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a particular design. To this end a geometry system that can support multi-disciplinary,
multi-fidelity analysis from a single source is required. The Computational Aircraft Pro-
totype Syntheses (CAPS), which is a part of the Engineering Sketch Pad (ESP), satisfies
the above by combining proven computational geometry, meshing, and analyses model
generation techniques into a complete browser-based, client-server environment that is ac-
cessible to the entire design team of an aerospace vehicle. CAPS links analysis and meshing
disciplines to any ESP geometry model via dynamically-loadable Analysis Interface Mod-
ule (AIM) plugins. CAPS is accessed from either a browser-based user interface and or
Multi-Disciplinary Analysis and Optimization (MDAO) framework through a programing
interface. In this paper we describe the fundamental building blocks of CAPS and ESP.
The paradigm shift of creating geometry for multi-fidelity design is described in detail and
represented in ESP scripts. We then demonstrate the use of this multi-fidelity geometry
to support multi-fidelity, multi-physics analysis including discipline coupling.
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Nomenclature

AIM Analysis Interface Module
API Application Programming Interface
BEM Built Up Element Model
BRep Boundary Representation
CAD Computer Aided {Drafting, Drawing, Design, Development}
CAPS Computational Aircraft Prototype Syntheses
CSG Constructive Solid Geometry
EGADS Engineering Geometry Aircraft Design System
ESP Engineering Sketch Pad
MDAO Multi-Disciplinary Analysis and Optimization
MSA Mid-Surface Aero
OML Outer Mold Line
OpenCSM Open-source Constructive Solid Modeler
SBO Solid Boolean Operators
UDC User-Defined Component
UDP User-Defined Primitive

I. Introduction

In the design of real configurations, such as aerospace vehicles, geometry plays a central role. For
a given shape, the number of unique geometry models is almost as great as the number of disciplinary
simulation models. Each simulation model will usually read certain geometry and mesh formats or have
other requirements peculiar to it. However, no matter the geometry/mesh format or requirements, it must
be based on a realizable and consistent geometric object(s). This fact allows for all geometry and mesh
requirements to originate from a single common parametric description.

Beyond the differences caused by disciplinary analyses, there is also the differences created between anal-
ysis and manufacturing. When analyzing (or designing/optimizing) some physical object that will ultimately
be manufactured, it is common practice to create an additional model beyond those generated for the sim-
ulation design tools. This is a fully realizable 3D representation in a CAD or CAD-like system. Generally
great care must be taken to ensure that the design and manufacturing representations are close enough to
each other so that what is built is the same as what was designed. This care requires a large amount of time
(and human intervention), making automation of the process extremely difficult, if not impossible, especially
in a Multi-Disciplinary Analysis and Optimization (MDAO) environment.

The most common method for transferring geometry amongst the various analyses is via file standards.
The first commonly used standard was the IGES file format which contains data that is defined as disjoint and
unconnected surfaces and curves; that is, it only contains geometry with no notion of topology. Topology, in
this context, is the hierarchy and connectivity of the various geometric elements. Since 3D meshing software
ultimately requires a closed watertight model, much effort is therefore needed to take the geometric data,
trim the curves and surfaces, and then deduce the topology. STEP, a more complete file standard, supports
the transmittal of topology as well as geometry so that a Boundary Representation (BRep) can be built.
This is the preferable file type to hold geometric data. Surprisingly, this format is seldom used, probably due
to the fact that constructing a STEP reader is complex and it requires a complete solid modeling geometry
kernel to deal with the data.

A larger problem with both IGES and STEP formats is the fact that they are static (non-parametric)
geometry models. Parametric geometries allow a designer to not only rapidly modify the geometry, but also
allow the possibility of determining the sensitivities of the simulation analyses results with respect to the
design parameters. With IGES or STEP one can only do analysis on that particular geometry with no ability
to modify it. If IGES or STEP happen to be the required input format by an individual disciplinary analysis
code, then these must be generated by a parametric geometry model first before the analysis is performed
in order to be able to determine the design sensitivities.
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II. Computational Aircraft Prototype Syntheses (CAPS)

Currently, most organizations have often found it difficult to bridge the gap between conceptual design,
where the geometry may be of low fidelity, and fully realizable 3D representations. To alleviate this problem
and those associated with transmitting geometry via file standards, geometry kernel APIs that couple directly
with the source of the geometry can be utilized. One clear advantage to this approach is that the geometry
never needs to be translated and hence remains simpler and closed to within the modeler’s tolerance. Also,
a geometry system that can be used at a conceptual level and can continue to be leveraged throughout
preliminary and into detailed design has obvious advantages.

Figure 1: An ESP example of the mid-surface-aero (MSA), built-up-element (BEM), and outer-mold-line
(OML) models that are generated from a single generic wing/body configuration. The three geometric
models, which all have the same driving parameters, are colored based upon the sensitivity of the local
surface normal to changes in the wing’s camber. Note that the MSA and OML models show the maximum
sensitivities near the maximum camber position, as expected; the BEM does not show such sensitivities since
the displacements caused by camber changes are not normal to the surfaces of the BEM.

File standards and kernel APIs are for dealing with a static configuration once it has been defined; such a
view is sufficient for analysis. But for design, the ability to deal with the process by which the configuration
is defined and built is paramount. In parametric CAD systems, the configuration definition is done through
a master-model that consists of both a build recipe (called the feature tree) and a set of driving parameters.
This recipe (where the design intent is realized) must be made available to the MDAO process since it defines
the design space and informs how to build and optimize the configuration. Most CAD systems hold this
information in proprietary file formats that cannot easily be read or modified by outside programs.

Foundational work has been accomplished to develop an integrated software suite that solves the issues
discussed above. The resulting capability provides the tools to generate various representations of a design
(either multi-fidelity or multi-disciplinary, or both) from a single master model (see Figure 1). A user accesses
this software through a web browser and this complete suite is referred to as the Engineering Sketch Pad
(ESP),1 which is a fully-parametric, attributed, feature-based solid-modeling system.

