Analysis Driven Shape Design using Free-form Deformation of Parametric CAD Geometry

Marlena C. Gomez and Marshall C. Galbraith

Aerospace Computational Design Laboratory Department of Aeronautics & Astronautics Massachusetts Institute of Technology

AIAA SciTech

January 2024

Motivation

Preliminary Design

- Traditional Parameters
 - chord, sweep, aspect ratio
- Do not capture detailed features

Local Shape Modification

- Fine-tune only detail areas after preliminary design
 - wingtip, wing-fuselage junction, strut, fairing
- Use Free-form Deformation to morph underlying B-spline geometry
- Geometry generated with Engineering Sketch Pad (ESP)
- Analysis and optimization using pyCAPS framework

Previous Work

Limitations

Free-form Deformation

Morphing Airfoil Penalty Function

Optimization Results

Drag Minimization of a Symmetric Airfoil Drag Minimization of an Asymmetric Airfoil

Previous Work

Limitations

Free-form Deformation

Morphing Airfoil Penalty Function

Optimization Results

Drag Minimization of a Symmetric Airfoil Drag Minimization of an Asymmetric Airfoil

3D Shape Optimization: Wingtip B-Spline Surface

Wingtip B-Spline Surface

- NACA 0012 unit chord and span
- Rounded wingtip with radius 1

All 1175 control points defining surface by default.

Design Parameters

- Fixed control points
 - First opens up geometry
 - Second breaks tangency
- 63 control points
 - 21 in *u*-direction
 - 3 in *v*-direction
- Move by offset value outward up to 0.3 in normal direction

All 175 control points defining reduced surface.

Design variable control points

FFD: Motivation

Using B-spline control points as design parameters

• Issue: Expressed shapes limited by constraints on control point movement, which is the normal direction because otherwise geometry self-intersects

FFD: Motivation

Using B-spline control points as design parameters

• Issue: wiggles in geometry

Previous Work

Limitations

Free-form Deformation

Morphing Airfoil

Penalty Function

Optimization Results

Drag Minimization of a Symmetric Airfoil Drag Minimization of an Asymmetric Airfoil

FFD: Morphing Airfoil

FFD grid and surface with embedded NACA 0012 and control points

Free-form Deformation

- Control points of FFD grid are design variables to move underlying B-spline geometry
- Advantages:
 - Successfully used to morph mesh points in design
 - Smoother shapes
 - Control over number of DoFs

FFD: Morphing Airfoil

Movement of one control point of a B-spline curve. The undeformed geometry is shown in blue, and the deformed geometry is shown in pink.

Result of deforming one control point in cubic FFD surface.

Invalid geometry outline.

Penalty function

- Prevent invalid geometry by constricting FFD control points from moving outside of the bounds of its neighbors
- If FFD surface does not have folds, embedded geometry also will not have folds

Previous Work

Limitations

Free-form Deformation

Morphing Airfoil Penalty Function

Optimization Results

Drag Minimization of a Symmetric Airfoil Drag Minimization of an Asymmetric Airfoil

Penalty Function

• Zero only when control point moves withing area of triangles formed by neighbors

• Colormap of penalty function for an interior control point

Previous Work

Limitations

Free-form Deformation

Morphing Airfoil Penalty Function

Optimization Results

Drag Minimization of a Symmetric Airfoil

Drag Minimization of an Asymmetric Airfoil

Optimization Driven by Analysis

- pyCAPS framework used to get analysis and derivative values
 - Python-based interface for Computational Aircraft Prototype Syntheses (CAPS)
- MSES used for analysis
 - Tool for design and analyses of 2D airfoils
 - Flow model solves Euler equations with an integral boundary layer method
- OpenMDAO framework used for optimization
 - Gradient-based Sequential Least Squares Programming (SLSQP) algorithm used for optimization

FFD: Sensitivity Verification

• Automatic differentiation and finite differentiation comparison of FFD control point for C_D

Drag Minimization of a Symmetric Airfoil

A drag minimization of a NACA 0024 with a 5 \times 5 cubic FFD grid using MSES

$$\begin{array}{ll} \underset{\Delta \mathbf{P}}{\text{minimize}} & C_D + \eta(\Delta \mathbf{P}) \\ \text{subject to} & A_{\text{airfoil}} \geq \frac{1}{2} \cdot A_{\text{NACA0024}} \end{array}$$

- Mach = 0.7
- Re = 5×10^6
- $\alpha = 0^{\circ}$
- X-range: [-0.001, 1.0015]
- Y-range: [-0.14, 0.14]
- Degrees of Freedom: 10

Drag Minimization of a Symmetric Airfoil

Objective Function History

- Number of Iterations: 50
- Initial Obj Fn Value: 0.032
- Best Obj Fn Value: 0.008

Previous Work

Limitations

Free-form Deformation

Morphing Airfoil Penalty Function

Optimization Results

Drag Minimization of a Symmetric Airfoil

Drag Minimization of an Asymmetric Airfoil

Drag Minimization of an Asymmetric Airfoil

Initial

Final

A drag minimization of a Kulfan airfoil with a 5 \times 5 cubic FFD grid using MSES

$$\begin{array}{ll} \underset{\Delta \mathbf{P}}{\text{minimize}} & C_D + \eta(\Delta \mathbf{P}) \\ \text{subject to} & A_{\text{airfoil}} \geq \frac{1}{2} \cdot A_{\text{initia}} \\ & C_L = 0 \end{array}$$

- Mach = 0.2
- Re = 5×10^6
- $\alpha = 0^{\circ}$
- X-range: [-0.05, 1.05]
- Y-range: [-0.16, 0.16]
- Degrees of Freedom: 38

Drag Minimization of an Asymmetric Airfoil

Gomez et al.

18/20

Method for using FFD to morph B-splines for shape optimization

- View as beginnings of fine-tuning after preliminary traditional parametric design
- Use control point locations of FFD box as free parameters, which morph underlying B-spline surfaces and edges
- Self-intersections of geometry prevented by penalty function
- Demonstrated using gradient-based optimization to minimize drag for symmetric and asymmetric airfoils using MSES

Future Work

- In the future, look at 3D CFD analyses cases
- Incorporate as a UDF in ESP

Thank you! Questions?

This work was funded by the EnCAPS project, AFRL Contract FA8650–20–2–2002: "EnCAPS: Enhanced Computational Aircraft Prototype Syntheses", with Dr. Richard Snyder as the Technical Monitor.

Additional Slides: Penalty Function

Penalty Function

• Zero only when control point moves withing area of triangles formed by neighbors

Additional Slides: Penalty Function

Penalty Function

• Zero only when control point moves withing area of triangles formed by neighbors