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As attention is focused upon the “time to solution”, it becomes obvious that the entire
process must be taken into account – not just the cost and efficiency of the solver. Amdahl’s
Law tells us that any serial portion of the application will be the limiting factor in scalability.
Therefore it does not matter how efficient a solver is if both the pre- and post-processing
have not been given the same focus towards scalability. The most obvious way to insure
that a scalable process exists is to view the process as an integrated whole and remove any
serial portions. The work discussed in this paper makes geometry available in a parallel
environment to support parallel mesh generation, solver-based grid adaptation, and the
curving of linear meshes to support high(er) order spacial discretizations.

I. Introduction

NASA recently commissioned the study: “CFD Vision 2030 Study: A Path to Revolutionary Compu-
tational Aerosciences”,1 in which several technology gaps and impediments were identified. In section 5.3
(Autonomous and Reliable CFD Simulations), “Mesh generation and adaptivity” were specifically identi-
fied as concerns, owing both to “inadequate linkage to CAD” and “poor mesh generation performance and
robustness”. In section 5.1 (Effective Utilization of High-Performance Computing), the concern was raised
that there was a “lack of scalable CFD pre- and post-processing methods”.

The study projected that in the near future, CFD grids with 109 vertices (or more) would be common-
place, executing in High Performance Computing (HPC) environments with 103 to 105 compute nodes, each
consisting of 10s of cores; graphic processing units (GPU) were also seen as technologies that might seri-
ously change the HPC from its current state. Further, the study identified (in several places) the need for
widespread adoption of grid adaptation and a transition from one-off analyses to design optimization.

Design environments (driven by optimization) pose a significant challenge to most current Computer-
Aided Engineering (CAE) areas, including CFD. The challenge is one of automation. If many thousands
of design cases are to be analyzed, an expert (or any) engineer cannot be in the loop providing updated
geometry, meshes or the post-processing of results. This challenge suggests the goal of a process that is fully
automated and therefore efforts should be made to attempt to achieve that goal.
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II. Current bottlenecks

The discussion thus far has focused on process and taking all of the above together, one can identify the
following current bottlenecks:

• The grid generation systems are not distributed throughout the HPC environment, but rather fre-
quently operate on one HUGE front-end machine; the grid is then partitioned and distributed through-
out the HPC system for execution by the parallelized CFD solvers. In addition to most likely growing
bigger than any one computer could handle, this serial process is an impediment for good parallel
performance (Amdahl’s Law2).

• One of the reasons that the grid generation may not be distributed is because the underlying geometry
systems are not distributed. Part of this is because the geometry systems were not built to exploit
parallel and/or distributed computing environments. The other part is because most geometry sys-
tems are licensed, making their distribution across an HPC system impractical (if not prohibitively
expensive).

• Even after the grid has been generated and distributed, there is a desire to adapt the grids on the
processors on which the CFD solver is executing; hence the grid adaptation process must operate in a
distributed manner. In the field, this is not too difficult, but for grid vertices near the surface, a major
impediment to this process today is the central (i.e., non-distributed) nature of the geometry system.

• With the advent of higher-order methods, it may not be enough to simply evaluate the location of
points on the surfaces of the geometry, but also the local surface slopes and curvatures in order to
generate meshes with curved elements.

III. Technical Approach

The technical approach is to extend the “Engineering Sketch Pad” (ESP) to support the geometry needs
in current and (hopefully) future HPC environments. In the section that follows, a brief description of the
relevant existing capabilities will be described. This is then followed by several sections in which the specific
technical tasks are discussed.

A. Existing capabilities

This work builds upon the “Engineering Sketch Pad” (ESP) system3 that is currently in use at NASA, the Air
Force Research Laboratory and other sites. As opposed to most commercially-available geometry-generating
CAD systems, ESP was designed for geometries encountered in aerospace applications for which CFD (and
Structural Analysis) computations are desired. ESP is also currently being used to generate multi-fidelity
and multi-disciplinary geometries for the Air Force’s “Computational Aircraft Prototype Syntheses” (CAPS)
project. This ESP functionality allows for a single parameterized model to generate different disciplinary views
of that model, each directly appropriate for the task at-hand.