ESP is built both upon the WebViewer1 and upon OpenCSM.2 OpenCSM in turn is built upon
EGADS3 and OpenCASCADE. The WebViewer is a WebGL-based visualizer for three-dimensional config-
urations and data while OpenCSM is a constructive solid modeler. There is no absolute requirement to
make ESP dependent on OpenCASCADE; rather this CAD kernel is chosen because it is open-source and
can be distributed with ESP. In fact, all of this software is open-source, freely available without licensing
restrictions, and is in general use.4

Building a tightly integrated software system that contains many access points, needs to be able to be
user driven, and fundamentally improves upon the multi-fidelity and multi-disciplinary design process is not
an easy task. This is accomplished in CAPS by attacking the process-related bottlenecks head-on. For
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example, when performing a vortex lattice aerodynamic analysis of a wing with the geometric description
of an OML, the wing needs to be deflated to a single surface. Typically this requires difficult, possibly
error-prone, user-intensive reverse engineering and may provide situations that are, at best, ambiguous.
The strategy taken here is to forward engineer where, in this case, the mid-surface aerodynamic shape is
generated directly. In general, the CAPS software allows users (from their web browsers) to

• deal with legacy geometry

• allow for easy assembly of component models into aircraft concepts

• visually exercise their models

Component or subcomponent models can be generated as either compiled-language plug-ins or as scripts
that build geometry. CAPS allows user and programmatic access (through a high-level API) to:

• change a parameter value (or values) and regenerate the geometry

• annotate the geometry through attribution

• get geometric sensitivities with respect to the design parameters

• generate geometry at a fidelity commensurate with the analysis to be used

• mesh (or setup the input for meshing) the geometry, specifically for the analysis at-hand

• setup for the execution of the specific analysis code

A simplified block diagram of the CAPS system can be seen in Figure 2. The boxes displayed are
individual software components that are either expressed as APIs or dynamically loadable plug-ins. The
cylindrically shaped entities refer to information or collections of files found on disk. The arrows reflect the
internal movement of specific types of (meta-)data within CAPS. Each functional component is described
below.

A. CAPS Executive

The primary programmatic access point into CAPS is through the CAPS Executive. It is envisioned
that there will be 3 different approaches to using CAPS. One way is to interactively build a model and
exercise the build to examine aspects such as the design sensitivities. Another scenario is to run one or more
analysis packages interactively. Both of these approaches use an enhanced version of ESP (within a Web
Browser) to interact with CAPS directly. The last approach has CAPS driven by an optimizer or by an
MDO framework, such as SORCER,5 ModelCenter6 or OpenMDAO.7 The access, under all of these cases,
is through the CAPS API, which in essence, is the portal to all of the CAPS functionality (the lower 2
dotted arrows as seen at the left of Figure 2).

The CAPS API is ‘object-based’ very much in the same manner as both EGADS and OpenCSM.
‘Object-based’ (unlike object-oriented) is a technique that allows for the use of objects in traditional procedural-
based programming. This is done with opaque (or blind) pointers that the API functions parse and then
perform the desired functions driven by the type of object input. The hierarchy of the CAPS objects can
be seen in Figure 3 and include the following types:

• capsProblem. The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data associated with the
run(s), which can be both multi-fidelity and multi-disciplinary. Various data entries can be connected
via linkage ports found in all input objects. There can be multiple Problems in a single execution of
CAPS and each Problem is designed to be thread safe allowing for multi-threading of CAPS at the
highest level.
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Figure 2: A block diagram of the ESP system with CAPS. The boxes on the left reflect the access points
into the system. The core portions are both the Geometry and Analysis Subsystems. The AIM boxes (like
the UDPs of the Geometry Subsystem) use a plugin technology that enhances CAPS at run-time. All blue
boxes are ESP proper where the tan boxes reflect code from elsewhere.

• capsValue. A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both. Also, Value Objects
can refer to mission parameters that are stored at the top-level of the CAPS database. The values
contained in any input Value Object can be bypassed by the linkage connection to another Value (or
DataSet) Object of the same shape. Attributes are also cast to temporary (User) Value Objects.

• capsAnalysis. The Analysis Object refers to an instance of running an analysis code. It holds the input
and output Value Objects for the instance and a directory path in which to execute the code (though
no explicit execution is initiated). Multiple various analyses can be utilized and multiple instances of
the same analysis can be handled under the same Problem.

• capsBound. A Bound is a logical grouping of BRep Objects that all represent the same entity in an
engineering sense (such as the “upper surface of the wing”). A Bound may include BRep entities from
multiple Bodies; this enables the passing of information from one Body (for example, the aero OML)
to another (the structures Body).

• capsVertexSet. A VertexSet is a connected or unconnected group of locations at which discrete infor-
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mation is defined. Each connected VertexSet is associated with one Bound and a single Analysis. A
VertexSet can contain more than one DataSet. A connected VertexSet can refer to 2 differing sets of
locations. This occurs when the solver stores its data at different locations than the vertices that define
the discrete geometry (i.e. cell centered or non-isoparametric FEM discretizations). In these cases the
solution data is provided in a different manner than the geometry itself.

• capsDataSet. A DataSet is a set of engineering data associated with a VertexSet. The rank of a DataSet
is the (user/pre)-defined number of dependent values associated with each vertex; for example, scalar
data (such as pressure) will have rank of one and vector data (such as displacement) will have a rank
of three. Values in the DataSet can either be deposited there by an application or can be computed
(via evaluations, data transfers, or sensitivity calculations).

Object SubTypes Parent Object

capsProblem Parametric, Static

capsValue GeometryIn, GeometryOut, capsProblem,

Branch, Parameter, User capsValue

capsAnalysis capsProblem

capsValue AnalysisIn, AnalysisOut capsAnalysis,

capsValue

capsBound capsProblem

capsVertexSet Connected, Unconnected capsBound

capsDataSet User, Analysis, Interpolate, capsBound

Conserve, Builtin, Sensitivity

Figure 3: The hierarchy of CAPS objects.

B. Geometry Subsystem

The Geometry Subsystem is responsible for building geometry at the requested level of fidelity using the build
recipe. The result is a Boundary Representation (BRep) that is a hierarchical object container that relates
geometric entities through a topology. These BRep objects (geometry and topology) are the fundamental
geometric model instances that are passed around the ESP/CAPS system. This subsystem is comprised of
OpenCSM (the parametric build component) and EGADS (a simple object-based geometry kernel) which
depends on OpenCASCADE (an open-source solid-modeling API).

