AIAA SciTech Forum

23-27 January 2023, National Harbor, MD & Online
AIAA SCITECH 2023 Forum

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

A Parametric Design Process based on Optimization-Guided

Aprop
Cp

Tsprint

Teap

Incremental Design Decisions

Dongjoon Lee*, Cody Karcher, Robert Haimes?®, and Marshall Galbraith’
Massachusetts Institute of Technology, Cambridge, MA, 02139

John F. DannenhofferT
Syracuse University, Syracuse, NY, 13244

The traditional aircraft design process is typically split into three stages: conceptual,
preliminary, and detailed design. This three-stage process usually proceeds sequentially from
stage to stage, and major design decisions are frozen between stage transitions. But this model
does not capture the more complex reality, where design decisions are subject to frequent
iteration at all stages of the process. This paper presents the Engineering Sketch Pad (ESP)
Phasing capability that captures this more complex design workflow by decomposing the process
into atomic portions called Phases. Each phase is intended to branch from any completed
phase and answer a specific design question, allowing the designer to make design decisions
non-sequentially. The use of this Phasing capability is demonstrated with the sizing of an aircraft
wing while simultaneously optimizing an airfoil with increasing aerodynamic and geometric
model fidelity. A number of cases are presented, beginning with a low fidelity aerodynamic
model and a NACA 24XX airfoil geometry, and culminating in a Kulfan CST4 representation of
geometry with MSES to perform the airfoil analysis.

I. Nomenclature

= aspect ratio

= propeller disk area

= drag coefficient

= profile drag coefficient

lift coefficient

lift coefficient

Oswald efficiency factor

wing added weight fraction

gravitational constant

fuel heating value

= area moment of inertia per unit chord
root moment per chord

= maximum engine output power

= 1+22

= 1+4

= Range

= Reynolds number

= wing area

= thrust force

= thrust (sprint)

= spar cap thickness per unit chord

*Graduate Student, MIT Aeronautics and Astronautics

TPostdoctoral Researcher, University of Michigan Aerospace Engineering; Former Graduate Student, MIT Aeronautics and Astronautics

Principal Research Engineer, MIT Aeronautics and Astronautics
SResearch Engineer, MIT Aeronautics and Astronautics
1 Associate Professor, Syracuse Mechanical and Aerospace Engineering

Copyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

10.2514/6.2023-1162

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Vv = flight speed

Vsprint = flight speed (sprint)

Vitanl = stall speed

w = operating weight

Weap = spar cap weight

Weng = engine weight

Wihixed = fixed weight

Wrielouwr = weight of fuel burned (outbound)
Whielret = weight of fuel burned (return)
Wwmto = maximum takeoff weight
Wout = aircraft weight (outbound)
Wpay = payload weight

Wweb = shear web weight

Wiing = wing weight

Wotw = zero-fuel weight

w = weight excluding wing

Zbre = Breguet parameter

) = overall efficiency

Nosprine = overall efficiency (sprint)
Teng = engine efficiency

I = 1inviscid propeller efficiency
Tprop = propeller efficiency

Ny = viscous propeller efficiency
A = wing taper ratio

y = (1+1+2%)/(1+2)?

P = air density

Psl = sea level air density

u = dynamic viscosity

T = wing thickness ratio

II. Introduction

The traditional approach to engineering design often splits the workflow into sequential stages of conceptual,
preliminary, and detailed design. Conceptual design translates a set of design requirements into a number of concepts
and configurations that are sized and evaluated at a high level using engineering intuition, empirical models, and
low-fidelity analysis. As the design matures, certain design decisions become frozen to focus on refining geometry and
increasing analysis fidelity. But it is sometimes necessary to iterate on major design decisions in a more continuous
workflow as the modeling and analysis fidelities increase. Concepts that were promising in early stages may present
problems when higher fidelity geometry and analysis are used, and new information may be learned in later stages
that change requirements or make other configurations more attractive. Existing methods cannot manage both phases
of examining different concepts and phases of analyzing performance with differing fidelities, which brings up the
question: How best can we handle the process complexity inherent in aircraft design?