ESP is architected with a client-server model, where the back-end runs on most modern operating systems
(Windows 7/8/10, MAC OSX, and Linux) and the front-end runs in modern web browsers (Firefox, Google
Chrome, Safari, Internet Explorer), without the need for plug-ins.

Since the software being discussed here all runs on the compute node back-ends, further discussions
will concentrate on the features of the “Open-source Constructive Solid Modeler” (OpenCSM)4 and the “En-
gineering Geometry Aircraft Design System” (EGADS),5 which are central to the computations in the back-end.

The distinguishing features of the ESP subsystems EGADS and OpenCSM include:
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Feature-based parametric solid modeler This means that geometries (represented as BReps) are gen-
erated by executing build recipes (feature-trees) with a prescribed set of design parameters. The design
parameters can be changed (by the user or an outside program) at any time to build a new configu-
ration. For example, in a design setting, the optimizer may want to change the wing’s aspect ratio,
taper ratio, thickness, and/or camber to minimize drag with a prescribed lift. The BReps produced by
OpenCSM are generally manifold (that is, watertight with all components connected), but non-manifold
sheets (useful for wakes and some structural represnetations) and wires are also supported.

Full suite of feature-tree branch types This includes standard primitive solids, solids grown from
sketches, applied features, Boolean operators, and transformations.

Compiled user-defined primitives and functions (UDPs & UDFs) Unlike other geometric model-
ers, OpenCSM provides the user with the ability to incorporate user-defined primitives. Currently, UDPs
are available for generating an assortment of airfoil shapes (NACA-4, -5, and -6 series, Kulfan, and
Parsec) and a variety of cross-sectional shapes often found in fuselages (four-quadrant super-ellipse,
boxes with rounded corners, and Bezier surfaces). The UDPs are EGADS applets written in C/C++
and/or FORTRAN and then compiled into shared-objects (or DLLs). These UDPs, after run-time
loading, act in the same way as any OpenCSM geometric primitive. UDFs are like UDPs but can take
as input one or more existing BRep(s).

Scripted user-defined components (UDCs) These are usually small scripts of OpenCSM statements
that are used for often-applied tasks. Examples of UDCs that ship with ESP/OpenCSM are standard
aircraft components (wing, fuselage, duct, strut) as well as specialized UDCs for putting a deflected
flap or deployed spoiler on an existing wing.

Configuration files that are readable ASCII text This gives the user the ability to write OpenCSM

files from other applications. Also, a human readable file facilitates the ability to communicate the
design intent.

Persistent attribution between models This allows users (or external programs) to place auxiliary
information (such as required grid cell size) on a model and have this metadata persist through re-
generations (because the feature-tree or design parameters changed) or across linked models (such as
models with differing fidelities or suitable for different disciplines).

Sensitivities Rapid, accurate sensitivities of the BRep with respect to the design parameters. Many times
this can be done analytically (without the need to regenerate), but there are some branch types for
which OpenCSM employ finite-differences at this time.

Open-source ESP is distributed as source (C, C++, FORTRAN, JavaScript, html), with the non-viral
GNU Lesser General Public License (version 2.1) as published by the Free Software Foundation. The
only software dependency is OpenCASCADE,6 which itself is licensed under LGPL 2.1.

B. Construction of “EGADSlite”

Though the EGADS portion of ESP can be used in isolation, it represents a huge amount of code which
includes the ability to build geometry (from either a bottom-up or top-down perspective), tessellate the
geometry for viewing (and other operations), placing annotations on parts of the BRep, and many other
functions. OpenCASCADE, the only dependency for EGADS, can be difficult (if not impossible due to the C++
nature of the code-base) to port to novel architectures (such as GPUs). But, the requirements for mesh
generation and mesh adaptation represent a small subset of the EGADS functions which primarily are the
ability to parse the BRep, provide attributes, preform evaluations and inverse evaluations, and compute the
in/outside predicates.

