
Generation of Multi-fidelity, Multi-discipline Air

Vehicle Models with the Engineering Sketch Pad

John F. Dannenhoffer, III∗

Aerospace Computational Methods Laboratory

Syracuse University, Syracuse, New York, 13244

Robert Haimes†

Aerospace Computational Design Laboratory

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139

Efficient multi-disciplinary analysis and optimization (MDAO) of aerospace vehicles is
enabled by the generation of parametric, feature-based models. Many systems for gener-
ating these vehicles have been developed over the past decades, but most of these systems
focus on the development of models that are well suited to the manufacturing process.
Recently, the Engineering Sketch Pad (ESP) was introduced whose expressed purpose is
the generation of models for aerospace design and analysis. Three of the key features of
ESP are its ability to develop multiple, linked models for use throughout the design pro-
cess, to utilize user-defined features that are central to aerospace vehicles (such as airfoils,
flaps, and spoilers), and to compute analytic sensitivities for optimization and uncertainty
quantification.

Contained herein is a description of ESP, including those components that directly sup-
port the above. In particular, the use of ESP to generate models within a single discipline
that are used in the conceptual, preliminary, and final design stages is reviewed. Similarly,
multiple linked models in cooperating disciplines are also discussed. These concepts are
demonstrated on a sample transport configuration.

I. Background

Since the early 1960s,1 there have been an increasingly-complex (complicated) series of “CAD” systems
to support the geometry needs of the manufacturers of mechanical devices. In the early years, “CAD” was
an acronym for “Computer-Aided Drafting”. These early “CAD” systems were built to allow a drafter to
draw with pointing device (dial boxes, trackballs, light pens and etc.) onto a computer screen in the same
way that the drafter had traditionally drawn with a pencil on a drafting table. The key advantage of the
“CAD” systems were that it was easy to make lines straight, circles round, changes could be easily made,
and errors could be erased. The early “CAD” systems were two dimensional (just like the drafting board),
and knew nothing about the third dimension. The drafter or person reading the drawing needed to convert
the two-dimensional representation into a three-dimensional concept.

In the next generation of “CAD” system, the acronym was changed to “Computer-Aided Drawing”. Here
systems evolved from two dimensions to three dimensions, thereby giving the drafter the ability to create
multiple orthographic projections of the same object. For this additional capability, the drafter was required

∗Associate Professor, Mechanical and Aerospace Engineering, AIAA Associate Fellow.
†Principal Research Engineer, Department of Aeronautics & Astronautics, AIAA Member.

1

to prescribe three-dimensional coordinates for everything that was drawn. Typically this was performed by
the establishment of a sketching plane, on which the drawing was done. These new “Drawing” systems had
a great advantage over the “Drafting” systems, but still only created wireframes. Because the “Drawing”
systems did not understand the concepts of a solid, it was possible to create nonsensical wireframes that
could not be built.

The acronym “CAD” once again changed into “Computer-Aided Design” in the next generation of sys-
tems, in which the concept of a solid first emerged. This was done by taking the perspective that one starts
with a (possibly simple) solid body, and then performs operations on that body until it achieved its ulti-
mate final shape. The types of operations that could be performed included adding and removing material
(which was described in terms of its own solid body), and by morphing the basic shape. At about the same
time, the concept of parameters was added to “CAD” systems, making it possible to create a model whose
dimensions could be easily modified. The robustness of this latter capability depended strongly on the types
of operations that the model builder (formerly drafter) used in constructing the model.

Since the “Computer-Aided Design” systems took the perspective of adding, removing, or morphing some
shape, users of the systems are encouraged to “make your models mimic the manufacturing process”.2 If this
is done, the generation of manufacturing processes, such as tool-path creation, flat-panel plans, weldments,
or mold tools, can be automated. Hence, it is probably best to classify these “CAD” systems as “mCAD”
systems.

But for the (optimal) design of complex systems, the analytical designer wants to think about the
function and performance of the device being generated, requiring the generation of a separate “aCAD”
model. Sometimes the systems that produce analysis-ready models are thought of as “pre-preprocessing”,
referring to the order utilized in the larger design/manufacturing process (“aCAD” before “mCAD”). It is
interesting to note that almost all “aCAD” systems are (and have always been) parametric but “mCAD”
has only been parametric over the last two decades and most models currently built in “mCAD” systems
are not parametrically driven.

