract the local degrees of

freedom on Γi from those on Γ, while global operator RΓ : ŴΓ → WΓ is formed by a direct

assembly of R(i)
Γ .

The global system corresponding to the DG discretization may also be written in the

form:


 AII ATΓI

AΓI AΓΓ




 uI

uΓ


 =


 bI

bΓ


 , (B.34)

where uI and uΓ corresponds to degrees of freedom associated with WI and ŴΓ respectively.

The Schur complement problem is formed by eliminating degrees of freedom in WI .

The BDDC preconditioner is specified by a set of constraints on the subdomain interfaces

which define the primal and dual spaces, WΠ and W∆. For the DG discretization, the local

primal spaces, W (i)
Π , are spanned by basis functions {ψ(i)

Ek } which defined by :

∑

e∈Ej

∫

e
ψ̂

(i)
EknenEj = δjk, (B.35)

where ψ̂(i)
Ek denotes the numerical trace on Ek evaluated as a function of ψ(i)

Ek . The dual space,

W
(i)
∆ corresponds to functions for which the integral in (B.35) vanishes on all subdomain

interfaces.

As with HDG discretization, scaling operator D(i)
Γ : W (i)

Γ → W
(i)
Γ must be defined. In

order to allow for large jumps in the coefficient µ across subdomains, the scaling operators
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are formed as the diagonal matrices with diagonal values set to the weighting function:

δ†i (Ek) =
µγi

µγi + µγj
Ek = Ωi ∩ Ωj γ ∈ [1/2,∞] . (B.36)

Note that due to Assumption B.3.1 each nodal degree of freedom on Γ, may correspond to

only two subdomains, Ωi and Ωj . Again DΓ : WΓ → WΓ is defined as the diagonal matrix

with diagonal blocks D(i)
Γ .

Having specified all of the relevant finite element spaces and operators, the BDDC precon-

ditioner for the DG discretization takes on the same form as that for the HDG discretization

presented in Chapter 4. In the following section the same condition number bound is proven

for the BDDC preconditioned DG system as for the HDG system.

B.4 Analysis

The analysis presented in this section is similar to that presented in Section 4.4 for the

HDG discretization. Namely, the desired condition number bound is obtained by connecting

the DG discretization to a related continuous finite element discretization. In particular,

all of the results presented in this section are simply the DG equivalents of similar results

presented in [119] or [43] for mixed finite elements. These are a direct result of the new

perspective on the DG discretization presented in Section B.2.

In order to define the related continuous finite element discretization consider a special

reparameterization of the space W p
h on each subdomain Ωi. Specifically, a nodal basis is em-

ployed on each element using a special set of nodal locations on each element κ. Specifically,

on elements, κ, which do not touch ∂Ωi nodal locations are chosen strictly interior to κ. On

elements κ which touch ∂Ωi nodal location are chosen on ∂κ ∩ ∂Ωi such that û|∂κ∩∂Ωi is

uniquely defined by nodal values on ∂κ, while remaining nodal location are chosen interior

to κ. This reparameterization is used so that each node defining the basis corresponds to a

unique coordinate x̃, and û|∂Ωi is determined by nodal values on ∂Ωi. The following Lemma

connects the two different parameterizations of the space W p
h .

Lemma B.4.1. There exist constants c and C independent of h such that for each element
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κ

c
∑

xi∈κ
φ(xi)2 ≤∑x̃i∈κ φ(x̃i)2 ≤ C

∑

xi∈κ
φ(xj)2 ∀φ ∈ P p(κ), (B.37)

and

c
∑

xi,xj∈κ
(φ(xi)− φ(xj))2 ≤∑x̃i,x̃j∈κ(φ(x̃i)− φ(x̃j))2 ≤ C

∑

xi,xj∈κ
(φ(xi)− φ(xj))2

∀φ ∈ P p(κ). (B.38)

Proof. Proof of Lemma B.4.1 follows directly from the fact that using either nodes x or x̃

we can form a Lagrange basis for φ ∈ P p(κ), with basis function bounded as in [118] Lemma

B.5.

In order to define the subtriangulation T̂ of T consider each element κ ∈ T . The

subtriangulation on each element κ consists of the primary vertices used to define W p
h ,

and secondary vertices corresponding to nodes on ∂κ\∂Ωi required to form a quasi-uniform

triangulation of κ. Note that such a subtriangulation may be obtained on the reference

element κ̂ then mapped to T . As an example, Figure B-2 shows the nodes defining the

reparameterization as well as the subtriangulation for a p = 1 triangular element.
Unified Analysis of BDDC for DG Discretizations 11

Interior Element

Interface Element for CDG and LDG with Sκ−
κ+ = 0Interface Element for IP, BR2 and Brezzi et al. Interface Element for CDG and LDG with Sκ−

κ+ = 1

Primary Vertex defining u|κ+∈Ωi

Secondary Vertex

Original Edge

New Edge

Primary Vertex defining u|δκ−∩δΩj

Fig. 6.1. Examples of subtriangulations of p = 1 triangular elements

vertices on ∂Ωi to Uh(∂Ωi) such that I∂Ωi

h φ|∂Ωi = (IΩi

h φ)|∂Ωi . We define Ũh(Ωi) ⊂ Uh(Ωi) and Ũh(∂Ωi) ⊂ Uh(∂Ωi)
as the range of IΩi

h and I∂Ωi

h respectively.