Attribution of the objects found within the BRep can be accomplished during the build, or anytime
thereafter using EGADS functions. This metadata is persistent when applied to topological objects and
saved while writing the geometry (in an EGADS native file format).

EGADS also provides the following functions:

• BRep parsing. Given a BRep, the constituent hierarchical objects can be traversed and the overall
connectivity understood.

• Tessellation. A complete and watertight (for a solid) triangulation can be requested for any BRep.
This tessellation is of high quality and can be adjusted by a number of parameters. This is a good
starting point for many meshing schemes (and can be thought of as STL data, but closed). Though
currently not automatic, quadrilaterals can be overlaid on top of the triangles in a way that maintains
the watertight nature of the tessellation.

• Evaluations & inverse evaluations. Given a geometric object and its parameter(s) (that refer to the
position within the object: for example, curves have a t parameter and surfaces have [u, v] parameters)
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return the physical coordinates. An inverse evaluation is the opposite function, that is given a position
in physical space what is the closest position on the object to that point and what are the corresponding
geometric parameter(s). These are important functions needed by most grid generation algorithms.

• Import and export of standard files. Both IGES and STEP can be imported to this system or can be
exported by utilizing the functionality of EGADS.

The parametric engine OpenCSM provides a top down perspective on construction, which is based
loosely on Constructive Solid Geometry (CSG). OpenCSM can easily generate various solid primitives,
which can be subsequently used by the Solid Boolean Operators (SBO) to make more complex shapes. Also
a 2D sketcher can be utilized to produce closed loops that can be expanded into solid entities by features
such as extrudes, revolves, lofts and blends. OpenCSM has the ability to apply features such as fillets
and chamfers. This is all within the realm of traditional CAD systems, but this system has the following
differentiating characteristics:

• Parametric sensitivities. Parametric derivatives can be retrieved for any collections of parameters
at specific locations on the geometry; see Figure 1. This is accomplished via a hybrid scheme of
analytic differentiation (where possible), compiler-based code differentiation, and point-tracking finite-
differences (where analytics are not feasible).

• Multi-fidelity geometric expression. The ability to generate geometry that is at the correct fidelity
for the analysis at-hand is critical for an automated process (again, see Figure 1). Commercial CAD
generates a model of single fidelity, which is rarely appropriate for anything but manufacturing. The
currently supported CAPS expressions of fidelity can be see in Table 1.

Table 1: Current CAPS supported Fidelities

Fidelity Description Fidelity Description

1 Beam 11 MidSurface Aero

2 ASWING 12 MidSurface w/ Control Surfaces

3 LSM 13 AVL

4 Built-up Element Model 14 OML/Wake – Full Potential

5 Solid Structural Model 15 OML – Euler

16 OML – RANS

• Custom features. Provides a bottom up construction paradigm that can be fully incorporated into the
larger build environment – see UDP (below). This can be thought of as a custom CAD feature, but
is more powerful than that. Parametric geometry for full (or sub) components can be constructed in
this manner. These features can be used to encapsulate conceptual knowledge and have it expressed
in realizable geometry, which can be treated the same as any other OpenCSM geometric primitive.

C. User Defined Primitive (UDP) Plug-ins

A dynamic-load run-time plug-in architecture is used to ensure that one can add custom features to
OpenCSM without changing the software. Parameters that influence the construction are registered when
the plug-in is first loaded. The plug-in must also respond to these requests:

• Adjust a parameter value: the value for a parameter can be modified.

• Build: the request for a build. The current suite of parameter values is used to generate the geometry.
EGADS functions must be invoked to build the BRep that is returned to OpenCSM.
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• Sensitivity: if possible return the parametric sensitivities for the selected set of parameters. If this
is not computed within the UDP, OpenCSM forces finite-differences to be applied to compute the
derivatives for any parameter that is part of the UDP.

D. Analysis Subsystem

The Analysis Subsystem is where analysis data is prepared, held, queried, and where meshing is either
accomplished or inputs are prepared for the use of a stand-alone grid generation package. A BRep at the
proper level of fidelity (optionally with its tessellation) can be retrieved from the Geometry Subsystem, which
is used for the meshing process. Again, to maintain the flexibility of CAPS, all specific analysis packages
have (at least) one associated plug-in to perform the associated analysis. Multiple plug-ins may be attached
to a single analysis package if the analysis has different execution modes (with different input requirements)
and/or requiring differing levels of geometric fidelity. See the discussion of the AIM plug-ins below.

This subsystem is responsible for parsing the analysis output and aggregating the results to be passed
to the CAPS Executive or maintained within this subsystem to pass on to another analysis module (in a
multi-disciplinary setting). The plugin also handles retrieving the salient outputs (that can be constructed
as objective functions) from the analysis.

E. Analysis Interface Module (AIM) Plug-ins

The type of geometric fidelity expected by the plug-in is specified at dynamic load registration (which is
something like: Outer Mode Line, Mid-Surface Aero, Built-up Element Model, Structural Solid Model, etc.)
as seen in Table 1. Any inputs (not associated with the BRep) need to be specified at registration. The
following functions are a part of any AIM plug-in:

• Attribute/Input Checking: this AIM function is invoked before any mesh/input file generation to
ensure that all of the required data can be found.

• Meshing: the input BRep and/or tessellation are used to either perform the meshing directly (if possible
or the mesh system has an API) or to provide input to a grid generator. Note that the mesh vertices
that sit on geometry (as described in the input BRep) need to be associated back to the geometry.
This is important for generating parametric sensitivities and performing conservative data fitting.8

Most stand-alone grid generation systems maintain this data internally but do not make it available
as output. Any attempt to re-associate this data by inverse evaluations is slow and not robust.

• Quilting: after meshing and the association of the mesh vertices back to the geometry, this function
specifies collections of BRep objects that may act as a single engineering “surface”. This function also
specifies element types so that the solver-based discretization is fully described.

• Analysis Input File(s) Generation: the input values and attributes found on the geometry are used to
construct and generate the input file(s) required to run the analysis.

• Output file parsing: this is required to get performance data, displacements, pressures or other in-
formation required to be used as input to another analysis module or to inform the optimizer of the
objective functional value(s).

• Conservative Data Transfer Functions:8 in order to perform the interdisciplinary coupling in a conser-
vative manner, functions that compute interpolation within a surface element, integration of quantities
over an element (and their backward or dual variants) are needed.