Good design is driven by a suite of parameters that is both familiar to practitioners (in the various
disciplines) and are flexible enough to allow for finding the set of parameter values that meet, or exceed, the
stated mission. This allows for achieving the goal in design and facilitates learning about the decisions and
choices made in an automated optimization setting.

A early and effective example of an “aCAD” system is Boeing’s Aero-Grid and Paneling System (AGPS),3

which was developed for the use with specific analysis codes. As stated above, the modeling techniques
supported by “aCAD” and “mCAD” are rather dissimilar, and so transfer between them is done by limited
translators or by starting over. This one-way path from “aCAD” to “mCAD” leads to a design process
where real feedback is not really possible.

II. The Engineering Sketch Pad (ESP)

The “Engineering Sketch Pad” (ESP) system is a geometry creation and manipulation system, designed
specifically to support the analysis and design of aerospace vehicles. It can be run stand-alone for the
development of models, or it can be embedded into other analysis and design systems to support their
geometry needs. It can also communicate with “mCAD” system through the use of STEP files to transmit
the finished geometry from a design study.

Unlike modern “mCAD” systems (such as UniGraphics, Catia, Pro/ENGINEER, SolidWorks, or AutoCAD),
ESP is not a full-featured system designed to support the mechanical design and manufacturing of complex
parts. It is also not a system to be used for creating “drawings”, nor can it generate manufacturing plans.
ESP is currently being used at NASA, in the U.S. Air Force, and other organizations, especially to generate
multi-fidelity and multi-disciplinary geometries to support analysis and design within current (and future)
MDAO settings.

2

bolt example

design parameters

1: despmtr Thead 1.00 # thickness of head

2: despmtr Whead 3.00 # width of head

3: despmtr Fhead 0.50 # fraction of head that is flat

4: despmtr Dslot 0.75 # depth of slot

5: despmtr Wslot 0.25 # width of slot

6: despmtr Lshaft 4.00 # length of shaft

7: despmtr Dshaft 1.00 # diameter of shaft

8: despmtr sfact 0.50 # overall scale factor

head

9: box 0 -Whead/2 -Whead/2 Thead Whead Whead

9a: attribute name $head

10: rotatex 90 0 0

11: box 0 -Whead/2 -Whead/2 Thead Whead Whead

11a: attribute name $head

12: rotatex 45 0 0

13: intersect

14: set Rhead (Whead^2/4+(1-Fhead)^2*Thead^2)/(2*Thead*(1-Fhead))

15: sphere 0 0 0 Rhead

15a: attribute name $head

16: translate Thead-Rhead 0 0

17: intersect

slot

18: box Thead-Dslot -Wslot/2 -Whead 2*Thead Wslot 2*Whead

18a: attribute name $slot

19: subtract

shaft

20: cylinder -Lshaft 0 0 0 0 0 Dshaft/2

20a: attribute name $shaft

21: union

22: scale sfact

23: end

Figure 1. Sample file bolt.csm, operation indices (left side) are added for clarity.

3

A. ESP Example

The input to ESP is a .csm file that contains all the information needed to create a model or set of models.
This is an ASCII file that is both human readable and parsed by ESP. To facilitate the discussion below, the
example bolt.csm file is given in Fig. 1; the numbers at the left of each line are not actually part of the
file, but have been added to aid in the discussions that follow. Fig 2 contains a picture of the Body that is
produced when the bolt.csm file finished executing.

Figure 2. Body built by executing bolt.csm.

B. ESP’s Distinguishing Features

In the next several paragraphs, the distinguishing features of ESP are described.

Solid Modeller

The ESP system4 is built upon the OpenCSM constructive solid modeler,5 which in built upon the “Engineering
Geometry Aircraft Design System” (EGADS),6 which in turn is built upon OpenCASCADE.7 Because it uses a
constructive solid modeling process, its models are guaranteed to be realizable solids (except as noted below).
The fact that the solids are realizable makes the representation watertight, which is needed if one wants to
create a computational grid for Computational Fluid Dynamics (CFD) or other 3D field analyses.