EGADSlite is a lightweight ANSI-C version of the EGADS functions required by the meshing process, where
the target is any high-performance computing equipment currently in use (including GPUs). Note that C++

3



can be used, but the API is essentially C. FORTRAN can also be used as the driving language with the
EGADS FORTRAN binding library.

All of the EGADSlite function names are the same as those in EGADS, have the same signatures, and mostly
act in the same manner including any side-effects (note that there are only 2 functions that differ in actions
compared to their EGADS’ namesake). This allows for code prototyping in the larger geometry environment,
with confidence that, when pared down, the results will be the same. The initialization/model-read is one
of the differences, where an EGADS application prepares the data for use by the EGADSlite package. This
data can be written to disk or used live in a parallel setting. The latter option obviously requires a least a
single node with full EGADS access. The small amount of data (in comparison to the surface discretization)
can simply be broadcast throughout a high-performance machine so that all processors have the complete
description of the analytic geometry and the BRep topology.

Clearly any dependence on OpenCASCADE needs to be removed in order to maintain the C (not C++)
nature of the EGADSlite code base. This entailed rewriting all of the evaluation and inverse evaluation
functions, which required covering the support of all of the curve and surface types used within.

The EGADSlite API is described below and is partitioned into sections having to do with functionality.
For a more complete description of the API, see the EGADS documentation, which comes with the ESP

distribution.7 Overall, the EGADSlite function list contains no construction operations but only inquiry and
read-only functions (for example, you can get any information about attributes, but you cannot add a new
attribute or change one that exists).

1. Session Functions

The following subset of EGADS provides functions that open, control and close an EGADS session as well as
provide dynamic memory arena accessa.

EG alloc allocate memory controlled by EGADSlite

EG calloc allocate and zero-fill a block of memory

EG close close up and exit a context

EG free free memory allocated by EG alloc, EG reall or EG calloc

EG open open and return a context object

EG reall reallocates a bock of memory

EG revision returns the version information

EG setOutLevel sets the verbose level

2. Attribute Functions

It has become obvious during the use of ESP that attribution associated with the geometric model is essential
for automation and design settings. Attribution allows for the placement of geometrically related metadata
on the appropriate entities directly. This can then support the marking of boundary conditions, material
properties, mesh spacings, and the like. This part of the interface is used to fully support the mission of
EGADSlite and allow the application full access to this data.

EG attributeGet retrieve a specific attribute for an object (by index)

EG attributeNum returns the number of attributes associated with an object

EG attributeRet get a specific attribute for an object (by name)
aMemory routines are required because EGADS and EGADSlite are built as shared objects/DLLs and Windows can’t have an

executable/DLL free memory allocated by another executable/DLL due to the lack of system level libaries.
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3. Geometry Functions

These functions provide for the evaluation/inverse evaluation portion of the geometry kernel, in addition to
other routines that can assist in mesh generation.

EG arcLength returns the arclength of an curve/pcurve object

EG curvature return the curvature and principle directions/tangents of a curve/surface

EG evaluate returns physical coordinates and derivatives on an curve or surface

EG getGeometry returns information about a geometric object

EG getRange returns the valid range of a geometric object

EG invEvaluate returns the result of inverse evaluation on an object

EG invEvaluateGuess returns the result of inverse evaluation on an object given an initial guess

4. Topology Functions

The functions in this portion of EGADSlite allow for the parsing through the BRep Topology of the geometric
model. This provides the routines that support the BRep hierarchy, information about neighbors and
trimming. Some of the functions here were also listed above because they work on either geometry and/or
topological entities.