One way to approach the design complexity problem is to view the design process as a decision tree where each
node represents the work necessary to answer a specific design question. This view breaks the overall design process
into manageable chunks — optimize the L/D of a wing at a specific flight condition, compare the fuel burn between two
and four propulsor configurations using first-order aero-propulsive models. This process allows the designer to trace
design decisions up to specific nodes and progress the design from any node in the tree, enable non-sequential design
workflows.

In order to provide a software infrastructure that could be used as the basis for a design system, the Engineering
Sketch Pad (ESP) open-source project [[L] contains a parametric geometry system integrated with the ability to specify
process workflows as described. In ESP, each node on the decision tree is called a Phase and has the following attributes.
First, any Phase can be a stepping stone to another with internal object models and values stored. The designer can
take the result of any node in the design tree and start a new Phase to answer a different design question. Second, a
completed Phase can branch into multiple new Phases, which allows the designer to explore and compare multiple

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

solutions for a particular design question. The best performing branch can be selected and the others can be pruned.
Lastly, each Phase can be driven by differing workflow and geometry scripts, which allows each Phase to be streamlined
in answering the design question of interest.

ESP provides multiple capabilities in addition to Phasing which facilitates the design workflow. Direct connections
to a diverse collection of variable fidelity and multidisciplinary analysis suites allows users to seamlessly move data
throughout the system. The parametric geometry build is either differentiated by hand or the code itself is differentiated
using operator overloaded automatic differentiation [2H5] which provides analytic derivatives for efficient gradient-based
optimization. To enable a collaborative workflow, a browser-based user interface to ESP can be simultaneously accessed
from various locations. These capabilities are provided by various ESP components which can be accessed as individual
APIs or through the integrated ESP system. The CAPS component connects geometry to analysis with Analysis
Interface Modules (AIMs), which provide an abstraction and plug-in technology that facilitates dealing with connecting
solvers [6H9]]. Most CAPS workflow is performed using pyCAPS [10], a Python c-types wrapper to provide a Python
object interface, enabling similar workflow to Python-based MDO frameworks such as OpenMDAO [11]]. The rest of
the paper demonstrates a multi-fidelity design process, using ESP to enable connection between the optimization and the
underlying geometry, as well as Phasing capability to break up the design process into manageable incremental design
decisions.

III. The Aircraft Design Optimization Problem
The Phasing demonstration builds upon a design optimization problem originally proposed in Hoburg and Abbeel [12].
The problem seeks to size a UAV flying an outbound cruise segment, a second return cruise segment, and a third sprint
segment used to size the engine. The goal is to minimize the total weight of consumed fuel,

quel,out + quel,ret (1)
subject to the following constraints (which are classified for readability):

Steady level flight relations:

1 1 pVS!/2
W= E,OVZCLS T > EpVZCDS Re =" 7)
Landing flight condition:
1 2
Wwmro < EpslvstancL,maxS Vst < 38 3)
Sprint flight condition:
Tsprint Vspri
Pax 2 o et Vsprint > 150 “4)
170,sprint
Drag model:
0.5 c:
Cp2>2——+Cp, +—
b="g Dr ™ reA
5.88 6.23 0.03 p ,0.14
I 9 T 37 Re
P P P
9.78..1.76 6.53
T C
119x10* —-5—— +6.14x 100 ——&
Rel-OOC%(‘” T0'52R€0'99C%19
r p
Propulsive efficiency:
Tnl.z
770 < NengMprop Tprop < NiTly 4n; + T o, = (6)
EpVZAprop

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

R > 5000 x 10° Zbre =

Wpay = 500g

Range constraints:

2 3 4
> 8RT Whyel > Zore + Zhre + ij + ij
hewermoW w 2 6 24
Weight relations:
Wwing

W > Wrixed + Wpay + Weng
szw = W + Wwing
Weng > 0.0372P2;303

2g >

Pz
T <

M, >

0.92w 70y, + Leap

IA

max

= Wweb + Wcap
JSwadd

Wout > szw + quel,ret
WMTO > Wout + quel,out
Wsprint = Wout

Wing structural model:

1+p

1.9

0.15

WAp
24
0.922 _ ,_

WT Teap

8> NlifEMrquT
SIcapO'max
AW Niig?
TSt_webo'max,shear
9 > 0.86p7%% +0.14p0°
SpcangchapS3/2V
34172
8pwebgrhwaebS3/2V
34172