In certain models, ESP can generate non-manifold sheet Bodies (which can be used to model a mid-surface
camber sheet, wake sheet, or thin structural plate) or wire Bodies (which can be used to model idealized

4

wing spars or antennae).
The Master Models in ESP are defined in terms of a Feature Tree and a set of Design Parameters (see

the Parametric section below).
The Feature Tree contains the recipe for constructing the configuration. It can be thought of as a (binary)

tree that contains the sequence of operations needed to build a configuration. The Branches of the Feature
Tree are defined by statements that specify the Branch type and a set of type-specific arguments (which may
sometimes have default values). Branches are assigned default names when they are created, but the name
can be be changed by the user to make the Feature Tree a bit more readable. If a Branch is attributed, its
attribute(s) is/are assigned to all Edges and Faces that are created when the Branch executes. For-loops
and if-blocks can be added to a Feature Tree through “patterns”.

The Feature Tree that results from the bolt.csm file described above is shown in Fig. 3.

box
(9)

?
rotatex

(10)
XXXXXXz

box
(11)

?
rotatex

(12)
������9

intersect
(13)
XXXXXXz

sphere
(15)

?
translate

(16)
������9

intersect
(17)
XXXXXXz

box
(18)
������9

subtract
(19)
XXXXXXz

cylinder
(20)
������9

union
(21)

?
scale
(22)

Figure 3. Feature Tree associated with bolt.csm.

Feature-based

All Master Models in ESP start with the generation of primitives. These include standard primitives (box,
sphere, cone, cylinder, or torus), primitives grown from sketches (extrude, rule, blend, revolve, sweep, or
loft), and user-defined primitives (UDPs). All of these primitive statements leave their resulting Body on a
stack. In Fig. 1, operations at lines 9, 11, 15, 18, and 20 contain primitives and are designated as “0-1” in
Table 1 (referring to consuming 0 stack entries and producing 1).

The Body on the top of the current stack can be be popped off the stack, transformed (translated,
rotated, scaled, or mirrored), and the resulting Body is pushed back onto the stack. In Fig. 1, operations
10, 12, 16, 17, and 22 contain transformations which are labelled as “1-1” in Table 1.

There are other Feature Tree Branches that pop the Body from the top of the stack, apply a feature

5

(such as fillet, chamfer, or hollow) to it, and then push the result back onto the stack. There are no applied
features in Fig. 1 but they would also consume a single stack entry and produce one: “1-1”.

It is also possible to combine the top two Bodies on the stack, via standard Boolean operations (intersect,
subtract, or union). For example, to drill a hole in a Body, one creates a cylinder and then subtracts it from
the Body on the top of the stack. Operations 13, 17, 19, and 21 contain Boolean operators in Fig. 1 and are
designated as “2-1” in Table 1.

Table 1. ESP stack as filled during the operations seen in Fig. 1. Gray entries have no effect on the stack. The
results of the operation are shown in boldface (at the top of the stack).

Operation Usage Stack bottom (#0) Stack entry #1

1-8: despmtr -

9: box 0-1 box

10: rotatex 1-1 90o rotated box

11: box 0-1 90o rotated box box

12: rotatex 1-1 90o rotated box 45o rotated box

13: intersect 2-1 hexagonal slab

14: set - hexagonal slab

15: sphere 0-1 hexagonal slab sphere

16: translate 1-1 hexagonal slab translated sphere

17: intersect 2-1 hexagonal rounded head

18: box 0-1 hexagonal rounded head box

19: subtract 2-1 slotted head

20: cylinder 0-1 slotted head cylinder

21: union 2-1 bolt

22: scale 1-1 scaled bolt

The stack usage during building the bolt.csm geometry can be seen in Table 1. It should be noted that
the depth of the stack during the build is at most 2 entries for this simple construction.

Parametric

ESP Master Models typically contain one or more Design Parameters, which are single-valued, 1-D vectors, or
2-D arrays of numbers. Each Design Parameter has a current value, upper- and lower-bounds, and a current
“velocity” (which is used to define sensitivities). Design Parameters can be “set” and retrieved (“get”) either
through ESP’s graphical user interface or externally via calls to it Application Programming Interface (API).
In Fig. 1, the design Parameters are defined in lines 1 through 8.

