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Over the past several years, considerable progress has been made in aerodynamic design
through the use of adjoint-based solution technologies. These design systems allow one to
change the surfaces of a configuration so that some objective function, such as lift-to-
drag ratio or sonic boom strength, is optimized. Unfortunately, these systems change
the configuration surfaces on a point-by-point basis, instead of by changing the design
parameters that were used to generate the original configuration; this limitation arose
from the lack of good sensitivity calculations through the geometric design process. The
objective of this paper is to demonstrate the coupling of recently developed configuration
sensitivity calculations with the adjoint-based optimization frameworks. In particular, a
wing is optimized to minimize the induced drag (for a fixed lift) through both the CART3D

and FUN3D design frameworks. Several methods for propagating sensitivity information
into the interior of Faces were investigated. The optimized results, both for sensitivities
computed by finite differences (which are nearly identical to the predicted displacement
field but expensive to compute) and for sensitivities computed analytically (which disagree
with the predicted displacements but are inexpensive to compute), are nearly identical.

I. Design Frameworks

Over the past several years, a few CFD solution systems have been extended to include a “design capa-
bility” through the use of adjoint-based flow solutions. Chief amongst these are CART3D,1 FUN3D,2 and SU2.3

All of these systems provide the ability to optimize some user-defined objective function by changing the
shape of the configuration based on parametrization schemes that are not necessarily consistent with the
user’s original parametrization. In order to get back to the user’s design parameters, these frameworks allow
a user to provide a “Jacobian” matrix that couples changes in the user’s design parameters (such as wing
sweep, taper ratio, and incidence distribution) with changes of the configuration shape.

Methods for generating these “Jacobian” matrices, such as BandAids4 and MASSOUD5 have been con-
structed without any knowledge of the process used to create the configuration in the first place. As such,
these techniques can at best provide a Jacobian with respect to an approximation of the parameters. Also,
these techniques are only useful for relatively simple configurations, such as a wing and body.

Recently, a new feature-based, parametric solid modeler, ESP6 has been developed that allows one to
both generate a configuration based upon its design parameters as well as determine the sensitivity of the
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configuration shape with respect to these design parameters. The objective of this paper is to demonstrate
the use of ESP directly within the CART3D and FUN3D design frameworks.

In the next section, background information is provided about ESP, with a special emphasis on the way
in which it computes the sensitivity information that is needed to construct the Jacobian matrix. That is
followed by sections that describe both the CART3D and FUN3D design frameworks. To demonstrate the use
of ESP’s parametric sensitivities, the shape of an inviscid wing is optimized to minimize the (induced) drag
coefficient, while holding the wing’s lift coefficient fixed. Results for both CART3D and FUN3D are shown.

II. The Engineering Sketch Pad (ESP)

The “Engineering Sketch Pad” (ESP) is an open-source, feature-based, parametric solid modeler.6 As
opposed to most commercially-available geometry-generating CAD systems, ESP was designed for geometries
encountered in aerospace applications for which CFD (as well as other discipline’s) computations are desired.
It supports a full range of standard construction primitives (features), but also gives organizations the ability
to attach their own user-defined primitives (UDPs) and components (UDCs). The description of an ESP

model is in an ASCII (human-readable file) and has a simple API, making it easy to integrate ESP into other
environments.

A unique and key feature of ESP is its ability to compute “geometric” and “tessellation” sensitivities
analytically (as opposed to the requirement to use finite differences) for a wide variety of configurations.7

It should be noted that there exists a finite-difference mechanism within ESP in order to support features
that have not yet been differentiated or for testing the analytic calculations. This contains a general point
tracking scheme that does not have the limiting assumptions of previous methods.7

“Geometric” sensitivities are used to answer the question: how does the local surface shape/location
change as one or more of the design parameters are changed? So for a cylinder, the “geometric” sensitivities
on the cylindrical walls of a cylinder are zero when the length of the cylinder is changed. Hence, “geometric”
sensitivities can be discontinuous at hard Edges. Sample “geometric” sensitives are shown in Figure 1. Note
the sharp and discontinuous nature of the sensitivity contours at the wing/fuselage junction.

Figure 1. Geometric sensitivity with respect to wing thickness at the root section.

“Tessellation” sensitivities are used to answer the question: how does a grid point on the surface move
as one or more of the design parameters are changed? These derivatives are continuous across geometric
entities and are mostly consistent with mesh-based finite differences. Note that the motion of the grid
points are influenced by the underlying “geometric” sensitivities, but also by the changes in the trimming
curves associated with the surface. In addition, the change in the location is also influenced by the grid
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generation scheme used to place the point; hence to be technically correct, the sensitivity should be found
by differentiating the grid generation scheme itself.