EG arcLength returns the arclength of an Edge object

EG curvature return the curvature and principle directions/tangents of an Edge/Face

EG evaluate returns physical coordinates and derivatives on an Edge or Face

EG getBodyTopos returns topologically connected objects

EG getBoundingBox computes the Cartesian bounding box around an object

EG getEdgeUV computes on the Edge/pcurve to get the appropriate (u, v) on the Face

EG getRange returns the valid range of an object

EG getTolerance returns the internal tolerance defined for a object

EG getTopology returns information about a topological object

EG inFace computes the result of the (u, v) location in the valid part of a Face

EG inTopology computes whether the point is on or contained within the object

EG indexBodyTopo returns the index (bias 1) of the topological object in a Body

EG invEvaluate returns the result of inverse evaluation on an object

EG invEvaluateGuess returns the result of inverse evaluation on an object given an initial guess

5



5. Tessellation Functions

This subset of functions represent the complete EGADS tessellation package. This allows the user to build
discrete versions of any geometry represented within the system. Also this turns out to be a great surrogate
for a grid generation system to enable testing of the basic EGADSlite completeness and functionality.

This portion of EGADSlite is the only part that is not read-only. Tessellation objects can be created and
deleted.

EG deleteEdgeVert delete an Edge vertex from a Body-based tessellation object

EG getGlobal returns the point type and index (like from EG getTessFace) with optional coordinates

EG getPatch retrieves the data associated with the patch of a Face from the Body-based tessellation object

EG getQuads retrieves the data associated with the quad-patching of a Face from a Body-based tessellation
object

EG getTessEdge retrieves the data associated with the discretization of an Edge from a Body-based
tessellation object

EG getTessFace retrieves the data associated with the discretization of a Face from a Body-based tessel-
lation object

EG getTessGeom retrieves the data associated with the discretization of a geometry-based object

EG getTessLoops retrieves the data for the loops associated with the discretization of a Face from a
Body-based tessellation object

EG getTessQuads returns a list of the Face indices found in the Body-based tessellation object that has
been successfully quadded

EG initTessBody creates an empty (open) discretization object for a topological Body object

EG insertEdgeVerts inserts verticies into an Edge discretization of a Body tessellation object

EG localToGlobal perform local-to-global index lookup

EG locateTessBody provide the triangle and the vertex weights for each of the input requests or the
evaluated positions in a mapped tessellation

EG makeQuads create quadrilateral patches of the indicated Face and update the Body-based tessellation
object

EG makeTessBody creates a discretization object from a topological Body object

EG makeTessGeom create a discretization object from a geometry-based object

EG moveEdgeVert moves the position of an Edge vertex in a Body-based tessellation object

EG openTessBody opens an existing tessellation object for replacing an Edge or Face discretization

EG setTessEdge sets the data associated with the discretization of an Edge for an open Body-based
tessellation object

EG setTessFace sets the data associated with the discretization of a Face for an open Body-based tessel-
lation object

EG statusTessBody returns the status of a tessellation object
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6. Functions with Different Side-effects

The last set of two functions belong to the Session suite but are those that have the same signatures but act
in a different manner.

EG deleteObject delete an object
in EGADSlite only Tessellation Objects created during the session can be deleted

EG loadModel load an return a model object
general file readers do not exist

C. Memory Footprint

Analyzing the amount of memory a library takes up in a running program is not simple. It depends on
whether the libraries are linked in a static or dynamic manner, what functions are utilized and the size of
internal objects (used in runtime). Because of these difficulties, the size (on disk) of the dynamic library
or in the case of EGADS libraries (including OpenCASCADE) is used as a surrogate for memory footprint. The
comparison can be seen in Table 1.

Table 1. Comparison of size

# of Libraries size (Kbyte)

EGADS 52 65384

EGADSlite 1 342

These numbers were derived from an Apple MACbook Pro running OSX 10.12.5 with Xcode 8.3.3 and
OpenCASCADE version 6.6.0.

D. Timings

Tests of the EGADSlite evaluators and inverse evaluators show that this new subsystem is more robust
than the equivalent parts of EGADS (which is based on OpenCASCADE) and between 10 and 100 times faster,
as shown in Table 2. These tests were performed by taking tessellation points (for which the coordinates
[x, y, z] are known to lie exactly on the configuration), and then performing inverse evaluation (without an
initial guess). An inverse evaluation is a local optimization that minimizes the distance between the target
location and a position on the surface. This is solved by Newton-Raphson iterations and therefore require
good first and second derivatives. The optimization works very well for most analytic surface types but can
be problematic when applied to B-Spline (or NURBS) surfaces. Poorly constructed (or fit) B-Spline/NURBS
surfaces can display oscillations that obviously generate local minima, which trap (or overshoot) the inverse
evaluator. This problem can be mitigated by trying many seed points and selecting the closest result.