ESP’s Design Parameters are used to set the arguments in the various Branches in the Feature Tree. In
some cases the Design Parameters are used directly, and in others they are used in a MATLAB-like expression
to set the argument. For example in line 9 in Fig. 1, one of the arguments is a number (0), three are simply
the name of a Design Parameter (Thead twice and Whead), and two are expressions (-Whead/2 twice).

An important function of an effective “aCAD” system is to provide the designer the ability to parameterize
the model in ways appropriate for the mission “at hand”. Some “aCAD” systems provide a collection of
pre-parametrized components that can be easily assembled into a concept. This can quickly provide various
concepts, but the results make it difficult to express the geometric range required for the design task. It
is important for any general “aCAD” system to be able to allow the designer to easily express components
using a parameterization that can be customized (this ability is at the heart of effective design). ESP allows
for this by it’s expression of the design in a simple scripting manner (as seen in Fig. 1) and by its ability to
be Extensible in a parametric manner, as discussed below.

6

Figure 4. Sensitivity of surface shape with respect to the wing’s thickness for a glider configuration.

Differentiated

Probably the most distinctive feature of ESP is that it allows a user to compute the sensitivity of any part
of a configuration with respect to any Design Parameter.8 This is an essential capability when one wants to
embed a geometry system into a gradient-based design optimization system.

For many of OpenCSM’s commands, theses sensitivities are computed by analytically differentiating the
Feature Tree. When this can be done, the process is extremely efficient, since there is no need to re-generate
the configuration. In addition, the process produces sensitives the contain no truncation errors.

A few of ESP’s commands have not been analytically differentiated yet; for these, sensitivities are com-
puted via finite-differences. A new finite-differencing technique is employed in these cases that is extremely
robust, since a new “mapping” technique guarantees the correct association of points in the baseline and
perturbed geometries. Unfortunately when finite differences are used, the process is less efficient than an-
alytic derivatives, since it requires the generation of a “perturbed” configuration. It is also less accurate,
since one needs to carefully select a “perturbation step” that is a balance between truncation and round-off
errors.

Fig. 4 shows the sensitivity of the surface of a glider with respect to the wing’s thickness.

7

Associative

ESP maintains a set of global and local attributes on the Faces of a configuration that are persistent through
rebuilds. There are a variety of ways that attributes can be set.

Global attributes can be set to every Body in a model by defining the attribute before and Feature Tree
branch. (There are no such global attributes in Fig. 1.) Also, attributes can be set on all Faces in a Body
(when the Body is produced by executing a Branch in the Feature Tree). In Fig 1, lines 9a, 11a, and 15a
say that all the Faces associated with the bolt’s head will have an attribute named “name” whose value is
the string “head”.

As will be discussed below, the attribution capability of ESP is an essential capability when one generates
multi-fidelity models, wherein attributes can be used to associate conceptually-similar parts in the various
models. Similarly during the generation of multi-disciplinary models, attributes can be used to associate
surface groups which share common loads and displacements. Lastly, attributes support the “marking” of
Faces and Edges with quantities such as nominal grid spacings, material properties, boundary conditions,
etc.

Extensible

As briefly mentioned above, ESP has the ability to allow users to create their own user-defined primitives
(UDPs). This is especially useful when creating aerodynamic configurations, since they are seldom composed
of boxes, cylinders, etc. The current version (v1.08) ships with the following UDPs:

• bezier — generate a Bezier Wire, Sheet, or Solid Body from a input file

• biconvex — generate a biconvex airfoil

• box — generate a (rectangular) Wire, Sheet, or Solid Body centered at the origin (with possibly-
rounded corners)

• ellipse — generate an ellipse centered at the origin

• freeform — generate a freeform Wire, Sheet, or Solid Body from an input file

• import — read a Body out of a .step file

• kulfan — generate a Kulfan airfoil segments

• naca — generate a NACA 4-series airfoil or camberline

• naca456 — generate a NACA 4-, 5-, or 6-series airfoil

• parsec — generate a Parsec airfoil by either specifying Sobieski’s parameters or spline parameters

