Aerothermoelastic Optimization using FUNtoFEM and ESP/CAPS

Graeme J. Kennedy, Sean Engelstad and Brian Burke Structural and Multidisciplinary Optimization Group Georgia Institute of Technology

Thermal design is critical for advanced vehicles

In this project:

- Aerodynamic heating due to highspeed flow
- Hot exhaust-wash structures

Other heat sources/physics:

- Heat generated internally by subsystems
- Radiative heating

FUNtoFEM: High-fidelity analysis with derivatives

ESP/CAPS integration for geometry parametrization

- Free-form deformation (FFD)
 - Not fully compatible with CAD
 - Less control over geometry
- ESP allows us to rapidly build parametrized geometries
- ESP/CAPS provides derivatives with respect to parametrized geometry
- GT tools that we've built to leverage ESP/CAPS: caps2tacs, caps2fun
 - Help facilitate setting up and solving design problems

FUNtoFEM for time-dependent problems

- Some design problems require time-dependent physics
- Wing design subject to a gust encounter
- Flutter/LCO identification
- FUNtoFEM can compute the gradient with time-dependent analysis

FUNtoFEM: Adjoint and ESP/CAPS Integration

• Driver solves the adjoint equations

 $rac{\partial \mathbf{F}}{\partial \mathbf{x}_G}^T$ $\partial \mathbf{A}^{T}$ $\partial \mathbf{G}$ ∂f T0 0 0 $\overline{\partial \mathbf{x}_G}$ $\overline{\partial \mathbf{x}_G}$ ψ_G $\overline{\partial \mathbf{x}_G}$ $rac{\partial \mathbf{A}}{\partial \mathbf{q}}^T$ $rac{\partial \mathbf{F}}{\partial \mathbf{q}}^T$ ∂f^{T} 0 0 0 0 ψ_A $\overline{\partial \mathbf{q}}$ $rac{\partial \mathbf{F}}{\partial \mathbf{f}_A}^T$ $rac{\partial \mathbf{L}}{\partial \mathbf{f}_A}^T$ ∂f^{T} ψ_F 0 0 0 0 $\overline{\partial \mathbf{f}_A}$ = $rac{\partial \mathbf{S}}{\partial \mathbf{f}_S}^T$ ∂f^{T} $\frac{\partial \mathbf{L}}{\partial \mathbf{f}_S}^T$ ψ_L 0 0 0 0 $\overline{\partial \mathbf{f}_{S}}$ $rac{\partial \mathbf{S}}{\partial \mathbf{u}_S}^T$ $\frac{\partial \mathbf{L}}{\partial \mathbf{u}_S}^T$ $\partial \mathbf{D}^{\ T}$ ψ_S ∂f 0 0 0 $\overline{\partial \mathbf{u}_S}$ $\partial \mathbf{u}_S$ $rac{\partial \mathbf{G}}{\partial \mathbf{u}_A}^T$ $\frac{\partial \mathbf{D}}{\partial \mathbf{u}_A}^T$ ψ_D ∂f^{-T} 0 0 0 0 $\overline{\partial \mathbf{u}_A}$

• Driver computes the derivatives with respect to disciplinary coordinates

Structures

$$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}_{S}} = \frac{\partial f}{\partial \mathbf{x}_{S}} + \psi_{S}^{T} \frac{\partial \mathbf{S}}{\partial \mathbf{x}_{S}} + \psi_{L}^{T} \frac{\partial \mathbf{L}}{\partial \mathbf{x}_{S}} + \psi_{D}^{T} \frac{\partial \mathbf{D}}{\partial \mathbf{x}_{S}}$$
Aerodynamics

$$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}_{A0}} = \frac{\partial f}{\partial \mathbf{x}_{A0}} + \psi_{G}^{T} \mathbf{I}_{A0} + \psi_{L}^{T} \frac{\partial \mathbf{L}}{\partial \mathbf{x}_{A0}} + \psi_{D}^{T} \frac{\partial \mathbf{D}}{\partial \mathbf{x}_{A0}}$$

• ESP/CAPS computes the total derivatives using the coordinate derivatives

$$\nabla_x f = \left[\begin{array}{c} \mathrm{d}f \\ \mathrm{d}\mathbf{x}_{A0} \end{array} \right] \left[\begin{array}{c} \partial \mathbf{x}_{A0} \\ \partial \mathbf{x} \end{array} \right] + \left[\begin{array}{c} \mathrm{d}f \\ \mathrm{d}\mathbf{x}_{S} \end{array} \right] \left[\begin{array}{c} \partial \mathbf{x}_{S} \\ \partial \mathbf{x} \end{array} \right] \left[\begin{array}{c} \partial \mathbf{x}_{S} \\ \partial \mathbf{x} \end{array} \right] \left[\begin{array}{c} \partial \mathbf{x}_{S} \\ \partial \mathbf{x} \end{array} \right] \right]$$

Reconfigurable framework for high-fidelity MDO

- FUNtoFEM runs steady-state or timeaccurate aerothermal, aeroelastic and aerothermoelastic analysis
- Different CFD/FEM implementations
- Modular transfer operations
- Is the adjoint correct for all configurations?