12 >

Weap 2

Wweb =

(7

®)

9

Constant parameters are shown in Table[I] As formulated, this is a geometric program which is convex and therefore
rapidly converges to a globally optimal design. However, the implicit constraint for Cp, = f(CL, Re, 7), shown in
Eq.[3] is a fit to approximately 2500 data points generated using XFOIL [13] and presents one of the largest sources of
uncertainty in aircraft aerodynamic performance. Over the course of the following sections, this paper will describe a
Phasing process to: 1) Increase the fidelity of this model by using the CAPS AIM for MSES [14]], and 2) Reduce the
required fuel consumption by introducing higher fidelity geometry representations with more degrees of freedom in the

optimization.

Table 1 Fixed constant parameters for the design problem

Quantity Value Description
Niige 6.0 Wing loading multiplier
O max 250 x 10° Pa Allowable stress, 6061-T6
Omax shear 167 x 10° Pa Allowable shear stress
g 9.81m/s? Gravitational constant
w 0.5 Wing-box width/chord
fwadd 2.0 Wing added weight fraction
Wieixed 14.700N Fixed weight
CL.,max 1.5 Maximum Cp,, flaps down
o 0.91kg/m?3 Air density, 3000 m
Psl 1.23kg/m’ Air density, sea level
u 1.69 x 103 kg/m/s Dynamic viscosity, 3000 m
e 0.95 Wing spanwise efficiency
Aprop 0.785 m? Propeller disk area
hgel 46 x 10T /kg Fuel heating value

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

IV. Phasing Workflow and Outline
A Phase in ESP is essentially defined by two input files: a CSM file that captures the parametric geometry variables,
and a pyCAPS [10]] script that notes the intent of the current Phase, constructs and solves the optimization problem, and
updates the geometry with the optimal values. As the analysis fidelity increases across Phases, the geometric complexity
should also increase to accurately capture and model a larger design space. In this design example, the first phase begins
with variable wing area, aspect ratio, taper, and airfoil thickness to chord ratio. The airfoil thickness is confined to the
four digit NACA 24XX family of airfoils and is taken as a constant section across the entire wing. Later phases evolve
to include additional variables that represent a larger design space of airfoils, such as camber and Kulfan [[15]] airfoil
parameters. ESP allows users to define their own geometric primitives (UDPs), which could define anything from a
specific 2D shape to a fully parametric fuselage [2]. Many UDPs are predefined in ESP, including primitives for NACA
and Kulfan airfoils, which simplifies the airfoil geometry definition. The complete CSM scripts used across the Phases
are shown in
The optimization in this example is defined and solved using Corsaifff| which facilitates run-time calls to black-box
analysis tools while taking advantage of underlying convexity in the formulation. Each design phase has an associated
python file which defines the optimization formulation — variables, constants, and constraints — with Corsair and uses
pyCAPS to enable phasing capability, interaction with the ESP geometry, and connection to analysis tools. These
complete pyCAPS scripts are shown in[Appendices C-I|
Figure [T] outlines the design phases that are present in Section [V] of this paper. The blue boxes represent the
successfully optimized phases, and the red boxes represent phases with unrealistic or infeasible results which are
eventually pruned. The phases are listed and summarized here.
1. GPSize: Solves the original Geometric Program formulation
2. MSES: Introduces a runtime call to MSES to calculate profile drag within the optimization loop
3A. Camber: Introduces maximum camber and camber location in geometry; results in unrealistic structures
3B. CMConstraint: Adds constraints on airfoil moment coefficient
4A. Kulfan2: Defines airfoil with two upper and two lower Kulfan coefficients; results in unrealistic aerodynamics
4B. FlowTrip: Adds a specified flow trip location within MSES to force transition
5. Kulfan4: Increases Kulfan order from two to four coefficients.

GPSize
, !