F. pyCAPS

As previous detailed, CAPS is designed to be incorporated into a larger MDO infrastructure; as such
pyCAPS provides a light weight, Python-based framework that logically ties together features of the CAPS
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“C” API to enable rapid generation of problems in the Python environment. To date not all features of the
CAPS API have been utilized in pyCAPS.

In its current state, pyCAPS consists of a single parent class, ‘capsProblem’, and three children classes:
‘capsAnalysis’, ‘capsGeometry’, and ’capsDataTransfer’. The capsProblem class controls the overall work-
flow for a given problem (similar to the object defined in Section II.A of the same name) and contains
functions to load the geometry, load AIMs, setup data transfers, etc. The children classes provide additional
functionality to the capsProblem class for dealing with specific aspects of their respective domains. Multiple
analysis (capsAnalysis class) and data transfer (capsDataTransfer class) objects may be loaded into a single
capsProblem object and are book-kept by the class in a dictionary format for easy reference. The following
outlines additional details for the children classes:

• capsAnalysis - A single instance of the capsAnalysis class is synonymous with an instance of a loaded
AIM (Section II.E). This class provides the user the ability to set input values (e.g., Mach number,
angle of attack), retrieve output variables (e.g., lift or drag coefficient), and other functionality outlined
in Section II.D for a given analysis plug-in.

• capsGeometry - This class consists of functions to interact with the geometry model (e.g., set a geo-
metric design parameter) loaded into a given capsProblem.

• capsDataTransfer - A single instance of the capsDataTransfer class corresponds to an instance of a
capsBound (Section II.A), with capsDataSets (Section II.A) being referenced in a dictionary format.
The primary function of the capsDataTransfer class is to execute the CAPS routines needed to initiate
a data transfer to take place for given variable (i.e., capsDataSet).

III. Example Problems

To highlight the multi-fidelity, geometric parametrization provided by ESP and CAPS, a generic glider
is chosen as an example problem. Some effort is taken to ensure that this example is grounded in reality
and is representative of an 18 (m) span class glider. The global quantities defining the glider geometry are
provided in Table 2 with the corresponding model shown in Figure 4. Please note that the intention here is
to demonstrate capability, not to design a glider.

Table 2: Global Glider Values

Variable Value

Aspect Ratio 27.5

Wing Taper Ratio 0.8

Wing Area 127 (ft2)

Wing Sweep 0.0 (◦)

Flight Weight 1000 (lbs)

A. Geometry Construction

In a multi-discipline, multi-fidelity environment, multiple instances of geometry (such as shown in Figure 6)
must be made from a single set of design parameters. This is done here through the use of OpenCSM,2

which is a parametric, constructive solid modeling system that was designed specifically to be used as the
front-end for analysis and design systems (including adjoint-based design systems).

Configurations in OpenCSM are defined in an ASCII file, which can be prepared either by hand,
interactively through the ESP user interface, or can be written externally by an editor or any program that
can write an ASCII file.
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Figure 4: Solid Geometry Representation of Glider Example – CAPS fidelity 15/16.

The configuration construction process in OpenCSM follows the traditional construction process avail-
able in most other modeling systems. It works by first constructing the base geometry; this can be done
either with simple primitives (such as a box, cylinder, cone, sphere, or torus), by extruding, rotating, ruling,
or blending two-dimensional sketches, or via user-defined primitives — which turn out to be very useful
when creating aerospace vehicles. Once the base geometry is made, it can be moved (through translation,
rotation, scaling, or mirroring operations), various base geometries can be combined (with Boolean unions,
intersections, and differences), and any geometry can be modified (for example, by adding fillets or cham-
fers). The order in which these operations are done defines the relationship amongst the various operations
in a natural way through the use of a stack of operations.

To understand this process, consider the various models that are required for a wing; a similar process is
used for the fuselage (and engines for non-glider configurations).

The process begins with the definition of the user’s design parameters. An important feature of OpenCSM
is that the meanings of the design parameters are defined by the writer of the model. So for a wing, one
may define design parameters such as:

# wing design parameters

despmtr xloc 6.0 # x-location of wing in aircraft model

despmtr zloc 0.2 # z-location of wing in aircraft model

despmtr area 127 # planform area

despmtr aspect 27.5 # aspect ratio

despmtr taper 0.8 # taper ratio

despmtr twist 0.0 # tip washout (deg)

despmtr sweep 0.0 # leading edge sweep (deg)

despmtr dihedral 5.0 # diherdal (deg)

despmtr camber 0.04 # max camber/chord of NACAxxxx

despmtr thickness 0.12 # thickness/chord of NACAxxxx

despmtr sharpte 1 # =1 to modify thickness to close TE

despmtr spar1 0.25 # fraction of chord for forward spar

despmtr spar2 0.75 # fraction of chord for rearward spar

despmtr nrib 11 # number of ribs

To begin the construction process for a wing, one needs to compute geometric quantities from the design
parameters. This is done with statements such as:

set span sqrt(area*aspect)

set span2 span/2

set cbar area/span

set croot 2*cbar/(1+taper)

set ctip taper*croot

set dxtip span2*tand(sweep)

set dztip span2*tand(dihedral)

Now one can construct the various geometric models.
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The first model to be constructed is a simple beam model, which one may use to compute simple
deflections and aerodynamic twists of the wing. The very simple model in constructed of two line segments
at the quarter-chord location and halfway between the upper and lower surfaces. The OpenCSM statements
that do this are:

# build wing beam Body (at quarter-chord) (fidelity==1)

ifthen fidelity eq 1

ifthen mirror ne 1

skbeg croot/4 0 0

linseg dxtip+ctip/4 +span2 +dztip

skend

attribute ID !ID

attribute Fidelity 1 # simple 1D model (aka, beam)

else

skbeg dxtip+ctip/4 -span2 +dztip

linseg croot/4 0 0

linseg dxtip+ctip/4 +span2 +dztip

skend

attribute ID !ID

attribute Fidelity 1 # simple 1D model (aka, beam)

endif

endif

Here fidelity is set to 1 to select the simple beam model, and mirror is a flag to tell if this wing consists
of only the right wing (mirror 6= 1) or should be mirrored to generate both wings. The various attribute

statements put a unique ID and Fidelity on the geometry so that it can be identified through the rest of
the CAPS system. This model, together with the beam model of the fuselage, is shown in Figure 6(a).