A. Computation of Surface Tessellation Sensitivities

As mentioned above, the tessellation sensitivity is used to specify the motion of each tessellation point with
respect to the design parameter. In general, it takes the form

d~x

dP
=
∂~x

∂P
+
∂~x

∂~u

∂~u

∂P

where ~x refers to the coordinates of a point on the surface, ~u are the parametric coordinates of the points
on the surface, and P is a design Parameter. The first term accounts for the (normal) motion of the surface
on which ~x lies and the second accounts for the motion of each tessellation point along the surface, which is
due to changes in the trimming curves of the Face.

The first term, ∂~x/∂P , can be found directly by differentiating the functions that generated the surface
associated with the point. For points that lie on an Edge (between two Faces – called “left” and “right”), the
evaluation of the “left” Face gives (∂w/∂P )left =

√
(∂x/∂P )2 + (∂y/∂P )2 + (∂z/∂P )2

left
, which is pointed

in the ~nleft direction; similar evaluation on the “right” Face gives (∂w/∂P )right and ~nright.
The key now is to find a Edge sensitivity vector, (∂~x/∂P )edge that is consistent with the two Face

sensitivities and which is locally normal to the Edge. This is obtained by solving the matrix equation: nx,left ny,left nz,left

nx,right ny,right nz,right

tx,edge ty,edge tz,edge


 (∂x/∂P )edge

(∂y/∂P )edge

(∂z/∂P )edge

 =

 (∂w/∂P )left

(∂w/∂P )right

0


for (∂~x/∂P )edge. Here, nx,left means the x component of ~nleft and tx,edge means the x component of the
tangent vector along the Edge (that is, dx/dt along the Edge, where t is the Edge parametric coordinate).

As with the Face sensitivity, the Edge sensitivity only gives changes normal to the Edge; the component
of the sensitivity along the Edge is automatically set to zero. The complete details of these computations
are found in Dannenhoffer and Haimes.7

The difficult part of the above is determining how changes in the parametric coordinates, ~u, on the
boundaries propagate to changes of the tessellation points in the interior of the Face. In the sections that
follow, three different techniques are described, where the first two can be considered surrogates for the last.

1. Mean Value Coordinates (MVC)

Mean value coordinates (MVC) were developed by Hormann and Floater8 as a way of smoothly propagating
from the boundary of a (possibly-multiply-connected) surface to its interior. Its formulation contains a
generalization of barycentric coordinates to n-sided, 2-dimensional polygons.

Interpolation using MVC is a two-step process. In the first, weights (wi) are computed for each of the
boundary points for any given interior point (uj , vj). This computation is solely a function of the boundary
points, and is given by

wi = 2
tan(αi−1/2) + tan(αi/2)

ri

where αi is the angle between lines from interior point j to boundary points i and i+1 and ri is the distance
from interior point j to boundary point i. Hence, the weight associated with boundary point i is based solely
on the location of the interior point (uj , vj) and the boundary points (ui−1, vi−1), (ui, vi) and (ui+1, vi+1).
Notice that if the three boundary points (i− 1, i, and i+ 1) are not traversed in a counterclockwise manner
(when viewed from point j), the weight wi may be negative. Once all the weights are computed, they are
normalized so that their sum is unity.
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In the second step, the value of any quantity in the interior (such as the sensitivity of ~x with respect to
a design parameter) is computed as the linear combination of the sensitivities along the boundary, or(

∂~x

∂P

)
j

=
∑

i∈bnd

wi

(
∂~x

∂P

)
i

Figure 2. Contours of vertical displacement on the plane of symmetry, as computed by the original MVC.

As proved by Floater, MVC interpolation is very smooth, and is C∞ everywhere. But, MVC only
guarantees that the wi are positive inside convex polygons. This can cause problems, as discussed by
Lipman, et al.9 In particular, consider the sensitivity of the vertical point motion with respect to airfoil
thickness (on the symmetry plane), as shown in Fig. 2. As can be seen, the upper surface of the airfoil moves
up (has a positive motion — shown in red) and the lower surface of the airfoil moves down (has a negative
motion — shown in blue). Of particular concern, however, are the extrema that are located in the interior
of the domain, as shown by red or blue “islands” away from the airfoil. These are due to the fact that all
boundary points are used in the interpolation of each interior point. For interior points above the airfoil,
both the positive motion of the upper surface and the negative motion of the lower surface contribute to the
interpolation. Near the upper surface, the contribution of the upper surface is much stronger; but about a
chord away, both surfaces have approximately the same contribution and hence the local extrema shown in
Fig. 2. The effect of these local extrema are described in the results section.

2. Visibility-restricted MVC (VR-MVC)

To eliminate these local extrema, a change to MVC was made based upon a visibility argument. As noted
above, MVC is known to have all positive weights, wi, for convex domains. So the idea here is to use only
the part of the domain that is convex with respect to the interior point (uj , vj) in the MVC calculation. To
accomplish this, the MVC algorithm was modified so that only those boundary points that were visible to
the interior point are included in the MVC sum; visibility is automatically determined by checking if a line
segment from the interior point to the boundary point in question intersects any segment of the boundary.
The results of this new visibility-restricted MVC (VR-MVC), which are shown in Fig. 3, demonstrate that
the local extrema have been removed.