MSES —J/
3A ‘L 3B
Camber CMConstraint —J
4 2 4B

Kulfan2 FlowTrip
6)
Kulfan4

Fig.1 Flowchart of the Design Phases

*Corsair is an internal optimization tool with methods described in [16HI8]

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

V. Design Phases

A. Phase 1. GPSize: Solving the Original Geometric Program

1. Phase Intent and Formulation

The demonstration begins with solving the original problem described in Section]} In the original Geometric
Program formulation, the model for drag coefficient assumes a NACA 24XX airfoil with thickness to chord ratio, 7,
as the sole airfoil design parameter. The wing is assumed to operate at a Mach number M = 0, and compressibility
effects are not modeled. The wing structural model drives 7 higher, seeking to improve structural efficiency, whereas
the drag model should drive 7 lower, as thick airfoils tend to have an increased drag. In this specific GP-compatible
formulation however, T must be constrained as 7 < 0.15 for two reasons: first, the XFOIL fitted aerodynamic model
does not sufficiently capture the aerodynamics of thicker airfoils, and second, the wing structural model is conservative
in sizing for bending loads such that 7 is strongly driven upward.

Because Geometric Programs are convex, the optimization converges to a global optimum without iteration, and
therefore, no initial guess is required for Phase 1. The guaranteed global optimality comes at the cost of decreased
modeling flexibility and fidelity, because all constraints must fit into GP-compatible formats. The associated NACA

CSM file is shown in[Appendix A]and the python script for Phase 1 is shown in[Appendix C|

2. Examining the Phase Result

Though the problem has more than 40 variables, the most relevant have been summarized in Table[2] The optimal
design drives 7 up to the maximum of 0.15, resulting in a NACA 2415 airfoil, which is consistent with the original
formulation results of Hoburg and Abbeel [12]. This result will serve as the baseline for the cases that follow. Figure 2]
shows the NACA 2415 airfoil C}, plot from MSES at the optimized outbound cruise point of C;, = 0.5499. The MSES
results are at the optimized cruise speed of M = 0.2 which accounts for the 4% increase in Cp,, from the value in
Table@ The discrepancy arises from the GP compatible fitted Cp, model ignoring compressibility. Because small
changes in aircraft drag have large implications for overall performance, reducing the viscous drag uncertainty will be a
priority for future Phases.

Table 2 Phase 1 optimal variables summary Bk ECES?O??ESLW
v
Variable Value Units Co @ - 000562
Whe 632052 N o T o © %0 he0e
AR 18.10 - sl Cocre 20,08
Cpyon. 0.005403 - Ny - B e
Cp, out- 0.005596 - ‘ T
Crow 05499 - os| |f
s 2838 m? ; }
Wamo 3764 kN Q
T 0.150 -

Fig.2 Phase 1 MSES analysis, outbound conditions

3. ESP Viewer

Although the Phasing workflow can be completed exclusively by running the pyCAPS scripts that interface between
Corsair and ESP, the optimized geometry can be viewed using the ESP browser user interface which is shown in Fig. [3]
An alternative to running the pyCAPS scripts in the shell is to open up the ESP viewer, which displays the geometry
build as well as all the design parameters and optimization values. Users also have the ability to load pyCAPS scripts
and run them in this user interface as well as start, modify, and end phases.

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

0.00000 0.00000

nnnnnn

Fig. 3 ESP viewer at the end of Phase 1

B. Phase 2. MSES: Increasing Aerodynamic Model Fidelity with MSES

1. Phase Intent and Formulation

The surrogate model for XFOIL [13]] used in the GP formulation is undesirable for a number of reasons:

1) The least-squares fitting process introduces some error since all points in the fitting set are not guaranteed to lie

exactly on the fit.

2) The surrogate model introduces interpolation error for cases not contained in the fitting set.

3) The GP compatible fitting process is unable to capture some of the higher order features of the set.

4) Thickness had to be arbitrarily constrained to ensure the validity of the surrogate model.

5) XFOIL uses the Prandtl-Glauert model for increasing Mach number, but the surrogate was fit at M = 0 and

therefore under-predicts drag.

It is therefore desirable to remove the surrogate model altogether. As was discussed above, the surrogate model
captures the relationship Cp, = f(Cr, Re, 7) in a GP compatible way. Utilizing recent work developing optimization
algorithms [16H18], non GP compatible models of C D, = f(CL, Re, T) can be optimized while still taking advantage of
underlying convexity in Cp,,. Though XFOIL is a valid method of representing Cp, = f(CL, Re, 1), it is not capable
of returning analytical derivatives with respect to functional inputs and geometry variables, which is required for
efficient gradient-based optimization methods. Thus, MSES, which is a higher fidelity tool for airfoil analysis capable
of returning derivatives, is used instead.

