Engineering Sketch Pad: An Update on Computational Aircraft Prototype Syntheses

ESP v1.24 https://acdl.mit.edu/ESP

Marshall Galbraith

galbramc@mit.edu Massachusetts Institute of Technology

AIAA SciTech Forum

January 2024

ESP/CAPS

Gaps Acknowledgments

- CAPS started in 2014
- Primarily funded by AFRL

A Team Effort

- Bob Haimes, Massachusetts Institute of Technology
- John F. Dannenhoffer, III, Syracuse University
- Nitin Bhagat, University of Dayton Research Institute
- David Marcum, Mississippi State
- Ed Alyanak, AFRL
- Dean Bryson, AFRL
- Ryan Durscher, AFRL
- Richard Snyder, AFRL
- and many more...

Caps Outline

CAPS Intrastructure

CAPS and MDAO frameworks CAPS Goals and API Analysis Interface Module (AIM)

Analysis and Optimization

Analysis Scenarios Multi-fidelity/-disciplinary

Design Phases

Conceptional/Preliminary Design

Conclusion

Caps Outline

CAPS Intrastructure

CAPS and MDAO frameworks CAPS Goals and API Analysis Interface Module (AIM)

Analysis and Optimization

Analysis Scenarios Multi-fidelity/-disciplinary

Design *Phases*

Conceptional/Preliminary Design

Conclusion

- Several MDAO frameworks/environments have been developed over the last couple of decades
- These tend to focus on:
 - automating overall analysis process by creating "data flows" between user-supplied analyses
 - scheduling and dispatching of analysis execution
 - generation of suitable candidate designs via DOE,...
 - visualization of design spaces
 - improvements of designs via optimization
 - techniques for assessing and improving the robustness of designs

• "Data" in current MDAO frameworks are "point" quantities (possible in "small" arrays)

- geometric parameters: length, thickness, camber,...
- operating conditions: speed, load,...
- performance values: cost, efficiency, range,...
- No current framework handles "field" data directly:
 - copy (same as for "point" data)
 - interpolate/evaluate
 - integrate
 - supply the derivative
- Multi-disciplinary coupling in current frameworks require that user supplies custom pairwise coupling routines

CAPS Goals

- Augment/enhance MDAO frameworks
 - Augment MDA with rich geometric information via OpenCSM
 - Enhance automation by tightly coupling analysis with geometry (via attribution)
 - Allow interdisciplinary analysis with "field" data transfer
 - Not replacing optimization algorithms
- Provide the tools & techniques for generalizing analysis coupling
 - multidisciplinary coupling: aeroelastic, FSI
 - multi-fidelity coupling: conceptual and preliminary design
- Rigorously dealing with geometry (single and multi-fidelity) in a design framework / process
 - OpenCSM connects design parameters to geometry
 - CAPS connects geometry to analysis tools
- Input and attribution driven automated (not automatic) meshing
- Geometric and Analysis parametric sensitivities
 - For gradient based optimization

CAPS API

- The entry point to CAPS system is the C/C++ API
- Direct interface for MDAO framework or User
- Facilitates modification of Geometry/Analysis parameters
 - Geometry parameters defined with OpenCSM
 - Analysis parameters defined by AIMs
- Tracks parameter modification and dependencies
 - Modifying a geometric parameter invalidates analysis outputs

PYCAPS API

- c-types interface to CAPS API
- Python script to setup and orchestrate analysis

Analysis Interface Module (AIM)

- Interface between CAPS framework and analysis tools
 - Hides all of the individual analysis details (and peculiarities)
 - Does not make analysis tool a "black box"
- Shared libraries written in C/C++
 - Loaded at runtime as plugins
- Defines analysis inputs and outputs (derivatives)
 - Inputs include attributed BRep with geometric-based information
- AIMs inputs/outputs can be linked (create data flow)
 - Transfer simple or rich data (e.g. meshes) between AIMs
- Interpolate "field" data (e.g. pressure/displacement)
 - Loosely coupled Fluid Structure Interaction (FSI)

AIMs Shipped with ESP v1.24

Low Fidelity	3D CFD
 AVL AWAVE FRICTION MSES (sensitivities) 	 Cart3D (sensitivities) Fun3D (sensitivities) SU²
• TSFoil	Surface Meshing
• XFoil	• AFLR2
Structural Analysis	• AFLR4
 Abaqus (in progress) ASTROS 	DelaundoNative EGADS
• Interference	Volume Meshing
 masstran (sensitivities) MYSTRAN NASTRAN TACS (sensitivities) <u>Sierra SD/SM</u> (in progress) 	 TetGen AFLR3 Pointwise <u>refine</u> (metric-based adaptation)

ESP/CAPS

CAPS Intrastructure

CAPS and MDAO frameworks CAPS Goals and API Analysis Interface Module (AIM)

Analysis and Optimization

Analysis Scenarios Multi-fidelity/-disciplinary

Design *Phases*

Conceptional/Preliminary Design

Conclusion

Gaps Analysis Scenarios

- MDAO framework/User has complete control over execution process
 - C-API or pyCAPS script
 - Many examples in EngSketchPad/CAPSexamples

Simple	DOE Database Construction
• Load Geometry	• Load Geometry
• Create AIMs	• Create AIMs
Set Geometry ParameterSet Analysis ParameterGenerate mesh (automated)	 for_each Geometry Parameter Set Geometry Parameter Generate mesh (automated) for_each Analysis Parameter
(most difficult input to generate)Execute AnalysisRetrieve Analysis Outputs	 Set Analysis Parameter Execute Analysis Retrieve Analysis Outputs