• sew — sew Faces in a step file into a Solid Body

• supell — generate a 4-quadrant super-ellipse

• waffle — generate a waffle by extruding a 2D group of segments

The UDPs are not directly built into ESP, but rather are dynamically loaded (when needed at run time),
using a well-defined API. All the UDPs create a single primitive solid. UDPs can be written either top-down
(following a procedure similar to that used in constructive solid geometry) or can be bottom-up, where the
user defines Nodes, Curves, Edges, Loops, Surfaces, Shells, and Bodys. This latter bottom-up procedure
is quite labor intensive to write, but once completed provides extremely rapid generation of virtually any
Body. Users write a UDP in C, C++, or FORTRAN, making calls to EGADS’ API, and compiles them into
a dynamically loadable library.

8

In this way ESP allows for user customizable CAD features. Anyone who has tried to build a wing in a
traditional CAD system based on specific profiles (like NACA series) can appreciate the importance of ESP
extensibility. By this technique, not only can the tedious nature of point production and fitting be avoided,
but the UDP subsystem is also parametrically driven. So in the case of NACA profiles, both the thickness
and chamber can be adjusted by .csm scripts.

ESP is also extensible through the use of user-defined codes (UDCs), that can be thought of as “macros”.
Since these UDCs are macros, there is no limitation on the how it interacts with the stack; a UDC can pop
zero or more Bodys off the stack and push zero or more Bodys back onto the stack. The current version of
ESP ships with the following UDCs:

• biconvex — generate a biconvex airfoil

• boxudc — similar to the box UDP

• diamond — generate a double-diamond airfoil

• flapz — cut a (deflected) flap in a Body

• gen rot — general rotation with two fixed points

• popupz — pop up a part of the configuration

• spoilerz — pop up a spoiler

• duct — generate a duct

• fuselage — generate a fuselage

• strut — generate a strut (between a duct and wing)

• wing — generate a wing

Deployable

ESP has been developed using a client-server architecture, which is similar to the architecture of many modern
software systems.

ESP’s back-end (server) is written in C, C++, and FORTRAN, and runs on a wide variety of modern
compute platforms, including various flavors of LINUX, Mac OSX, and several Windows operating systems.
It is in the server where nearly all the computations are done.

ESP’s user-interface (client) runs in most modern web browsers, without the need for any plug-ins. The
only requirements for the browser is that it support WebSockets and WebGL. At the current time, the
supported browsers include FireFox, Google Chrome, and Safari.a The browser code, which is written in
JavaScript, gives the user complete control of the graphical representation of the configuration, as well as
allows the user to modify the Feature Tree (by adding, modifying, or deleting Branches) and the Design
Parameters.

The entire ESP system is written as an open-source project, using the LGPL 2.1 license, and is distributed
as source from acdl.mit.edu/ESP.

Explicit Design Intent

The concept of Design Intent it important for any design project and is where the design is defined. For
an “aCAD” system, the Design Intent needs to include all multidisciplinary views or expressions. The
Design Intent should be readable and is at the core of communicating what the design entails. In traditional
“aCAD” and “mCAD” systems this important information only exists with the proprietary part/assembly
files, frequently only in an implicit form, and is therefore opaque.

aNote that Internet Explorer (IE) is not supported at this time due to internal errors in IE.

9

As can be seen from Fig. 1, Master Models are defined in .csm files that are human readable (ASCII),
using a stack-like language that is consistent with Feature Trees. This is where ESP holds the Design Intent.
It also contains looping and logical decisions via “patterns” (not seen in Fig. 1). This method of defining
the design makes it easy for other programs to create and/or edit any .csm file.

Embeddable

In addition to the .csm file, users can interact with the geometry subsystem (OpenCSM) through an Application
Programming Interface (API). An application that embeds OpenCSM will typically load a Master Model (from
a .csm file), interrogate and/or edit the Master Model (that is, its Feature Tree and Design Parameters),
execute the Feature Tree and create a Boundary Representation (BRep), interrogate the BRep, and “set”
and “get” sensitivities.