MSES uses the same Integral Boundary Layer (IBL) method as XFOIL near the surface of the airfoil, but the Full
Potential solution for the far-field in XFOIL has been replaced in MSES by a 2D Euler method, making MSES superior
for Mach numbers where compressibility is non-negligible. MSES is only capable of returning derivatives when run
for a fixed angle of attack, and not a fixed Cr,, and so the problem formulation must be adjusted slightly. Rather than
directly imposing the constraint,

Cp, = f(CL,Re, 1), (10)

angle of attack, a, is introduced along with Cr,,.¢, and the following constraints are imposed:

Cp, > f(a,Re,7)
ClLyses = f(a@, Re, 7) (11)
CL = Crygs
Valid values of @ here may be zero or negative under certain conditions, but the log-transformation optimization

methods from [16H18]] cannot handle negative variable values. Therefore, in practice the alpha variable is transformed
using an additive shift to ensure it remains positive under all reasonable cases.

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

2. Setting Up the Problem in a Phase and Obtaining an Optimal Solution

The set up of Phase 2 is similar to Phase 1 with the addition of a few new constraints. Corsair models the use
of MSES in constraint definition as a ‘RuntimeConstraint’ object that calls MSES in a just-in-time fashion. For full
mathematical details of the optimization process, see [16H18|]. Unlike the previous geometric programming phase, the
optimizer now requires an initial guess for the more complex problem formulation. With ESP Phasing, the optimized
result of the previous phase can be maintained and retrieved to serve as the initial guess of the new phase. Unlike the GP
compatible formulation of Phase 1, which solves in a few seconds, running with MSES in the loop increases the solve

time to several minutes. The python script for Phase 2 is shown in[Appendix D}

3. Examining the Phase Result

The relevant design variables are reported in Table[3] Note that the fuel burn has actually increased slightly due to
the fact that the previous GP compatible constraint was not modeling the modest compressibility effect of cruising at
M = 0.2. For the rest of the paper, Phase 2 will serve as a baseline, since it accurately models the compressibility drag
penalties. The resulting airfoil is again a NACA 2415. The thickness ratio, 7, is still driven to the imposed maximum
of 7 < 0.15 because of the conservative bending structural models. Fig.[d] shows the result from MSES during the
outbound cruise leg which now matches the Cp,, output of the optimzation.

-2.0 7mses capsBody_1
Table 3 Phase 2 optimal variables summary e Hoch = 2-200
1.5 o o
Variable Value Units Co B s 0omees
Wi 642568 N e Sy o - oneos
AR 18.13 ; s Core 0.0
: Nerit = 9.00
Cp,ou. 0005634 - |
Cppow. 0005484 - T N
CL.out 0.5447 - 0.5
S 28.34 m? |
1.0 (
Waro 37.60 kN Q
T 0.150 -

Fig. 4 Phase 2 MSES analysis, outbound conditions

C. Phase 3A. Camber: Adding New Geometry Variables

1. Phase Intent and Formulation

In this design phase, the aerodynamic fidelity could be further evolved with a 2D CFD tool such as SU2 [19].
However, given the lower modeling fidelity of the other disciplines such as structures and geometry, further increasing
only the aerodynamic model fidelity would produce diminishing returns. So instead, the remaining phases will focus on
refining the airfoil geometry. By increasing the number of optimization variables that define the airfoil, the optimizer
will be capable of driving to a higher performing design. The simplest first step is to expand the design space from
NACA 24XX to the full NACA 4 series definition of airfoil geometry. This introduces two new variables to the
optimization problem: maximum camber per unit chord cpax, and the location of the maximum camber as a fraction of
chord length d_ . . Note that the optimization is not limited to the classic discrete values for camber, maximum location,
and thickness as implied by the NACA XXXX notation, but rather, optimizes over continuous values. These new design
variables change the relevant optimization constraints as follows:

CD,, > f(a, Re, Cmax, deax’)
Cryses = f(a, Re, cmax, s 7) (12)

CrL = Crygs

The python script for Phase 3A is shown in|Appendix E

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

2. Examining the Phase Result

The results from MSES (Fig. [5) and the report from the optimizer (Table [) give cause for concern. First, the
optimized solution has a cruise segment with a wing angle of attack of —2.55° and a sprint segment with @ = —5.87°.
Note also that the lift coefficient is higher during the return segment, Cr, 1o, When the aircraft should be lighter. Second,
examining Fig. [5] shows a significant amount of lift being generated on the aft section of the airfoil, where the thin
geometry would struggle to take these loads for any reasonable structural design. Third, transition is occurring at around
85% on the top surface, which is unlikely to be realized a real flow.