Of course, one of the potential problems associated with VR-MVC is that the smoothness of the in-
terpolation function can no longer be guaranteed, since boundary points become visible in a discontinuous
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Figure 3. Contours of vertical displacement on the plane of symmetry, as computed by the visibility-restricted
version of MVC.

manner. As seen in Fig. 3, in the eye-ball norm, the interpolating function appears smooth enough to be
used for the current application, which will be demonstrated in the results section.

3. Differentiation of the Tessellator

Finally, one should be able to determine the motion of points in the interior of the discretized surface by
differentiating the mesher that generated the original tessellation. In the current application, the Bowyer-
Watson algorithm10,11 is employed. It starts with an initial tessellation of a trapezoid that surrounds the
boundaries. Then, each of the boundary points are successively added by removing any triangles whose
circumcircle contain the new point; the star-shaped hole that is left is re-triangulated using the new point.
After the boundary is tessellated, points are added in the interior for any triangle whose side length exceeds
a specified tolerance. At the end, diagonal swapping is used to recover the triangle sides that conform to the
original boundary.

At first glance, differentiating the above scheme seems daunting, due to the complexity of the operations
used; for example, determination of which triangles to remove and which diagonals to swap involves significant
computations and many logical decisions. But after careful examination, one can observe that the only part
of the algorithm that really needs to be differentiated is the determination of the actual new point location
(for the interior points). By leaving the testing and logic untouched, one can generate a new tessellation that
is topologically equivalent to the original tessellation, even though it might not strictly satisfy the Delaunay
criteria (note that having the same grid topology is more important here than a correct Delaunay mesh).

In the current implementation, all the interior points are placed to be at the centroid of the triangle
whose side-length violates the side-length criterion. This is done with

~unew = (~u0 + ~u1 + ~u2)/3

where ~u0, ~u1, and ~u2 are the parametric coordinates associated with (previously-placed) points in the tes-
sellation. Differentiating the above (with respect to a design parameter, P ) is straightforward, giving(

∂~u

∂P

)
new

=

[(
∂~u

∂P

)
0

+

(
∂~u

∂P

)
1

+

(
∂~u

∂P

)
2

]
/3
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To compute the sensitivity of any surface grid point, one only needs to apply the above successively to
each new tessellation point as it is generated. This can be accomplished by keeping track, for each point in
the tessellation, the identity of the points that were used when the point was generated.

Results of using the differentiated tessellator are also shown in the results section.

III. CART3D Design Framework

A. Overall Process

The CART3D design framework solves constrained aerodynamic shape optimization problems. The framework
coordinates the execution of the flow and adjoint solvers, and various utility codes to compute the value of
the objective function, J , constraints, C, and gradients, dJ/dP and dC/dP , at each step of the optimization
procedure for given design variables P . The framework uses multilevel parallelism to minimize design-cycle
time and is designed to interface with virtually any optimization package. In this work, we use the SNOPT12

optimizer. The details of the framework can be found in Nemec and Aftosmis,1 here we provide only a brief
summary. Recent examples of shape optimizations performed by this framework can be found in Refs. 15
and 16.

The framework controls the geometry build process through use of the Extensible Design Description
Markup (XDDM) protocol.1 This provides a modeler-neutral access to parameters and other information
associated with the geometry construction and queries. It can be used with CAD-based and non-CAD
modelers. This XML-based protocol is used throughout the design framework to express design variables,
analysis parameters, objectives and constraints. It also provides access to a collection of standard services
including the computation of triangulation shape sensitivities and symbolic function manipulation.

The flow is modeled by the Euler equations, which are discretized on a Cartesian mesh with embedded
boundaries. The mesh consists of regular Cartesian hexahedra everywhere, except for a layer of body-
intersecting cells, or cut cells, adjacent to the boundaries, as illustrated in Fig. 4. The spatial discretization

Figure 4. Multilevel Cartesian mesh in two-dimensions with a cut-cell boundary.

uses a cell-centered, second-order accurate finite volume method with a weak imposition of boundary condi-
tions, resulting in a system of residual equations

R(P,M,Q) = 0 (1)

where M is the computational mesh and Q the flow solution vector. The design variables that appear directly
in Eq. 1 involve parameters that do not change the computational domain, such as the Mach number, angle
of attack, and side-slip angle. The influence of shape design variables on the residuals is implicit via the
computational mesh

M = f [T(P )] (2)

where T denotes a triangulation of the wetted surface.
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The gradient is obtained by linearizing the objective function, J(P,M,Q), and the residual equations,
resulting in the following expression

dJ

dP
=
∂J

∂P
+

∂J

∂M

∂M

∂T

∂T

∂P
− ψ T

(
∂R

∂P
+
∂R

∂M

∂M

∂T

∂T

∂P

)
(3)

where ψ is an adjoint vector. A similar expression is obtained for each constraint. In embedded-boundary
Cartesian methods, an infinitesimal perturbation of the boundary shape affects only the cut cells. The
detailed evaluation of Eq. 3 is presented in Refs. 13,14. In the next section, we briefly outline the evaluation
of the partial derivative term involving the sensitivities of the surface triangulation, ∂T/∂P . These are
provided by ESP to the CART3D design framework, thereby circumventing the need to use finite-difference
approximations.