The second model to be constructed is an outer mold line (OML) for the wing. The OpenCSM script
used to build this is:

# build wing outer-mold line (fidelity==4 or 15)

ifthen fidelity eq 4 or fidelity eq 15

mark

ifthen mirror eq 1

udprim naca thickness thickness sharpte sharpte camber camber

rotatex 90 0 0

scale ctip

rotatey -twist 0 0

translate dxtip -span2 +dztip

endif

udprim naca thickness thickness sharpte sharpte camber camber

rotatex 90 0 0

scale croot

udprim naca thickness thickness sharpte sharpte camber camber

rotatex 90 0 0

scale ctip

rotatey -twist 0 0

translate dxtip +span2 +dztip

rule

ifthen fidelity eq 4

store wingOML

endif

endif

The OML gets built whenever the user wants the OML directly (fidelity = 15) or during the process
of generating the built-up-element model (fidelity = 4) (described below). One of OpenCSM’s unique
capabilities is used here: the user-defined primitive (UDP). OpenCSM ships with several pre-built UDPs
that have been found to be useful for the construction of aerospace vehicles, including various airfoil gener-
ators, super-ellipses, and a “waffle” (also described below). In the above code snippet, one can see the use
of the “naca” UDP, which generates a NACA 4-digit airfoil section with a given thickness and camber; since
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the published definition of the NACA 4-digit series has a blunt trailing edge, an option has been added to
modify the x4 coefficient so as to generate a sharp trailing edge (this option has been used here). The actual
construction of the configuration is composed of the solid body that is generated when the various airfoil
sections are connected with “rule”d surfaces. Note that if fidelity = 4, then the resulting model is stored
(into wingOML) for latter use, instead of being left on the stack.

The third model is the mid-surface aerodynamic model, which is made of the wing’s camber sheet. The
“naca” UDP has been written so that if the thickness = 0 the camberline is generated. This is exploited
in the following:

# build wing mid-surface aero (fidelity==11)

ifthen fidelity eq 11

mark

ifthen mirror eq 1

ifthen camber eq 0

skbeg 0 0 0

linseg 1 0 0

skend

else

udprim naca thickness 0 camber camber

endif

rotatex 90 0 0

scale ctip

rotatey -twist 0 0

translate dxtip -span2 +dztip

endif

ifthen camber eq 0

skbeg 0 0 0

linseg 1 0 0

skend

else

udprim naca thickness 0 camber camber

endif

rotatex 90 0 0

scale croot

ifthen camber eq 0

skbeg 0 0 0

linseg 1 0 0

skend

else

udprim naca thickness 0 camber camber

endif

rotatex 90 0 0

scale ctip

rotatey -twist 0 0

translate dxtip +span2 +dztip

rule

attribute ID !ID

attribute Fidelity 11 # 2D model (aka, mid-surface aero)

endif

This model, together with a simple model of the wake sheet, are shown in Figure 6(b).
The most complex of the models associated with a wing is the built-up-element (BEM) model, which

consists of the wing’s ribs and spars, as well as the various skin panels between these ribs and spars. The
OpenCSM code for generating such a BEM is:
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# build BEM model (fidelity==4)

ifthen fidelity eq 4 and nrib gt 0

set nwaffle nrib+ifpos(spar1,2,0)+ifpos(spar2,2,0)

dimension waffle nwaffle 4 0

# ribs

patbeg i nrib

set waffle[i,1] -0.10*croot

set waffle[i,2] span2*(2*i-nrib-1)/nrib

set waffle[i,3] 1.1*max(croot,dxtip+ctip)

set waffle[i,4] waffle[i,2]

patend

# spars

ifthen spar1 gt 0

set nrib nrib+1

set waffle[nrib,1] spar1*ctip+dxtip

set waffle[nrib,2] -1.01*span2

set waffle[nrib,3] spar1*croot

set waffle[nrib,4] 0

set nrib nrib+1

set waffle[nrib,1] spar1*ctip+dxtip

set waffle[nrib,2] 1.01*span2

set waffle[nrib,3] spar1*croot

set waffle[nrib,4] 0

endif

ifthen spar2 gt 0

set nrib nrib+1

set waffle[nrib,1] spar2*ctip+dxtip

set waffle[nrib,2] -1.01*span2

set waffle[nrib,3] spar2*croot

set waffle[nrib,4] 0

set nrib nrib+1

set waffle[nrib,1] spar2*ctip+dxtip

set waffle[nrib,2] 1.01*span2

set waffle[nrib,3] spar2*croot

set waffle[nrib,4] 0

endif

udprim waffle Depth +4*croot Segments waffle

attribute name $wing_structure

translate 0 0 -2*croot

store wingWaffle

# keep part of wingWaffle inside wingOML

restore wingWaffle

restore wingOML

intersect

# break the wingOML with the wingWaffle and extract the shell

restore wingOML

restore wingWaffle

subtract

extract 0

# sew the two SheetBodies together

union 0 0 1e-5

# set the spacing along Edges

udprim createBEM filename $BEM.dat space 0.02 imin 3 imax 99

endif

As can be seen, the construction of this model uses the wingOML that was constructed previously. Key to
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the generation of this model is another UDP, named “waffle”, which takes a series of interconnected lines
segments and then extrudes them for a given Depth, creating a waffle-like non-manifold group of Faces, as
shown in Figure 5. In this case, the interconnected line segments represent the footprint of the ribs and
spars, which are generated on the fly by the above code; here the patbeg and patend statements are used
to denote a looping structure, called a “pattern” in the CAD world.

Figure 5: Result of the “waffle” UDP, together with the wing OML. These are used in the generation of the
built-up-element model that can be seen in Figure 6(d).

The actual BEM is constructed by the following sequence:

• build the OML (stored in wingOML)

• build the waffle (stored in wingWaffle)

• keep the part of waffle that is inside the OML by using a Boolean intersection

• scribe the OML at the ribs and spars by subtracting the waffle from the OML

• keep only the outer skin of the scribed body by extracting its external Faces

• finally, combine (union) the ribs/spars that are internal to the OML with the OML’s skin panels to
generate the final BEM, which is shown in Figure 6(d).