Because of the Open Source nature of the license and the modular nature of ESP, software components
can be placed in large and complex computing environments that are in use for high-fidelity engineering
analysis simulations. For example, EGADS can be used by CFD that does mesh adaptation, on-the-fly, to
allow for the placement of points on the actual geometry. OpenCSM can be inserted in the gradient-based
optimization loop to both drive the construction of new geometry and provide the parametric sensitivities
for locations on that geometry.

III. Sample Applications

The ESP system is currently in use in several organizations. Figures 5 to 8 show examples of several
configurations designed by or for users.

Figure 5. LDI injector configuration

Each of these configurations is quite complex, and each utilizes many of the features that ESP offers.
Table 2 shows the complexity of these models in terms of the number of design parameters, the number of

10

Figure 6. myPlane configuration, which is built from an assembly of user-defined components (UDCs)

Figure 7. Low Boom Flight Demonstrator

11

Figure 8. J20-like model for studying control effectiveness.

branches in the feature tree, and number of operations performed during the generation of the Boundary
Representation. The Table also contains statistics about the complexity of the resulting BRep in terms of
the number of Nodes, Edges, and Faces that each contain.

Table 2. Summary of typical aerospace configurations in ESP.

Configuration # Design # Feature-tree # Operations # Nodes # Edges # Faces

Parameters Branches

LDI combustor 11 113 3219 615 1039 386

myPlane 63 586 615 54 89 39

Low boom A/C 234 337 406 149 268 109

J20 161 1308 1307 211 336 133

12

IV. Multi-Models

ESP has been designed to generate families of linked models for multi-fidelity and multi-disciplinary
analysis. Figs. 9 through 11 are examples. These model were built from the same set of 33 scalar Design
Parameters and six array-valued Design Parameters that define the fuselage.

Fig. 9 contains the outer mold line (OML) for the complete glider; this model is suitable for use in a field
solver, such as Computational Fluid Dynamics (CFD) that could be used in the preliminary design process.

Figure 9. Outer mold line of glider that could be used for computational fluid dynamics.

Through the same Design Parameters, it is possible to generate a mid-surface aerodynamic (MSA) model
of the wing’s lifting and the wake sheet that emanates from its trailing edge, and which is shown in Fig. 10.
(This is an example of a non-manifold sheet Body.) Such a model could be used for a vortex-lattice method
that is utilized as part of the conceptual design process. It is important to note here that both of these
models (the OML and MSA) are attributed in a consistent way, such that one knows which Faces in the
OML are linked to which Faces in the MSA; this is key to transferring information between the two models.

Also through the same Design Parameters, it is possible to generate a built-up element model (BEM),
which is suitable for a finite element analysis (FEA) of the structure of the wing. This model, which consists
of wing surface panels, spars, and ribs, is shown in Fig. 11 with its default grids of quadrilaterals. Fig. 12
shows the same BEM model with its upper surface panels removed so that the internal structure can be
seen. Like the MSA, this model is not a solid Body, but instead a non-manifold collections of Faces. Again,
this model is attributed consistently with the OML, such that loads could be passed from a CFD analysis
on the OML to a FEA analysis on the BEM, using a conservative data transfer technique.9

It is worth a slight diversion to describe how the BEM was built. It started with a solid Body that
represents the OML of the wing alone, as shown in Fig. 13.

Then the non-manifold sheet Body shown in Fig. 14 was created by using the waffle UDP; this takes a
group of crossing lines in a plane and extrudes them up to create a non-manifold group of Faces.

Once these two Bodies were available, they were intersected, which trimmed the spars and ribs to be
only the parts within the OML. Then the OML was converted from a solid Body into a (manifold) sheet

13

Figure 10. Mid-surface aerodynamic model of the wing’s lifting surface and the wake sheet that emanates
from its trailing edge.

Figure 11. Built-up element model of the wing, with quadrilaterals and triangles associated with the surface
panels, spars, and ribs.

14

Figure 12. Built-up element model of the wing, with quadrilaterals and triangles associated with the surface
panels, spars, and ribs. The upper surface has been removed so that the inside can be seen.

Figure 13. Outer mold line of wing.