We now connect the original DG discretization to the continuous finite element discretization on T̃ by showing that
both discretizations are equivalent to a quadratic form in terms of the nodal values on T̃ . The following lemmas and
theorems are the equivalent of similar theorems for mixed finite element discretizations presented in [10] and [23].
These results are a direct consequence of Lemma 3.1, which is the DG equivalent of Lemma 4.2 of [10]. We list the
relevant results from [10] and [23] and refer to these papers for the proofs.

Lemma 6.2. For Ωi composed of elements κ in T , there exist constants c and C independent of h, H and ρ such
that for all uh ∈ W p

h

cai(uh, uh) ≤
∑

κ∈Ωi

ρκhn−2
∑

x̃i,x̃j∈κ∪κ′

(uh(x̃i)− uh(x̃j))2 ≤ Cai(uh, uh) (6.4)

Proof. Lemma 6.2 follows directly from Lemmas 3.3 and 6.1.

Lemma 6.3. There exists a constant C > 0 independent of h and H such that
∣∣∣I∂Ωi

h φ
∣∣∣
H1(Ωi)

≤ C |φ|H1(Ωi)
∀φ ∈ Uh(Ωi), (6.5)

‖ I∂Ωi

h φ ‖L2(Ωi) ≤ C‖φ ‖L2(Ωi) ∀φ ∈ Uh(Ωi), (6.6)

Proof. See [10] Lemma 6.1.

Lemma 6.4. There exist constants c, C > 0 independent of h and H such that for any φ̂ ∈ Ũh(∂Ωi).

c‖ φ̂ ‖H1/2(∂Ωi) ≤ inf
φ∈Ũh(Ωi)

φ|∂Ωi
=φ̂

‖φ ‖H1(Ωi)≤ C‖ φ̂ ‖H1/2(∂Ωi) (6.7)

c
∣∣∣φ̂

∣∣∣
H1/2(∂Ωi)

≤ inf
φ∈Ũh(Ωi)

φ|∂Ωi
=φ̂

|φ|H1(Ωi)
≤ C

∣∣∣φ̂
∣∣∣
H1/2(∂Ωi)

(6.8)

Figure B-2: Examples of subtriangulations of p = 1 triangular elements
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Define Uh(Ω) to be the continuous linear finite element space defined on the triangulation

T̂ . Additionally define Uh(Ωi) and Uh(∂Ωi), as the restriction of Uh(Ω) to Ωi and ∂Ωi

respectively. Now define a mapping IΩi
h from any function φ defined at the primary vertices

in Ωi to Uh(Ωi) as

IΩi
h φ(x) =





φ(x), if x is a primary vertex;

the average of all adjacent primary vertices on ∂Ωi,

if x is a secondary vertex on ∂Ωi;

the average of all adjacent primary vertices on Ωi,

if x is a secondary vertex in the interior of Ωi;

the linear interpolation of the vertex values,

if x is not a vertex of T .

(B.39)

Since (IΩi
h φ)|∂Ωi is uniquely defined by φ|∂Ωi , I

∂Ωi
h may be define as the map from a function

defined on the primary vertices on ∂Ωi to Uh(∂Ωi) such that I∂Ωi
h φ|∂Ωi = (IΩi

h φ)|∂Ωi . Define

Ũh(Ωi) ⊂ Uh(Ωi) and Ũh(∂Ωi) ⊂ Uh(∂Ωi) as the range of IΩi
h and I∂Ωi

h respectively.

The original DG discretization is connected to the continuous finite element discretization

on T̃ by showing that both discretizations are equivalent to a quadratic form in terms of

the nodal values on T̃ . The following lemmas and theorems are the equivalent of similar

theorems for mixed finite element discretizations presented in [43] and [119]. These results

are a direct consequence of Lemma B.2.1, which is the DG equivalent of Lemma 4.2 of [43].