Since the full glider is composed of three wing-like bodies (the wing, the horizontal tail, and the ver-
tical tail), it makes sense to encapsulate the above into macro-like scripts, which are called user-defined
components (UDCs) in OpenCSM. In the present example, a file named wing.udc contains all of the above.

Not shown here (because of space limitations) is the ability to cut flap-like objects into any lifting surface.
This is done through the use of the flapz.udc. The arguments to this UDC are the projection of the shape
of the flap (in the z direction), the size of the gap between the flap and the wing, and the flap’s deflection.
When executed, this UDC modified the body on the top of the stack so as to generate the ailerons, elevators,
and rudder that are shown in Figure 4.

The fuselage is generated in a similar way; in this case, the cross-sectional shape is defined by super-
ellipses that are constructed by the “supell” UDP. Like the wing, the fuselage is encapsulated into a UDC
(named fuselage.udc) so that is can be easily reused.

The final assembly of the glider models, shown in Figure 4, is accomplished by combining the outputs of
the UDCs.
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(a) Beam model – CAPS fidelity 1

(b) Mid-plane aerodynamics with wake sheet – CAPS fidelity 11

(c) Lifting surfaces cross sections – CAPS fidelity 13

(d) Wing structural model – CAPS fidelity 4

Figure 6: Example geometric fidelities of myGlider.csm which includes the OML as seen in Figure 4.
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B. Low-Fidelity Aerodynamic Trim Optimization

A trim optimization problem is performed using an AIM that accesses the Athena Vortex Lattice (AVL)
aerodynamic solver.9 Currently the AIM does not expose all of AVL’s capabilities; however what is exposed
is the ability to perform analysis at a fixed Mach number, angle of attack, sideslip angle, roll rate, pitch rate,
yaw rate, and control deflection. The outputs include the static and dynamic stability derivatives about the
analysis input condition.

Figure 7: AVL Analysis Model

The AVL model shown in Figure 7 is generated from the geometry fidelity shown in Figure 6c. The
AIM takes the attributed myGlider.csm file and constructs the lifting-surface meshes shown. The mesh
resolution is controlled through the attributes defined on the geometry.

An example Python script using pyCAPS to define and execute the AVL AIM is presented in Figure 9.
This Python script is easily modified for use as an objective function in an optimization problem, where the
problem is solved using one of the available optimizers in the SciPy library. The trim optimization problem
described by Equations 1 and 2 is solved in this manner. Each iteration of the optimization process passes
a new set of control surface deflections and angles of attack until the optimal solution is found and the
constraints are met.

minimize {CD,i} (1)

such that
CL = CL,target and CM = CM,target (2)

where, CD,i is the induced drag coefficient, CL is the lift coefficient, and CM is the moment coefficient.
In addition to the trim optimization problem, an untrimmed (CM 6= CM,target) angle of attack sweep is

also performed through a series of calls to the Python script in Figure 9, where the angle of attack is updated
each time. The resulting lift and drag coefficients are retained for comparison with the trimmed solutions.

To define a realistic trim vs. untrimmed condition for this example, AVL is used to estimate the aero-
dynamic center location of the glider. It was found to be located 6.956 (ft) from the nose of the vehicle. For
simplicity the center of gravity assumed to be at the quarter chord location of the wing root is 6.597 (ft)
from the nose. Using a reference chord of 2.388 (ft) this becomes a 15% positive static margin.

CM =
My

q ∗ Cref ∗ Sref
(3)
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Figure 8: AVL Trimmed and Untrimmed Drag Polars

With a weight of 1000 (lbs) the nose down or negative moment caused by the positive static margin
becomes -359.12 (ft-lbs). Using Equation 3, where My is the moment, q is the dynamic pressure, Cref is the
reference chord and Sref is the reference span, the moment coefficient caused by the static margin is -0.185.
Therefore, for a trimmed solution CM,target must be 0.185 in Equation 2 measured about the aerodynamic
center location.

A drag polar comparison between an untrimmed and trimmed configuration over a range of target lift
coefficients is shown in Figure 8. This problem is relatively easily achieved using ESP geometry, with CAPS
enabled access to AVL driven by the pyCAPS interface. For comparison an untrimmed Euler evaluation
of the drag polar using the SU210,11 flow solver is presented. This analysis is accomplished using the same
geometry. For AVL the geometry fidelity level only produced wing cross sections. For SU2 the complete
solid geometry representation is created.

C. Loosely Coupled Aeroelastic Analysis

An example that illustrates the multi-disciplinary capability of CAPS, using the same geometry outlined
in Section III.A, is now presented by executing a loosely coupled static aeroelastic analysis. This example
demonstrates two analysis AIMs: a structural solver and a fluid solver. In addition, the interpolation and
passing of data (i.e. pressure from the fluid to the structure, and displacements from the structure to the
fluid) is accomplished internally by CAPS.

To enable a structural or aerodynamic solver, a properly attributed geometry is required. The major
attribution entity required for this task by CAPS is capsGroup. In the example a half span wing model
is created. The entire OML of the wing is attributed as a single capsGroup. In this case it is assigned the
string Skin:

attribute capsGroup $Skin
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# Import modules

import os

from pyCAPS import capsProblem

# Initiate a CAPS Problem

myProblem = capsProblem(libDir = "/ESP/Root/lib/dir")

# Load ESP input file describing the attributed geometry

myProblem.loadCAPS("./csmData/myGlider.csm")

# Load the AVL AIM and define an analysis directory for execution

myProblem.loadAIM(aim = "avlAIM", analysisDir = "avl_Aviation_Test")

# Define the flight conditions for and AVL analysis point

myProblem.analysis["avlAIM"].setAnalysisVal("Mach", 0.0667)

myProblem.analysis["avlAIM"].setAnalysisVal("Alpha", 1.0)

myProblem.analysis["avlAIM"].setAnalysisVal("Beta", 0.0)

myProblem.analysis["avlAIM"].setAnalysisVal("CntrlDef", [0.0,0.0,0.0]) # Flap, Elevator, Rudder

# Create the AVL Input files required for analysis

myProblem.analysis["avlAIM"].aimPreAnalysis()