In this test, a failure in finding the correct result happens when the returned [x, y, z] from the inverse
evaluation differs from the known [x, y, z] by more than 100 times the Face’s internal tolerance. Failures
noted in the table all had distances significantly larger than this tolerance. It is interesting to observe
that failures in EGADS/OpenCASCADE and EGADSlite happened on different configurations. This is because
different seeding algorithms are used. Note that overall, EGADSlite was as robust as EGADS, but generally
about an order of magnitude faster in serial/single-threaded applications.
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Table 2. Comparison of timings

EGADS EGADSlite

Case nFailure time nFailure time

demo2 0 0.40 0 0.04

tutorial1 whole 0 8.48 0 1.04

design2 0 0.35 0 0.04

design3 0 2.56 0 0.16

tutorial2 0 1.04 0 0.16

tutorial3 0 98.96 0 2.51

myPlane 20 765.86 0 24.24

bottle2 0 8.14 0 0.83

wingMultiModel 0 38.30 0 0.64

bullet 102 1.75 0 0.11

connect5 0 0.47 0 0.03

group2 0 1.55 0 0.14

hl-crm-gapped-flaps 0 17115.71 38 1804.50

hl-crm-sealed-flaps 16 1783.64

jsm case01 0 150.30

jsm case02 0 153.27

E. Threading

The EGADS tessellator has been threaded from the most early revisions. Timing has shown that almost perfect
scalability (based on the number of cores or hyper-thread availability) is usually achievable. It should be
noted that this triangulator only performs forward evaluations of Edges, parameter-space curves (pcurves)
and surfaces. Inverse evaluations are avoided due to their lack of speed and robustness. This scalability
would lead one to believe that OpenCASCADE is both thread-safe and scalable. But it is observed that there
tends to be a significant amount of code between individual evaluations.

During the analysis of the structured block grids for GMGW18 EGADS was initially used to remap the grid
vertices, which were supposed to be on the geometry, onto the appropriate surface to determine conformity.
This required only inverse evaluations of individual points against many of the surfaces in the configuration.
It is odd that this phase of the analysis is required at all, but because there are no mesh generators that
output the requisite information (Face/surface-patch and parametric coordinate data for each vertex in the
patch), the data needs to be regenerated. Note that there is little other code between each inverse evaluation
in this analysis.

The entry hl-crm-gapped-flaps of Table 2 displays the cost of doing the GMGW1 analysis on the coarse
overset mesh. This is an extraordinary amount of time, and prompted the desire to improve the performance
to do all of the other analyses. An obvious approach is to parallelize the operation by distributing the
individual points across the available threads. When done with EGADS it was noted that the performance
decreased significantly (verses the simple non-threaded application). This is NOT the desired outcome!
During the examination of the machine’s performance it was noted that about 150% of the CPU was being
utilized (out of 800% – 4 cores with 2 hyper-threads each) and most of that was system time. The conjecture
is that there is some MUTEX deep in the OpenCASCADE evaluators to allow for multi-threading (we get the
correct answer), but not scalability. That is, each thread needs to wait until the critical portion of the code
is available.
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EGADSlite is designed to be thread safe without any low-level common code that needs protection. When
threaded, the machine’s appropriate scalability is achieved. These observations has prompted the following
actions:

• The GMGW1 analysis for structured grids was performed using EGADSlite with threading. This
further decreased the analysis time by the number of available threads on the machine.

• The OpenCASCADE evaluators and inverse evaluators were replaced by those constructed for EGADSlite
in EGADS and are available at Rev 1.12 (and higher). This significantly improves the performance of
all of ESP.