Lemma B.4.2. For Ωi composed of elements κ in T , there exist constants c and C inde-

pendent of h, H and µ such that for all uh ∈W p
h

cai(uh, uh) ≤∑κ∈Ωi
µκh

n−2
∑

x̃i,x̃j∈κ∪κ′ (uh(x̃i)− uh(x̃j))2 ≤ Cai(uh, uh). (B.40)

Proof. Lemma B.4.2 follows directly from Lemmas B.2.3 and B.4.1.
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Lemma B.4.3. There exists a constant C > 0 independent of h and H such that

∣∣∣I∂Ωi
h φ

∣∣∣
H1(Ωi)

≤ C |φ|H1(Ωi)
∀φ ∈ Uh(Ωi), (B.41)

‖ I∂Ωi
h φ ‖L2(Ωi) ≤ C‖φ ‖L2(Ωi) ∀φ ∈ Uh(Ωi). (B.42)

Proof. See [43] Lemma 6.1.

Lemma B.4.4. There exist constants c, C > 0 independent of h and H such that for any

φ̂ ∈ Ũh(∂Ωi)

c‖ φ̂ ‖H1/2(∂Ωi)
≤ infφ∈Ũh(Ωi)

φ|∂Ωi
=φ̂

‖φ ‖H1(Ωi) ≤ C‖ φ̂ ‖H1/2(∂Ωi)
, (B.43)

c
∣∣∣φ̂
∣∣∣
H1/2(∂Ωi)

≤ infφ∈Ũh(Ωi)

φ|∂Ωi
=φ̂

|φ|H1(Ωi)
≤ C

∣∣∣φ̂
∣∣∣
H1/2(∂Ωi)

. (B.44)

Proof. See [43] Lemma 6.2.

Lemma B.4.5. There exists a constant C > 0 independent of h and H such that

‖ I∂Ωi
h φ̂ ‖H1/2(∂Ωi)

≤ C‖ φ̂ ‖H1/2(∂Ωi)
∀φ̂ ∈ Uh(∂Ωi). (B.45)

Proof. See [43] Lemma 6.3.

Lemma B.4.6. There exist constants c and C independent of h, H and µi such that for all

u
(i)
Γ ∈W

(i)
Γ ,

cµi

∣∣∣I∂Ωi
h ui

∣∣∣
2

H1/2(∂Ωi)
≤ |ui|S(i)

Γ

≤ Cµi
∣∣∣I∂Ωi
h ui

∣∣∣
2

H1/2(∂Ωi)
. (B.46)

Proof. See [43] Theorem 6.5.
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Define the interface averaging operator ED : W̃Γ → W̃Γ as:

ED = RΓR
T
D,Γ. (B.47)

Lemma B.4.7. There exist constants c and C independent of h and H such that for all

uΓ ∈ W̃Γ

|EDuΓ|2S̃Γ
≤ C(1 + log(p2H/h))2 |uΓ|2S̃Γ

. (B.48)

Proof. The proof of Lemma B.4.7 closely follows that of [119] Lemma 5.5. Note Assumption

B.3.1 is essential for this result. In particular, if Assumption B.3.1 were not valid then

(EDuΓ)j the restriction of EDuΓ to degrees of freedom on Ωj would necessarily depend

on degrees of freedom uk corresponding to a subdomain Ωk which does not neighbour Ωj

however are connected through the element κ in Ωi which has edges on both ∂Ωi ∩ ∂Ωj and

∂Ωi ∩ ∂Ωk.

Theorem B.4.8. The condition number of the preconditioner operator M−1
BDDCŜ is bounded

by C(1 + log(p2H/h))2 where C is a constant independent of p, h, H or µ.

Proof. Theorem B.4.8 follows directly from Lemma B.4.7. (See for example [119] Theorem

6.1).

B.5 Numerical Results

This section presents numerical results for the BDDC preconditioner introduced in Section

B.3. For each numerical experiment the linear system resulting from the DG discretization

is solved using a Preconditioned Conjugate Gradient (PCG) method. The PCG algorithm

is run until the initial l2 norm of the residual is decreased by a factor of 1010. Consider a

domain Ω ∈ R2 with Ω = (0, 1)× (0, 1). Ω is partitioned into N ×N square subdomains Ωi

with side lengths H such that N = 1
H . Each subdomain is the union of triangular elements

obtained by bisecting squares of side length h, ensuring that Assumption B.3.1 is satisfied.