Multi-fidelity/-disciplinary Geometric Analysis Views

- Single set of geometric parameters \rightarrow multi-fidelity/-disciplinary analysis
- Views construct analysis specific geometry
- Implemented as user-defined components (UDCs)
 - $\begin{array}{rrrr} \mbox{viewVlm.udc} & \rightarrow & \mbox{avlAIM} \\ \mbox{transport.csm} & \rightarrow & \mbox{viewCfdViscous.udc} & \rightarrow & \mbox{su2AIM} \\ \mbox{viewCantilever.udc} & \rightarrow & \mbox{nastranAIM} \end{array}$
- View attributes geometry with suitable CAPS attributes

Coupled Analysis

- Coupled analysis (FSI) requires multiple simultaneous analysis geometries
 - Achieved with multiple active views
- CAPS facilitates loosely coupled data transfer between AIMs

 \rightarrow viewCfdViscous.udc \rightarrow su2AIM \rightarrow \uparrow

transport.csm \rightarrow

viewCantilever.udc \rightarrow nastranAIM

Gradient Based Geometric Parameter Optimization

- Gradient based optimization using OpenMDAO and MSES
 - NACA airfoil, $\alpha = 0^{\circ}$

CAPS Intrastructure

CAPS and MDAO frameworks CAPS Goals and API Analysis Interface Module (AIM)

Analysis and Optimization

Analysis Scenarios Multi-fidelity/-disciplinary

Design Phases

Conceptional/Preliminary Design

Conclusion

^{Caps} Phasing Approach to Design²

- Each Phase:
 - is a stepping stone to another
 - can branch to multiple new phases
 - can support differing analysis and geometry
- Encapsulated in multiple pyCAPS scripts

Design as a growing decision tree

¹AIAA 2023-1162

Galbraith

ESP/CAPS

Caps Phasing Approach to Design

Initial Baseline

• Analytic models

•
$$L = \frac{1}{2}\rho V^2 S C_L$$

•
$$C_D = C_{D_p} + \frac{C_L^2}{\pi A R e}$$

- Beam model
- Surrogate models
 - Data fits (e.g. XFOIL fit C_{D_p})
 - Heuristics (e.g. Tail volume)
 - Empirical models (e.g. Payload fraction)
- Limited Geometry
 - NACA 4-Series airfoil

Easy to solve, but high uncertainty

Galbraith

Caps Phasing Approach to Design

Increase Fidelity

- Replace surrogate models
 - C_{D_p} data fit \rightarrow MSES, SU2...
 - Tail volume $\rightarrow AVL$
 - Beam model \rightarrow TACS
- Expand geometry design space
 - Increase number of design parameters
 - NACA \rightarrow Kulfan family airfoil

Decreasing uncertainty, but increased computational cost

Summary

- ESP/CAPS provides a geometric centric framework for gradient based MDAO
- Phasing enables design as a growing decision tree

Current/Future Tasks

- AIM for FlightStream panel solver by Research In Flight
- Tightly coupled medium fidelity (panel/full potential+shell model+integral boundary layer)
 - Medium fidelity TASOPT
- Metric-based mesh adaptation for structures
- AIMs written in Python
- ESP is freely available for download from acdl.mit.edu/ESP
- Based upon user requests, new and improved features are added continually
- Send bug reports (and success stories) to galbramc@mit.edu or jfdannen@syr.edu

Thank you! Questions?

This work was funded by the EnCAPS project, AFRL Contract FA8650–20–2–2002: "EnCAPS: Enhanced Computational Aircraft Prototype Syntheses", with Dr. Richard Snyder as the Technical Monitor.

ESP with the CAPS Infrastructure

Plotting and verifying output "camber" derivatives

- Analytic vs. Central Difference derivatives
- Plot vs. camber
 - C_d , $\partial C_d / \partial$ camber, $\Delta C_d / \Delta$ camber

CAPS Infrastructure – Objects

- CAPS API has 6 Object types and ~ 70 functions
- MDAO framework/User manipulate objects via CAPS API functions

Object	Description
capsProblem	Top-level <i>container</i> for a single mission/geometry
capsValue	Data <i>container</i> for parameters (scalar/vector/matrix)
capsAnalysis	Instance of an AIM
capsBound	Logical grouping of BRep Objects for data transfer
capsVertexSet	Discrete representation of capsBound
capsDataSet	"Field" data related to a capsVertexSet

CAPS Infrastructure – Multidisciplinary Coupling

User

- Defines "Bounds" on geometry to connect "field" data
- Defines which AIMs instances "field" are coupled
- Defines iteration loop

AIM Developer

- Functions to Interpolate and/or Integrate discrete data (consistent with solver)
- Functions to *reverse* differentiated Interpolate and Integrate to facilitate conservative transfer optimization

CAPS Framework

- Performs the "field" data transfer (interpolate or conservative)
- Automatically initiated in a *lazy* manner

- Assist teaching/debugging case setup with CAPS
 - Edit/Execute python scripts with ESP Pyscript
- Visualize bodies used by CAPS
 - Cannot change parameters or attributes
- Visualize surface meshing AIMs
- Visualize data transfer setup

Traditional Engineering Design¹

³Blanchard and Fabrycky, "Systems Engineering and Analysis", 1990