# Run AVL

print "Running AVL"

currentDirectory = os.getcwd() # Get our current working directory

os.chdir(myProblem.analysis["avlAIM"].analysisDir) # Move into test directory

os.system("avl caps < avlInput.txt > avlOutput.txt");

os.chdir(currentDirectory) # Move back to working directory

# Run AIM post-analysis to retrieve the output data

myProblem.analysis["avlAIM"].aimPostAnalysis()

# Report desired data back from the analysis

print "Cmtot " + str(myProblem.analysis["avlAIM"].getAnalysisOutVal("Cmtot"));

print "CLtot " + str(myProblem.analysis["avlAIM"].getAnalysisOutVal("CLtot"));

print "CDtot " + str(myProblem.analysis["avlAIM"].getAnalysisOutVal("CDtot"));

Figure 9: Example pyCAPS script to execute the AVL AIM

The root of the wing is then assigned a different capsGroup. This allows access to the root only to apply
boundary conditions to this location.

attribute capsGroup $Rib_Root

An outer box to represent the flow solution domain is also attributed, with the a single Face in plane
with the wing root as SymmPlane and the remaining five sides as Farfield.

box farfield:xmin 0 farfield:zmin dx dy dz

attribute capsGroup $Farfield

...

face 2

attribute capsGroup $SymmPlane

Information directly relevant to a given analysis is assigned directly to the capsGroup attributes. For
example, aerodynamic boundary conditions are directly assigned in the following pyCAPS script:

# Set boundary conditions

inviscid = {"bcType" : "Inviscid", "wallTemperature" : 1.0}

myProblem.analysis["fun3d"].setAnalysisVal("Boundary_Condition", [("Skin", inviscid),

("SymmPlane", "SymmetryY"),

("Farfield","farfield")])
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Additionally, materials and properties for a structural solver are assigned to specific capsGroups in a
similar manner. For example, a generic material is assigned to a shell element that is modeling the wing
skin in the following pyCAPS script:

# Populate the variable mymaterial with material properties

mymaterial = { "materialType" : "isotropic",

"youngModulus" : 1.5E9,

"poissonRatio" : 0.33,

"density" : 5.5 }

# Add the material "MaterialName" to the "Material" information inside CAPS with the mymaterial properties

myProblem.analysis["mystran"].setAnalysisVal("Material", ("MaterialName", mymaterial))

# Define shell element properties in the variable skin

skin = {"propertyType" : "Shell",

"membraneThickness" : 0.021, # ft - 0.25 in

"material" : "MaterialName",

"bendingInertiaRatio" : 1.0,

"shearMembraneRatio" : 5.0/6.0}

# Assign the shell element properties skin to the "Skin" capsGroup

myProblem.analysis["mystran"].setAnalysisVal("Property", ("Skin", skin))

Figure 10: Aeroelastic workflow using CAPS.

An additional attribute on the geometry is required to enable data transfer between two disciplines. In
this case the fluid and structure solvers need to be able to transfer pressures and displacements back and
forth between two different surface meshes. This is enabled through the attribute capsTransfer. For example,
recall that the entire wing surface is a single capsGroup assigned the name Skin. In the data transfer case
the wing is broken into three boundaries.

select face 1

attribute capsTransfer $Skin_Top

select face 2

attribute capsTransfer $Skin_Bottom

select face 4

attribute capsTransfer $Skin_Tip
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(a) Fluid mesh used in CFD analysis (b) Structural mesh

Figure 11: Sample meshes used in loosely coupled, static aeroelastic demonstration.

Because this attribute is assigned at the geometry level, it is inherited by both the fluid and structure
(or any applications) analysis meshes that are generated in the CAPS environment. Then when data is
transferred, the disparate mesh locations are automatically mapped together.

After defining the attributes above, the general work flow for this loosely coupled aeroelastic analysis
example is outlined in Figure 10. NASA Langley Research Center’s unstructured, mixed element fluid
solver, FUN3D12 is used to solve for the flow field and corresponding pressures on the glider’s wing from a
tetrahedral volumetric mesh generated using the open-source mesh generator TetGen.13 The open-source,
general purpose finite element, structural analysis tool, MYSTRAN,14 is used to solve for the resulting
structural displacements. Both the surface mesh (143,176 triangular elements) used in the volumetric grid
generation (552,024 tetrahedral) and the structural mesh (116 triangular elements) were generated using the
EGADS3 body tessellation, as shown in Figures 11a and 11b respectively.

The aeroelastic iterations depicted in Figure 10 were carried out in a Python environment using py-
CAPS. Tables 3 and 4 outline the inputs into the aforementioned aerodynamic and structural AIMs used
to generated inputs for the execution of the respective analyses. Results of the aeroelastic analysis are
presented in Figure 12.

Table 3: Input parameters for fluid analysis.

Reference Variable Value

Analysis Type Euler

Mach number, Ma 0.3

Reference temperature, Tref 491.4 (R)

Reference density, ρref 0.07518 (slug/ft3)

Specific heat ratio, γ 1.4

Angle of attack, α 10.0 (o)

Side-slip angle, β 0.0 (o)
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Table 4: Input parameters for structural analysis.

Property Name Membrane Thickness (ft) Material Bending Inertia Ratio Shear Membrane Ratio

Skin 0.021 Madeupium 1.0 0.833

Ribs & Spars 0.170 Unobtainium 1.0 0.833

Material Name E (lbf/ft2) ν ρ (slug/ft3)

Madeupium 1.5 x 109 0.33 5.5

Unobtainium 1.0 x 1010 0.33 6.0

(a) Initial and deflected wing shapes during aeroelastic iter-
ations

(b) Pressure distribution on aeroelastically defected wing

Figure 12: Results from loosely coupled, aeroelastic analysis.

IV. Conclusions

The CAPS program set out with the goal of having a single source geometry capability that could provide
inputs to multi-fidelity, multi-physics solvers. This capability is intended for use in conceptual design, multi-
disciplinary design optimization, and high fidelity physics simulations (notably absent is CAD assemblies and
three view drawings). The program outlines specific objectives to deal with legacy geometry (not covered in
this paper), allow easy assembly of component models, and visual interaction with the models. In addition,
the models are required to be parametric, attributable and have geometric sensitivities associated with the
parameters. Finally the geometry model is to be constructed in such a way as to support multi-fidelity
analysis from a single source.