Thus each subdomain has ni elements, where ni = 2
(
H
h

)2.
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(a) p = 1

1
H

H
h 2 4 8 16 32
2 4 16 24 29 29
4 13 20 30 31 31
8 15 21 32 34 34
16 15 24 34 35 35

(b) p = 3

1
H

H
h 2 4 8 16 32
2 8 17 25 30 30
4 13 21 29 31 31
8 13 22 31 33 32
16 12 23 33 34 33

(c) p = 5

1
H

H
h 2 4 8 16 32
2 8 20 25 31 31
4 12 21 30 33 31
8 11 23 32 35 33
16 11 26 34 36 35

Table B.4: Iteration count for BDDC preconditioner using Interior Penalty Method

In the first set of numerical experiments (B.1) is solved on Ω where f is chosen such that

the exact solution is given by u = sin(πx) sin(πy). Tables B.4- B.8 show the corresponding

number of PCG iteration required to converge for polynomial orders p = 1, 3, and 5, using

each of the DG methods considered. As predicted by the analysis the number of iterations is

independent of the number of subdomains and only weakly dependent upon the number of

elements per subdomain. In addition the number of iterations is only weakly dependent on

the solution order p. Finally, note that the number of iterations required for the solution of

the LDG and CDG discretizations is somewhat smaller than those of the other DG methods.

For the LDG and CDG methods the Schur complement problem has approximately half the

number of degrees of freedom as for the other DG methods, hence it is not surprising that

a smaller number of iterations is required to converge.

In the second numerical experiment the behaviour of the preconditioner is examined for

large jumps in the coefficient µ. The domain is partitioned in a checkerboard pattern where

µ = 1 on half of the subdomains and µ = 1000 in the remaining subdomains. Equation (B.1)

is solved with forcing function f = 1 using the CDG method. Initially δ†i is set to δ†i = 1
2 ,

which corresponds to setting γ = 0 in (B.36). Since the choice of δ†i does not satisfy the

assumption γ ∈ [1/2,∞) poor convergence of the BDDC algorithm is seen as shown in Table

B.8(a). Next δ†i is set as in (B.36) with γ = 1. With this choice of δ†i the good convergence
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(a) p = 1

1
H

H
h 2 4 8 16 32
2 4 19 28 33 33
4 14 24 34 36 36
8 18 26 36 38 38
16 18 28 37 40 40

(b) p = 3

1
H

H
h 2 4 8 16 32
2 8 21 29 34 33
4 16 25 33 35 35
8 16 27 34 36 36
16 15 28 36 37 37

(c) p = 5

1
H

H
h 2 4 8 16 32
2 9 23 30 35 34
4 16 26 34 36 36
8 15 28 35 36 36
16 14 29 37 38 38

Table B.5: Iteration count for BDDC preconditioner using the method of Bassi and Rebay

(a) p = 1

1
H

H
h 2 4 8 16 32
2 4 16 23 25 24
4 13 19 27 28 28
8 15 20 28 30 29
16 16 22 30 32 32

(b) p = 3

1
H

H
h 2 4 8 16 32
2 7 17 25 26 26
4 14 20 28 29 28
8 15 22 29 31 30
16 14 24 31 33 33

(c) p = 5

1
H

H
h 2 4 8 16 32
2 8 18 26 27 27
4 14 22 28 29 29
8 15 23 30 32 32
16 14 25 33 34 33

Table B.6: Iteration count for BDDC preconditioner using the method of Brezzi et al.
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(a) p = 1

1
H

H
h 2 4 8 16 32
2 12 18 20 20 20
4 13 20 23 23 23
8 14 23 26 26 26
16 14 25 28 29 28

(b) p = 3

1
H

H
h 2 4 8 16 32
2 11 20 22 22 22
4 12 22 25 25 25
8 12 24 28 28 27
16 12 25 29 30 30

(c) p = 5

1
H

H
h 2 4 8 16 32
2 12 21 24 24 23
4 12 23 27 28 27
8 11 25 29 30 30
16 11 26 31 32 31

Table B.7: Iteration count for BDDC preconditioner using the LDG method

(a) p = 1

1
H

H
h 2 4 8 16 32
2 12 19 20 20 19
4 12 20 23 23 22
8 13 23 25 25 25
16 13 24 28 28 27

(b) p = 3

1
H

H
h 2 4 8 16 32
2 11 20 22 22 22
4 12 21 24 25 24
8 12 23 27 27 27
16 12 25 28 29 29

(c) p = 5

1
H

H
h 2 4 8 16 32
2 11 22 25 24 24
4 12 24 27 27 26
8 12 24 29 29 29
16 11 26 31 31 31

Table B.8: Iteration count for BDDC preconditioner using the CDG method
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properties of the BDDC algorithm are recovered as shown in Table B.8(b).

(a) δ†i = 1
2

1
H

p 2 4 8 16 32
0 17 69 118 138 147
1 51 119 179 215 232
2 52 129 192 241 252
3 55 133 207 267 316
4 58 144 226 285 304
5 59 153 242 306 361

(b) δ†i = µiP
j µj

1
H

p 2 4 8 16 32
0 4 6 13 15 16
1 4 7 14 18 19
2 4 7 13 17 18
3 4 7 15 18 19
4 4 7 14 19 20
5 4 7 14 19 20

Table B.9: Iteration count for BDDC preconditioner using the CDG method with µ = 1 or
1000
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