B. ESPxddm

In order to link ESP with the CART3D design framework, a software module is required that can provide a closed
and watertight triangulation of the body of interest at the current design (the suite of design parameters
at play and their current values). If the software module can provide the design parameter sensitivities
(Jacobian matrix, which contains the sensitivity of each surface tessellation point with respect to specified
design parameter), then the CART3D design framework will use these sensitivities. If the parametric derivatives
are not supplied, then the framework will finite-difference a perturbed body generated by this same software
module.

The connection is made by the ESP application ESPxddm, which deals directly with Extensible Design
Description Markup language. An XML file is constructed that describes which design parameters are active
and what their start values are (as well as their valid range). This file also contains a pointer to the .csm

file that describes the configuration. The triangulation is generated by the EGADS tessellator, which is an
integral part of the ESP suite of software. The quality of the tessellation can be controlled via ESP attribution
found in the .csm file and/or the data in the XML file.

As input, ESPxddm accepts the XDDM (XML) file, which describes the data that is being requested by
the design framework. The following steps are then taken by ESPxddm:

1. Read the .csm file through the OpenCSM API.

2. Override the specified design parameter values with those found in the XDDM description.

3. Use the OpenCSM API to regenerate the model with the current state of the design.

4. Invoke the EGADS triangulator to produce the surface tessellation of the resultant geometry.

5. If requested, use the OpenCSM API to compute the analytic “tessellation” sensitivities for the specified
design parameters at the triangulation points.

6. Write out this data in a CART3D trix file (which is basically a VTK unstructured data file).

The ESPxddm application is invoked by a script (ESP.csh), which is specified in the XDDM description,
and is itself driven by a top-level optimization script.

ESPxddm has been available from within the ESP suite of software since Rev 1.08.

IV. FUN3D Design Framework

The FUN3D design framework consists primarily of a CFD flow solver and a volume mesh deformation
solver based on linear elasticity. For gradient based optimization, sensitivity analysis is provided by the
solution of the associated adjoint problems for the flow and mesh deformation. The process is described in
detail by Nielsen,17 and is summarized here subject to the specifics of the problem under consideration.
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A. Flow Solver

For the current work, the flow solver solves the 3-Dimensional, steady, Euler equations given by

1

V

∮
∂Ω

F · n̂ dS = 0 (4)

where n̂ is an outward-pointing unit normal, and V is the control volume bounded by the surface ∂Ω. The
inviscid flux tensor is given by

F =

 ρ

ρuTu + pI

u (E + p)

 (5)

Here, ρ is the density, u is the absolute velocity vector, u = [u, v, w]
T

, E is total energy per unit volume,
and I is the identity matrix. The equations are closed with the equation of state for a perfect gas.

p = (γ − 1)
[
E − ρ

(u2+v2+w2)
2

]
. (6)

The FUN3D flow solver18–21 can be used to perform aerodynamic simulations across the speed range, and
an extensive list of options and solution mechanisms is available for spatial and temporal discretizations on
general static or dynamic mixed-element unstructured meshes that may or may not contain overset mesh
topologies.

In the current work, the spatial discretization uses a finite-volume approach in which the dependent
variables are stored at the vertices of single-block tetrahedral meshes. Inviscid fluxes at cell interfaces are
computed using the upwind scheme of Roe.22 Scalable parallelization is achieved through domain decompo-
sition and message-passing communication.

B. Mesh Deformation

To deform the interior of the computational mesh as the surface mesh evolves during a shape-optimization
procedure, the mesh is assumed to obey the linear elasticity equations of solid mechanics. These relations
can be written as ∮

∂Ω

λ

(
3∑

i=1

∂ui
∂xi

)
I · n̂ dS +

∮
∂Ω

2µεεε · n̂ dS = 0 (7)

where

εεε =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(8)

is the strain tensor, ui is the displacement vector in each of the Cartesian coordinate directions, xi, and λ
and µ are material properties of the elastic medium. The quantities λ and µ are related to Young’s modulus,
E, and Poisson’s ratio, ν, through the following:

λ =
νE

(1 + ν) (1 − 2ν)
(9)

and

µ =
E

2 (1 + ν)
(10)
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The system is closed with the specification of two of the four parameters λ, µ,E, and ν. In the current
implementation, E is taken as inversely proportional to the distance from the nearest solid boundary, while
Poisson’s ratio is taken uniformly as zero. This approach forces all cells that are near boundaries to move
in a nearly rigid fashion, while cells that are far from the boundaries are allowed to deform more freely.
The system of equations is solved using GMRES23 with either a point-implicit or ILU(0) preconditioning
technique.21,24