This paper has demonstrated the parametric attributable geometry by introducing the overall CAPS
infrastructure that has be built upon ESP. The ability to generate component models has been enabled
through the application of UDP and UDC model generation techniques. These methods of model construction
allow the user to tailor the component models to their specific needs instead of relying on a one-size-fits-all
library.

Finally, this paper presented why multi-fidelity, attributed geometry is necessary to enable future designs.
The first example demonstrated a low fidelity aerodynamic trim optimization problem that requires a very low
fidelity level, but a large number of runs. Using the same geometry source the second example demonstrates
a loosely coupled aeroelastic analysis where the user-intensive generation of the computational meshes and
interface connections are automated through the CAPS infrastructure.

To enable these examples and many other analysis efforts a collection of AIM plugins has been created.
An outline of AIMs in active development is provided in Table 5.
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Table 5: Actively developed AIMs.

Surface Meshing Volume Meshing Aerodynamics Structures

EGADS Tessellation3 TetGen13 FRICTION15 MYSTRAN14

AFLR416,17 AFLR316,17 AWAVE18 NASTRAN19

AVL9 Abaqus20

CART3D21

SU210,11

FUN3D12

ESP and CAPS are open-source and are available from http://acdl.mit.edu/ESP.

22



References

1Haimes, R. and Dannenhoffer, J., “The Engineering Sketch Pad: A Solid-Modeling, Feature-Based, Web-Enabled System
for Building Parametric Geometry,” 21st AIAA Computational Fluid Dynamics Conference, No. 2013-3073, American Institute
of Aeronautics and Astronautics, Jun. 2013.

2Dannenhoffer, J., “OpenCSM: An Open-Source Constructive Solid Modeler for MDAO,” 51st AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, No. 2013-0701, American Institute of Aeronautics and
Astronautics, Jan. 2013.

3Haimes, R. and Drela, M., “On The Construction of Aircraft Conceptual Geometry for High-Fidelity Analysis and
Design,” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, No. 2012-
0683, American Institute of Aeronautics and Astronautics, Jan. 2012.

4Bhagat, N. D. and Alyanak, E. J., “Computational Geometry for Multi-fidelity and Multi-disciplinary Analysis and
Optimization,” 52nd Aerospace Sciences Meeting, No. 2014-0188, American Institute of Aeronautics and Astronautics, Jan.
2014.

5Kolonay, R. M., “A physics-based distributed collaborative design process for military aerospace vehicle development and
technology assessment,” International Journal of Agile Systems and Management , Vol. 7, No. 3-4, 2014, pp. 242–260.

6Phoenix Integration, http://www.phoenix-int.com/, Accessed: May 2016.
7Heath, C. M. and Gray, J. S., “OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization

Methods,” 8th AIAA Multidisciplinary Design Optimization Specialist Conference (MDO), Honolulu, Hawaii, 2012, pp. 1–13.
8Dannenhoffer, J. and Haimes, R., “Conservative Fitting for Multi-Disciplinary Analysis,” 52nd Aerospace Sciences Meet-

ing, No. 2014-0294, American Institute of Aeronautics and Astronautics, Jan. 2014.
9Drela, M. and Youngren, H., AVL (Athena Vortex Lattice) 3.30 User Primer , Aug. 2010, Available from

http://web.mit.edu/drela/Public/web/avl/.
10Palacios, F., Colonno, M. R., Aranake, A. C., Campos, A., Copeland, S. R., Economon, T. D., Lonkar, A. K., Lukaczyk,

T. W., Taylor, T. W. R., and Alonso, J. J., “Stanford University Unstructured (SU2): An open-source integrated computational
environment for multi-physics simulation and design,” 51st AIAA Aerospace Sciences Meeting including the New Horizons
Forum and Aerospace Exposition, No. 2013-0287, American Institute of Aeronautics and Astronautics, Jan. 2013.

11Palacios, F., Economon, T. D., Aranake, A. C., Copeland, S. R., Lonkar, A. K., Lukaczyk, T. W., Manosalvas, D. E.,
Naik, K. R., Padron, A. S., Tracey, B., Variyar, A., and Alonso, J. J., “Stanford University Unstructured (SU2): Open-source
analysis and design technology for turbulent flows,” 52nd Aerospace Sciences Meeting, No. 2014-0243, American Institute of
Aeronautics and Astronautics, Jan. 2014.

12Biedron, R. T., Carlson, J.-R., Derlaga, J. M., Gnoffo, P. A., Hammond, D. P., Jones, W. T., Kleb, B., Lee-Rausch,
E. M., Nielsen, E. J., Park, M. A., Rumsey, C. L., Thomas, J. L., and Wood, W. A., FUN3D Manual: 12.7 , May 2015.

13Si, H., “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator,” ACM Trans. Math. Softw., Vol. 41, No. 2,
Feb. 2015, pp. 11:1–11:36.

14Case, W., MYSTRAN General Purpose Finite Element Structural Analysis Computer Program (Linux Version 6.35)
[Software Manual] , Nov. 2011, Available from http://www.MYSTRAN.com.

15Mason, W. H., FRICTION - Skin Friction and Form Drag Program, Jan. 2006, Available from
http://www.dept.aoe.vt.edu/ mason/Mason f/MRsoft.html.

16Marcum, D. L. and Weatherill, N. P., “Unstructured grid generation using iterative point insertion and local reconnec-
tion,” AIAA Journal , Vol. 33, No. 9, Sep. 1995, pp. 1619–1625.

17Marcum, D. L., “Unstructured grid generation using automatic point insertion and local reconnection,” The Handbook
of Grid Generation, 1998, pp. 18–1.

18McCullers, L. A., AWAVE: User’s Guide for the Revised Wave Drag Analysis Program, Apr. 1992.
19Reymond, M. and Miller, M., MSC NASTRAN Quick Reference Guide Version 68 , 1996.
20Dassault Systmes, http://www.3ds.com/products-services/simulia/products/abaqus/, Accessed: May 2016.
21Aftomis, M., Berger, M., and Adomavicius, G., “A Parallel Multilevel Method for Adaptively Refined Cartesian Grids

with Embedded Boundaries,” No. AIAA-2008-0808, American Institute of Aeronautics and Astronautics, Reno, NV, Jan. 2008.

23