Modular discipline-level consistency checks

- Adjoint implementations are fragile to forward analysis changes
- Need effective tests to isolate errors within the coupled system
- FUNtoFEM uses a building block approach
 - API enables discipline-level verification of consistency between the forward and adjoint implementation

Modular transfer between disciplines

- FUNtoFEM defines interfaces for load/displacement and heat flux/temperature transfer
- Verification of derivatives for each transfer scheme to ensure consistency with the API

Sub-sampled RBF MELD transfer 02 03 04 05 06 07 08 09 03 04 von Mises: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Integration test: gradient verification against complex-step

- Accuracy of derivatives with laminar and turbulent versions of FUN3D
- Gradient accuracy between 11 to 15 digits of accuracy compared to complex-step

Table 3: Results from turbulent mini flat plate unit tests, with angle-of-attack design variable.

Aerothermoelastic (ATE)	Complex Step	Adjoint	Relative Error
$\partial c_{KS}/\partial lpha$	0.000 12015993239 295229	0.000 12015993239 131483	-1.36 e-11
$\partial C_L / \partial lpha$	0.0 1192299423293 334	0.0 1192299423293 4032	5.81 e-14
$\partial C_D / \partial \alpha$	0.00 6206214386620 087	0.00 6206214386620 354	4.29 e-14
Aeroelastic (AE)	Complex Step	Adjoint	Relative Error
$\partial c_{KS}/\partial lpha$	0.000 12943480095 484495	0.000 12943480095 31194	-1.33 e-11
$\partial C_L / \partial lpha$	0.0 1196592083591 8586	0.0 1196592083591 9373	6.58 e-14
$\partial C_D / \partial \alpha$	0.00 710464549416 6799	0.00 710464549416 7113	4.42 e-14
Aerothermal (AT)	Complex Step	Adjoint	Relative Error
$\partial c_{KS}/\partial lpha$	7.889391879260282e-08	7.889391879260084e-08	-2.52 e-14
$\partial C_L / \partial lpha$	0.0 119474046088947 52	0.0 119474046088947 33	-1.60 e-15
$\partial C_D / \partial \alpha$	0.00 62805529653148 2	0.006280552965314813	-1.10 e-15

Table 4: Results from turbulent mini flat plate unit tests, with plate thickness design variable.

Aerothermoelastic (ATE)	Complex Step	Adjoint	Relative Error
$\partial c_{KS}/\partial au$	-0.0 817581712 6063319	-0.0 817581712 5879477	-2.25 e-11
$\partial C_L / \partial au$	0.0 5275982573 7342586	0.05275982573649715	-1.60 e-11
$\partial C_D / \partial oldsymbol{ au}$	0.00 9327372488 400239	0.00 9327372488 205454	-2.09 e-11
Aeroelastic (AE)	Complex Step	Adjoint	Relative Error
$\partial c_{KS}/\partial au$	-0.0 98349488 60025478	-0.0 98349488 59809094	-2.20 e-11
$\partial C_L / \partial oldsymbol{ au}$	0.0 6692342890 931798	0.0 6692342890 825743	-1.58 e-11
$\partial C_D/\partial oldsymbol{ au}$	0.01371727851598814	0.013717278515713624	-2.00 e-11
Aerothermal (AT)	Complex Step	Adjoint	Relative Error
$\partial c_{KS}/\partial au$	-2.961952577614158e-05	-2.9619525776144264e-05	9.06 e-14
$\partial C_L / \partial au$	0.000 38740525917988 38	0.000 38740525917988 06	-8.26-15
$\partial C_D / \partial oldsymbol{ au}$	3.3893615727125504e-05	3.3893615727125084e-05	-1.24 e-14

Remeshing vs mesh deformation derivatives

• ESP/CAPS offers capability to remesh at each design point – can this be used for optimization?

Remeshing vs mesh deformation derivatives

- With mesh deformation: no noise; consistent function and derivative
- However, mesh deformation method must be robust to design changes

Global view of mesh def. vs remeshing

- KS failure function: Comparison between the adjoint-based derivative, finitedifference and function value for different sizes of structural mesh
- My opinion: Remesh-based optimization may be feasible if optimizer is noiseaware

FEM mesh refinement

Application: Rapid geometry creation and design assessment

- FUNtoFEM with ESP/CAPS can be used to rapidly generate and assess a conceptual configuration with high-fidelity analysis
- Wave-rider supersonic transport concept

 p/p_{∞} 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

Applicaton: One-way design optimization

- Start multidisciplinary design optimization problems with sequential design process
- Use flexibility in ESP/CAPS to optimize internal structural layout
- Accurate derivatives obtained via FUNtoFEM

Using ESP/CAPS to generate an HSCT geometry

Aeroelastic sizing optimizations of an HSCT wing

Coupled aerothermoelastic optimization

Conclusions

- FUNtoFEM is a flexible and modular framework that integrates ESP/CAPS for geometry parametrization
- Accurate derivatives are ensured through a series of tests for disciplinaryconsistency
- Aerothermal, aeroelastic and aerothermoelastic design optimization problems can be solved using gradient-based optimization
- We're working towards more complex design optimization problems

Questions

- Project funded by AFRL under contract FA8650-18-2-2227
- Thanks to Nathan Wukie, Marshall Galbraith, Neal Novotny and David Sandler