C. Discrete Adjoint Equations

To derive the discrete adjoint equations, a compact notation is introduced for the governing equations that
are outlined above. The spatial residual vector R of Eq. (4) is defined as

R ≡
∮
∂Ω

F · n̂ dS (11)

Furthermore, the linear system of equations given by Eq. (7) can be written as

KX = Xsurf (12)

where K is the elasticity coefficient matrix that results from the discretization of Eq. (7), X is the vector of
the mesh-point coordinates, and Xsurf is the vector of known surface mesh-point coordinates, complemented
by zeros for all interior coordinates. With the approach that was taken by Nielsen,17 a Lagrangian function
can be defined as follows:

L (P,Q,X,Λf ,Λm) = f (P,Q,X) + ΛT
f R (P,Q,X) + ΛT

m (KX − Xsurf ) (13)

where: P represents a vector of design variables; Q is the vector of volume-averaged conserved variables,
Q = [ρ, ρu, ρv, ρw,E]

T
; f is an objective function; and Λf and Λm are the adjoint variables that multiply

the residuals of the flow and the mesh equations, respectively. In this manner, the governing equations may
be viewed as constraints.

Differentiating Eq. (13) with respect to P and equating the ∂Q/∂P and ∂X/∂P coefficients to zero yields
the discrete adjoint equations for the flowfield and mesh, respectively:

[
∂R

∂Q

]T
Λf = − ∂f

∂Q
(14)

and

KTΛm = −

{
∂f

∂X
+

[
∂R

∂X

]T
Λf

}
(15)

The remainder of the terms in the linearized Lagrangian can be grouped to form an expression for the final
sensitivity vector:

dL

dP
=
∂f

∂P
+ ΛT

f

∂R

∂P
− ΛT

m

[
∂Xsurf

∂P

]
(16)

Equations (14) and (15) provide an efficient means for determining discretely consistent sensitivity infor-
mation. The expense that is associated with solving these equations is independent of P and is similar to
that of the governing equations. After the solutions for Λf and Λm have been determined, then the desired
sensitivities may be calculated using Eq. (16), for which the computational cost is negligible.

A discrete adjoint implementation has been developed17,20,24–26 for the flow solution method that is
described above. The flowfield adjoint equations are solved in an exact dual manner, which guarantees an
asymptotic convergence rate that is identical to the primal problem and costate variables that are discretely
adjoint at every iteration of the solution process. The grid adjoint equations are solved using GMRES in a
manner that is identical to the method used for Eq. (7).
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D. Objectives and Constraints

The implementation of Nielsen17 permits multiple objective functions, fi, and explicit constraints, cj , of the
following form, each containing a summation of ni and mj individual components, respectively:

fi =

ni∑
k=1

ωk (Ck − C∗k)
pk (17)

and

cj =

mj∑
k=1

ωk (Ck − C∗k)
pk (18)

Here, ωk represents a user-defined weighting factor, Ck is an aerodynamic coefficient such as total drag or
the pressure or viscous contributions to such quantities, and pk is a user-defined exponent. The ∗ superscript
indicates a user-defined target value of Ck. Furthermore, the user may specify the boundaries in the grid to
which each component function applies.

E. fun3dCSM

In order to link FUN3D and ESP, a new software module, named fun3dCSM was created. It takes as input
the .csm file that describes the configuration and the current values for each of the design parameters, and
produces both an updated surface tessellation and the Jacobian matrix, which contains the sensitivity of
each surface tessellation point with respect to each design parameter.

As a prelude to using fun3dCSM in the design mode, it is necessary to generate the original configuration,
and hence surface grid, that is to be used by FUN3D. This is done by running EPS’s serveCSM program, which
performs the following operations:

1. Read a .csm file that describes the configuration. For the case below of an isolated wing, the wing
is defined in terms of its area, aspect ratio, taper ratio, and leading edge sweep. In addition, each of
the six cross-sections (which are evenly spaced between the root and tip) are NACA airfoils defined in
terms of their thickness ratio, camber ratio, and incidence angle.

2. Build the configuration. This involves the generation of the six spanwise cross-sections that are blended
into a smooth wing, which in turn is subtracted from a large box that represents the far-field. Also
during this process, attributes are added to the resulting Boundary Representation (BRep) in order to
specify suitable grid spacings.

3. Perform a nominal tessellation. This is done using EGADS’s internal tessellator, which first generates
the points on each Edge and then generates the points in the interior of the Faces. This two-step
process guarantees that the resulting tessellation is watertight.

4. Modify the Face tessellations, using an Delaunay-based surface tessellation. This process only modifies
the locations of grid points inside Faces, and hence does not jeopardize the watertightness of the
resulting grid.

5. Dump output files, which consist of the surface grids, the attributed BRep, and a file through which
the resulting Delaunay-based surface tessellation can be morphed (as needed below).