15

Figure 14. Waffle generated by a UDP that contains untrimmed spars and ribs.

Body that consisted of the OML’s Faces. The waffle was then subtracted from the outer sheet Body, which
caused the outer sheet Body to be scribed by the faces of the waffle; this resulted in the outer skin panels of
the wing. Finally the two parts were unioned, resulting in the BEM.

V. Summary

The Engineering Sketch Pad (ESP) has been described and its distinguishing features were identified.
These included:

• solid models — models are guaranteed to be realizable, watertight solids (unless purposely built as a
sheet or wire Body).

• feature-based — models are built using the constructive solid modeling paradigm; the features can
easily be suppressed to make simpler models.

• parametric — a set of externally-controllable Design Parameters are used to drive all aspects of model
generation; in this way, a single model can be used in a design setting to create Bodys of different sizes
and shapes.

• differentiated — sensitivities of all aspects of a Body (and a grid on it) with respect to the Design
Parameters can be generated analytically for many configurations without regeneration. For cases
where this is not possible, a robust finite-difference technique is automatically invoked.

• associative — global and local attributes, which can be applied to various parts of a Body, are persistent
through rebuilds. This capability is key to the linking of multi-models.

• extensible — users can write user-defined primitives (UDPs) for non-standard shapes (such as air-
foil profiles), which can be loaded dynamically by ESP. This makes ESP particularly well suited to

16

aerodynamic configurations, which require great control over the form of the craft.

• deployable — the client/server architecture is freely-downloadable as source that is licenced under
LGPL 2.1. The server runs on nearly all variants of LINUX, OSX, and Windows, and the client uses
most modern browsers, such as FireFox, Google Chrome, and Safari.

• explicit Design Intent — the design is fully described using ESP’s input .csm files, which are ASCII,
human readable and can easily be manipulated with any text editor or other program.

• embeddable — the Application Programming Interfaces (APIs) allows ESP to be embedded into other
software environments of various levels of complexity.

The above makes ESP ideally suited for the generation of multi-disciplinary and multi-fidelity models.
The key to the use of these multi-models is the ability to link the models together. In other words, it is
important to know which surface in model A is associated with which surface in model B, especially if one
wants to transfer load and/or displacements amongst the models. Fortunately, ESP contains a robust set of
attributions that are carried throughout the regeneration process.

Acknowledgements

This work was funded by two projects. The first is the NASA Cooperative Agreement NNX11AI66A:
Topic 2.1 - MDAO Open-source Engineering Framework; Chris Heath was the Technical Monitor. The second
is the CAPS project, which was funded under AFRL Contract FA8050-14-C-2472: “CAPS: Computational
Aircraft Prototype Syntheses”; Ed Alyanak is the Technical Monitor.

References

1Coons, S.A., and Mann, R.W., “Computer-Aided Design Related to the Engineering Design Process”, Technical Memo-
randum 8436-TM-5, Electronic Systems Laboratory, MIT, October 1960.

2Waguespack, C., “Mastering Autodesk Inventor 2015 and Autodesk Inventor LT 2015”, John Wiley & Sons, 2014, pp 19.
3Snepp, D.K. and Pomeroy, R.C., “A Geometry System for Aerodynamic Design”, AIAA-87-2902 January 1987.
4Haimes, R. and Dannenhoffer, J.F., “The Engineering Sketch Pad: A Solid-Modeling, Feature-Based, Web-Enabled

System for Building Parametric Geometry”, AIAA-2013-3073, June 2013.
5Dannenhoffer, J.F., “OpenCSM: An Open-Source Constructive Solid Modeler for MDAO”, AIAA-2013-0701, January

2013.
6Haimes, R., and Drela, M., “On the Construction of Aircraft Conceptual Geometry for High Fidelity Analysis and

Design”, AIAA-2012-0683, January 2012.
7http://www.opencascade.org
8Dannenhoffer, J.F. and Haimes, R., “Design Sensitivity Calculations Directly on CAD-Based Geometry”, AIAA-2015-

1370, January 2015.
9Dannenhoffer, J.F. and Haimes, R., “Conservative Fitting for Multi-Disciplinary Analysis”, AIAA-2014-0294, January

2014.

17