Table 4 Phase 3A optimal variables summary

Variable Value Units o
Wit 538669 N
AR 18.75 - é -
Cppou 0003967 - o
Cpou 0.004400 -
Crow 04956 - o
Crr 05242 - 0.0
Wout -2.547 deg
Ferint 5875 deg a
S 27.64 m? 1.0
Wwmrto 36.67 kN
Cmax 0.0399 -
de. 0.7981 -
T 0.148 -

MSES
PENE

capsBody_1
Mach = 0.200

Re

- 5.2u3x10°

Alfa = -2.547

CL
cD
CM
L/D
CX

oY -

= 0.4945
= 0.00400
= -0.2090
= 123.57
= 0.0260
=.0.4938

— —————€x/cy- 0,05
e

~_ Nerit = 9.00

Fig.5 Phase 3A MSES analysis, outbound conditions

Plotting the drag polar confirms many of these worries (Fig.[6a), with a clear corner occurring at the design Cy. of
0.5. For the current Phase, MSES reports a large moment coeflicient, Cp; ~ —0.2 for the resulting angle of attacks of
the optimization, whereas the previous Phase reports a cruise at Cps ~ —0.05 (Fig.[6b). Clearly, the optimization has
exploited a poor design formulation. More specifically, the lack of a thickness constraint on the trailing edge of the
airfoil has allowed the optimization to ignore real structural physics. Thus, the significant fuel savings reported by the

optimization in this

phase are not physically realizable.

| =—— 3A. Camber

~ 1. GPSize
2. MSES

0.25 050 0.75 1.00 1.25 150 175 2.00
Cp le-2

(a) Lift and Drag Coefficients

Cm

0.3
2. MSES CM
2. MSES CL
02l — 3A. Camber CM |
|- 3A. Camber CL ./
0.1
0.0
-0.1
N <¥__~////7__"___,4/”’///////////
-5 0 5 10 15

a

12.0

1.5

1.0

C

0.5

0.0

(b) Lift and Moment Coefficients

Fig. 6 Polars for the first three design phases

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

D. Phase 3B. CMConstraint: Imposing a Constraint on Moment Coefficient

1. Phase Intent and Formulation

In the process of refining the airfoil geometry, Phase 3A showed the need to include a structural constraint that
limits the aft camber available for the optimization. Rather than write a detailed model analyzing the stress in the airfoil
section, a bound on the moment coefficient of the airfoil is imposed for each flight segment. The relevant constraints are:

CD,; > f(a@, Re, Cmax> depy T)

CLMSES = f(a’ R67 Cmax, deax’ T)

Cu = f(a,Re, cmax, deyy» T) (13)
CL = Cryggs
Cy > —0.06

Given the issues with Phase 3A, this phase once again takes the result of Phase 2 as the initial guess. The python

script for Phase 3B is shown in

2. Examining the Phase Result

Although the objective, Wi, in Table [5]has increased from the previous Phase, the optimized result is now much
more realistic. The angle of attacks, &out, @sprint, NOW resemble realistic @ for a efficient cruise and sprint segment. The
MSES result (Fig.[7) and the drag polar (Fig.[§) confirm that the airfoil has similar characteristics to the baseline NACA
2415 with a slight improvement in performance at the design Cy, = 0.55. The corner problems highlighted in the result
of Phase 3A are no longer present. The total fuel burn has also decreased by 1% from the baseline of Phase 2.