The above operations are only executed once, before FUN3D’s design environment is executed.
During the execution of the FUN3D design environment, every time the system needs to generate a new

configuration or needs sensitivity information, it calls fun3dCSM, whose process can be summarized as:

1. Load the .csm file that contains the description of the configuration, including the initial values for
each of the design parameters. This is the same file as was used during step 1 of the initialization (as
described above).
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2. Build the initial configuration, using the same tessellation process as described above in steps 3 and 4
of the initialization process.

3. Update the design parameters, which are prescribed by the optimizer in FUN3D’s design environment.

4. Build the configuration, using the prescription in the .csm file, together with the latest design param-
eters.

5. Check that the topology of the new configuration (from step 4) is consistent with the topology of the
original configuration (from step 2). These topological checks ensure that both BReps have the same
number of Nodes, Edges, and Faces, and that they are connected in the same manner. If they are not
consistent, then an error is raised that informs the user that the design changes are too big. Otherwise,
a mapping is created between the identities of each component in the two BReps.

6. Create a tessellation for this new configuration that is topologically consistent with the tessellation
created in step 2, but which conforms to the latest shape.

7. Compute the sensitivity at each surface grid point with respect to each design parameter. For this
case, these sensitivities can done analytically because ESP has explicit analytical derivatives for the
operations used to generate the current configuration.

8. Write a file that contains both the updated surface tessellation as well as all the sensitivities.

F. Treatment of Surface Sensitivities

The implementation the FUN3D framework is sufficiently general such that the user is able to employ a
geometric parametrization scheme of choice, provided that the associated linearizations required by the
adjoint method described above are also available. This is consistent with the implementation for the
CART3D design framework.

V. Design Example

The sample design cases consist of a swept wing, whose design parameters are the thickness, camber,
and incidence distributions each at 6 spanwise stations as can be seen in Fig. 5. For this design study, the
wing’s aspect ratio, taper ratio, leading edge sweep, and dihedral angles are held fixed. In addition, only
one half of the wing is used. It was found constraints were needed to limit the overall changes in wing shape
so as to not end up with grid tangling when the volume grids are deformed during FUN3D’s linear elasticity
operation.

Design calculations are being done in both the CART3D and FUN3D design frameworks. For the FUN3D

framework, only inviscid effects will be considered. Therefore, for both frameworks, the drag will simply be
the induced drag.

A. Treatment of sensitivities in FUN3D environment

The major challenge in computing sensitivities that are consistent with changes in the tessellations from one
design iteration to the next is the way in which the sensitivities are computed along the BRep Edges. When
computing Edge “tessellation” sensitivities, one has to ensure that the shape of the new Edge is predicted
consistently. But the spacing of points along the Edge is somewhat arbitrary. In the description of ESP’s
tessellation sensitivities (above), it was noted that ESP returns only the part of the sensitivity that is normal
to the Edge.

This results in the situation shown in Fig. 6, which depicts the Edges at the root of the wing (i.e., at
the plane of symmetry). Here the solid line (with circles) represents the shape of the airfoil with the initial
design parameters; the dashed line (with triangles) represents the airfoil shape after the airfoil’s thickness
has changed. The little lines (with circles) emanating from the airfoil show the predicted sensitivities. (The
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Figure 5. Sample wing configuration for optimization, shown colored by geometric sensitivity with respect to
overall wing twist.
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Figure 6. Airfoil shape on the symmetry plane. The solid line (with circles) shows the airfoil shape based
upon the initial design parameters. The dashed line (with triangles) shows the airfoil shape after the thickness
of the root section has been increased. The spines (with circles) show the predicted sensitivities.
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Table 1. Description of the 7 FUN3D test cases.

Case sensitivity Displacement

number method method

1 diff of tess barycentric

2 MVC barycentric

3 VR-MVC barycentric

4 diff of tess morphing

5 MVC morphing

6 VR-MVC morphing

7 finite diffs morphing

actual displacements and sensitivities have been exaggerated by several orders of magnitude in the figure
for clarity.) Note that the outer circles do not coincide with the triangles, but that all the circles lie on the
dashed line. This shows that ESP’s sensitivity calculation correctly predicts the motion of the surface, but
not necessarily the spacing of points on the new surface.

In order to assess the importance of this discrepancy, seven test cases were developed for the FUN3D design
environment, as summarized in Table 1. “Sensitivity method” refers to the way in which sensitivities along
the Edges are propagated to the interior of the Faces:

diff of tess uses the differentiation of the tessellator

MVC uses the original mean-value coordinates

VR-MVC use the visibility-restricted mean-value coordinates

finite diffs uses finite differences between tessellations generated for the original and perturbed configura-
tions

“Displacement method” refers to the way in which the tessellation points are placed in the interior of the
Faces:

barycentric uses EGADS’ built-in method, which employs a triangle-based barycentric interpolation of a
triangulation that only involves the BRep Face’s boundary

morphing uses a morph of the Delaunay tessellation used on the original configuration

Figs. 7 and 8 show the evolution of the lift-to-drag ratio and cumulative number of flow solver iterations,
both as a function of the number of flow solver (and adjoint solver) calls, for the FUN3D design environment.