IV. Distributed Approaches

Figure 1. JSM configuration used in partition analysis

A. Simple MPI Implementation

The trivial setup for the distribution of geometric data is to take the EGADS model data in a master process
(that is, the master process is an EGADS application) and distribute the information to all clients/slaves.
This single geometry-server/multiple-client arrangement allows for the ability to load, create and modify the
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geometry with EGADS and then broadcast the data to the EGADSlite clients to perform the mesh genera-
tion/node adaptation/grid curving in-situ.

This approach assumes that all computational clients/slaves have all of the geometric, topological and
attribution data for the complete model available. This means that no further communication to the EGADS

master is required until there is a change in geometry. But this may place a memory burden on the clients,
though it is noted that all of the EGADSlite data is usually much smaller than the surface discretization’s
memory footprint.

B. Partition Analysis

In an attempt to understand the impacts of further partitioning the geometric data within a spatially
decomposed CFD setting an analysis was performed. This partition analysis has been performed to determine
how much of the geometry is contained within each of the partitions of a FUN3D flow calculation. With this
information, we can assess the best and most appropriate distribution method (if any). The partition analysis
was done using an instrumented version of FUN3D, created by NASA LaRC personnel to provided the raw
partition data.

For a transport aircraft configured for high-lift operations (the AIAA High-Lift Prediction Workshop 3
JSM test case with nacelle and pylon – Figure 1), only a small portion of the entire configuration needs to
be distributed to each processor. The results of this partition analysis is shown in Table 3.

Table 3. Partition analysis results for the JSM with nacelle and pylon in FUN3D

Number partitions 1 10 100 1000 10000

Partition w/o Points 0 0 1 164 5588

Avg Faces/Partition 413 54 10 2 0

Avg Faces/bbox 413 140 30 11 3

Max Faces/Partition 413 102 31 19 13

Max Faces/bbox 413 413 413 413 413

The original idea for distributing portions of the configuration to the geometry clients was to do this
based upon the bounding box of the points associated with each partition. The results in the table show
that this approach will result in 3–10 times as many Faces distributed as compared with distributing Faces
based only on lists of Face indices. The problem with the list-of-Faces approach is that the geometry clients
need to know the identity of the needed Faces, which is information not currently available in FUN3D – again
information that has been lost during the meshing subprocess.

C. Should there be an EGADSair?

The data from Table 3 begs the question: For those memory sensitive HPC application, should the geom-
etry related data be partitioned so that only the needed surfaces/Faces (and the lower hierarchal data) be
contained within the client?

For this to work well the following needs to be noted:

Additional communication The required Face indices/objects are not know by the geometry system but
are a function of the mesh. This would require a scanning of the mesh partition at client initialization to
determine what subset of the Faces are needed. Additional API functions would be needed to transmit
the requirements to the EGADS master and then only the preened geometric/topological and attribution
data sent back to the requesting client. Obviously this functionality requires more communication and
again information about the mesh/geometry association that the solvers don’t usually have (and are
not available from the grid generation software).
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Partition rebalancing If adaptation is a part of the CAE process, the partitions lose their balance and
groups of elements are sent around the subdomains in an attempt to rebalance the computational load.
This can readjust the list of Faces required by each partition, which would require the local cache of
geometric data to be updated. Again another API function may be required and more communication
will need to occur.

Limited view of the geometric model This minimal view of the data required at each partition limits
the functionality to queries that can only be local (at the Face level or below). For example: if during
meshing a newly generated point needs to be compared to the enclosing volume (defined by a solid),
the entire BRep must be available to perform the predicate.

V. Conclusions

A geometry system for use on HPC equipment, named EGADSlite, has been developed and is now a
part of the ESP ecology of APIs, which is open-source and freely available at http://acdl.mit.edu/ESP.
When compared with EGADS (which used OpenCASCADE), EGADSlite has been shown to be more robust and
generally more than an order of magnitude faster for inverse evaluations (non-threaded). Further, EGADSlite
is fully threadable and has nearly perfect parallel efficiency, making it ideally suitable for inclusion in HPC
environments.
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