Figures 9 through 15 show contours of the sensitivity and displacements on the plane of symmetry for
a change in the thickness of the airfoil section at the root. The color contours represent the displacements,
where the “Displacement method” is as described in Table 1. The line contours show the analytically-
computed sensitivities, which correspond to the “Sensitivity method” from Table 1. Note the discrepancies
in the contours near the wing surface, which is due to the “sliding” effect shown in Fig. 6. The contours only
match for case 7, in which the sensitivities were computed by finite-differencing the tessellations. Note that
these finite differences are very expensive to compute, since a complete new configuration and tessellation is
required for each of the 18 active design parameters.

In order to assess the importance of the discrepancies shown in Figures 9 through 14, all cases were
executed in the FUN3D design environment, with the results shown in Figures 7 and 8. Note that the final
optimized results are nearly identical and that the number of required flow solver iterations are also nearly
the same, with case 7 showing a very slight reduction in the required number of flow solver iterations. Based
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Figure 7. CL/CD improvement for a fixed lift with the FUN3D design environment for Cases #1 through #7.
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Figure 8. Number of flow solver iterations for a fixed lift with the FUN3D design environment for Cases #1
through #7.
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Figure 9. Comparison of sensitivity and displacements for Case #1 on the symmetry plane due to changes in
the thickness at the wing root. Color contours are displacements between baseline and perturbed configuration.
Line are contours of analytically-computed sensitivity.
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Figure 10. Comparison of sensitivity and displacements for Case #2 on the symmetry plane due to changes in
the thickness at the wing root. Color contours are displacements between baseline and perturbed configuration.
Line are contours of analytically-computed sensitivity.
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Figure 11. Comparison of sensitivity and displacements for Case #3 on the symmetry plane due to changes in
the thickness at the wing root. Color contours are displacements between baseline and perturbed configuration.
Line are contours of analytically-computed sensitivity.
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Figure 12. Comparison of sensitivity and displacements for Case #4 on the symmetry plane due to changes in
the thickness at the wing root. Color contours are displacements between baseline and perturbed configuration.
Line are contours of analytically-computed sensitivity.
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Figure 13. Comparison of sensitivity and displacements for Case #5 on the symmetry plane due to changes in
the thickness at the wing root. Color contours are displacements between baseline and perturbed configuration.
Line are contours of analytically-computed sensitivity.
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Figure 14. Comparison of sensitivity and displacements for Case #6 on the symmetry plane due to changes in
the thickness at the wing root. Color contours are displacements between baseline and perturbed configuration.
Line are contours of analytically-computed sensitivity.
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Figure 15. Comparison of sensitivity and displacements for Case #7 on the symmetry plane due to changes in
the thickness at the wing root. Color contours are displacements between baseline and perturbed configuration.
Line are contours of analytically-computed sensitivity.

Table 2. Optimized design variables produced by the FUN3D design framework.

Design

Variable Original Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7

thick[1] 0.14000 0.13968 0.13952 0.13969 0.13968 0.13952 0.13969 0.14004

thick[2] 0.12000 0.11970 0.11970 0.11970 0.11970 0.11970 0.11970 0.12050

thick[3] 0.10000 0.09994 0.09994 0.09994 0.09994 0.09994 0.09994 0.10025

thick[4] 0.08000 0.08001 0.08001 0.08001 0.08001 0.08001 0.08001 0.08007

thick[5] 0.06000 0.06006 0.06006 0.06006 0.06006 0.06006 0.06006 0.06011

thick[6] 0.04000 0.04000 0.04000 0.04000 0.04000 0.04000 0.04000 0.04001

camber[1] 0.04000 0.03450 0.03450 0.03450 0.03450 0.03450 0.03450 0.03454

camber[2] 0.04000 0.02766 0.02765 0.02765 0.02766 0.02765 0.02765 0.02762

camber[3] 0.03000 0.02783 0.02783 0.02783 0.02783 0.02783 0.02783 0.02779

camber[4] 0.02000 0.02633 0.02634 0.02633 0.02633 0.02634 0.02633 0.02631

camber[5] 0.01000 0.02100 0.02100 0.02100 0.02100 0.02101 0.02100 0.02102

camber[6] 0.00000 0.00415 0.00415 0.00415 0.00415 0.00415 0.00415 0.00416

incidence[1] 0.00000 -0.00049 -0.00048 -0.00048 -0.00049 -0.00048 -0.00048 -0.00049

incidence[2] 0.00000 -0.00148 -0.00148 -0.00148 -0.00148 -0.00148 -0.00148 -0.00150

incidence[3] 0.00000 -0.00047 -0.00047 -0.00047 -0.00047 -0.00047 -0.00047 -0.00048

incidence[4] 0.00000 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054

incidence[5] 0.00000 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078

incidence[6] 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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upon these results, it appears that the discrepancies between the sensitivities and displacements do not
adversely impact either the quality of the design results, nor the convergence rate, of the optimizer.

The final state of the design variables for each case can be seen in Table 2.

Table 3. Optimized design variable state produced by the CART3D design framework.

Design Variable Original CART3D

thick[1] 0.14000 0.16421

thick[2] 0.12000 0.16274

thick[3] 0.10000 0.13878

thick[4] 0.08000 0.11257

thick[5] 0.06000 0.09308

thick[6] 0.04000 0.04548

camber[1] 0.04000 0.03232

camber[2] 0.04000 0.02594

camber[3] 0.03000 0.02505

camber[4] 0.02000 0.01965

camber[5] 0.01000 0.01071

camber[6] 0.00000 0.00060

incidence[1] 0.00000 -0.22570

incidence[2] 0.00000 -0.23151

incidence[3] 0.00000 0.56050

incidence[4] 0.00000 0.69111

incidence[5] 0.00000 1.07874

incidence[6] 0.00000 0.41552

B. Treatment of sensitivities in the CART3D environment

Unlike FUN3D, the CART3D design framework deals with the mesh motion internally. Because of this there are
no “displacement method” options. Where FUN3D needs a consistent mesh topology throughout the design
study, CART3D does not. In fact, every design iteration produces a new mesh – any new shape will result in
the discrete body cutting through the Cartesian mesh in a different manner. The use of a new mesh in every
design iteration introduces a slightly different level of discretization error that, in some cases, may contribute
to a higher level of numerical noise in the optimization. This potential problem is avoided through the use
of adjoint-based mesh refinement that tightly controls the level of discretization error in every design cycle.
This CART3D option was used in the design study.

VR-MVC was used as the “sensitivity method” to propagate BRep Edge movements into the interior of
the BRep Face. But for this design study, MVC alone would produce the same results. This is because the
symmetry plane is handled by CART3D and there is visibility within the bounds of all of the wing surfaces.
Therefore only a single design case which used analytic sensitivities was run and the results can be seen in
Table 3.

It must be noted that the objective here is to demonstrate the use if ESP’s sensitivity calculations in
both the FUN3D and CART3D design environments. These results should NOT be used to compare the two
environments, since they use different optimizers and different flow field resolutions. Even so, the two schemes
show similar design trends, such as the incidences are almost the same, the thicknesses are increasing, and
the cambers are moving in similar directions.
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VI. Conclusions

The Engineering Sketch Pad (ESP) has been integrated into both the CART3D and FUN3D design frame-
works. When applied to an inviscid wing, both frameworks were able to decrease the (induced) drag coefficient
by about 5.5%, while holding the lift coefficient fixed. This was done in both frameworks by allowing the
optimizer to change the spanwise thickness, camber, and incidence distributions.

The initial application of ESP revealed that the method used to propagate boundary changes to the
interior of a Face, mean value coordinates (MVC), could produce results that were not intuitive; these
results were due to the fact that MVC guarantees smoothness but does not guarantee that the maximum
sensitivity occurs on the boundary, but may in fact occur in the interior of the region. This undesirable
result comes about because MVC can produce negative weights when the interpolation point is not visible to
some the portion of the boundary. To circumvent this, a new visibility-restricted (VR-MVC) was developed
and applied.

As an alternative to either MVC or VR-MVC, the Delaunay-type surface tessellator was directly differen-
tiated, as described above. The key to computing sensitivities in this way is the fact that only formulae that
produce the locations of the interior vertices (u, v) need to be differentiated, and so this technique should be
rather straightforward to apply to existing tessellators.

Notwithstanding the above, differences were observed between the contours of the predicted sensitivities
and contours of displacements (which were computed via finite differences). The key reason for these differ-
ences was the way in which the sensitivities are computed along Edges. In particular, the sensitivity of points
on Edges is due to three effects: the shape of the Edge changing, changes in the parametric coordinates at
the ends of the Edge (due to trimming effects), and the spacing of the points along the Edge. The first
two of these are treated in a completely consistent way, as seen by noting that the shapes of the boundary
curves are essentially the same. But the last effect, which establishes the distribution of the points along the
Edge, is not consistent because the sensitivity calculation assumes a motion normal to the Edge whereas the
displacements assume that the relative arc-length spacing does not change; the relative-arc-length-spacing
strategy can only be done via regenerating the configuration.

In order to assess the importance of this discrepancy, several different test cases were computed within the
FUN3D framework. In each case, the optimized result was nearly identical (within 0.1%). The case in which
the sensitivity and displacements agreed along the Edges, and hence Faces, required about 5% fewer flow
solver iterations to achieve its result, but at the expense of finite differences, which require a regeneration
for each design variable at each optimization step (as opposed to only one regeneration for the analytical
sensitivities). It is useful to reiterate that the discrepancies seen are due to discrete points sliding along the
owning geometric entities.

Although the detailed investigation was not pursued using the CART3D framework, it too demonstrated
that the analytical sensitivities were sufficient to achieve optimized results that were comparable with the
FUN3D results.
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