Table 5 Phase 3B optimal variables summary

Variable Value Units 2-Oymses capsBooy_|
Wia 637358 N ", e 22
AR 18.02 - Ce PRt
Cp,.ou- 0005518 - o T & e
Corow. 0005576 - 05| | buer: e
Crow 05476 - - '
Yout 2478 deg Y]
@sprint -1.319 deg a.s
S 28.29 m? g \
Wato 37.53 kN -
Comax 0.0232 -
d 0.3656 -

C:ax 0.150 i Fig.7 Phase 3B MSES analysis, outbound conditions

10

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

—————— 1. GPSize
L.757 2. MSES
1501 3A. Camber
—— 3B. CMConstraint
1.254
G' 1.00
0.754
0.504
0.254
0.00 T T T T T T ;
0.00 0.25 050 0.75 100 1.25 1.50 1.75 2.00

Co le-2
Fig. 8 Drag polars for the first four design phases

The NACA 4 series of airfoils are easy to work with and have an intuitive geometry definition, but are generally
considered to be poorly performing airfoils, hence the need for the NACA 5 series and NACA 6 series. Thus, we seek to
develop a geometry representation that can extend beyond the NACA 4 design space.

E. Phase 4A: Using a Kulfan CST2 Representation of the Airfoil Geometry

1. Phase Intent and Formulation

The Kulfan representation [15], which defines geometries given a Class function and Shape function Transformation
(CST), is widely utilized for higher fidelity geometry representations. The Kulfan shape function spans the design
space of any round nose, sharp aft-end airfoil and can be modified with n coefficients for the upper surface and n for
the lower surface. For this phase, we consider only 2 Kulfan coefficients on each surface, for a total of 4 variables
that define the airfoil. The design space therefore only increases by a single dimension, but takes on a significantly
different underlying shape. Beyond seeking to keep the dimensionality down, there are significant issues with using
large numbers of geometry variables to define airfoils in optimization [20].

Given the introduction of the Kulfan coefficients to the new design formulation, previous variables cmax, dc,,,
and 7 are no longer necessary. However, the wing structural model still depends on 7, so an additional constraint that
computes 7 given Kulfan coefficients must be included. Packing the relevant Kulfan coefficients into vector A, the new
constraint set is as follows:

Cp, = f(a,Re,A)
ClLyses = f(a@, Re, A)

Cy = f(a,Re,A)

(14)
Cr = Cryges
Cy = -0.06
7= f(A)

This phase takes its initial guess from the successful Phase 3B. Because the Kulfan airfoil geometry is parameterized
differently from NACA airfoils, a new CSM geometry script with Kulfan coefficient design parameters is required and is

shown in[Appendix B The python script for Phase 4A is shown in[Appendix G|

2. Examining the Phase Result

A first glance at the optimization output in Table[6]suggests a significant decrease in the objective, Wiy, relative to
Phase 3B from 6374 N to 4949 N. The vehicle weight, Wyro also decreased significantly from 37.53 kN to 36.71 kN.
However, the MSES output in Fig. [9]shows an airfoil that unrealistically maintains laminar flow as long as possible on
both the top and bottom surfaces. The transition location, visible by the sharp change in the Cp, occurs on the top
surface occurs around x = 0.7¢ and on the bottom surface around x = 0.85¢. In reality, maintaining laminar flow so far
aft will be difficult.

11

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

2.00
1.75
1.50
1.25
g 1.00
0.75 A% cenl N P 1. GPSize
“' 2. MSES
0.50 T 3A. Camber
025 N 3B. CMConstraint
E —— 4A. Kulfan2
0.00

Table 6 Phase 4A optimal variables summary

Variable Value Units
Wiuel 4949.48 N

AR 18.33 -
Cp,.ou- 0.003076 -
Cp,.ou- 0.004018 -
CL.out 0.4673 -
S 27.74 m?
Wwmrto 36.71 kN
T 0.149 -
A, 0.181 -
Au, 0.433 -
Ay, -0.045 -
Ap, -0.188 -

~2.0 7usts capsBody_1
va. 12 Mach = 0.200
Re = 5.4B0x10°
Alfa = 1.042
-1.5 CL - 0.4770
C CD = 0.00332
P -
CM - -0.0761
-1.0 L/D = 143.56
CX = -0.0054%
- —_CY =0.4770
0.5 _CX/CY= -0.01
Vs Nerit = 9.00
| - \\\ .
0.0 T e SaN
. AN
A\Y
0.5

Fig.9 Phase 4A MSES analysis, outbound conditions

This optimized airfoil has an incredibly narrow operating range between Cy, values of approximately 0.4 and 0.7, but

Cp le-2

(a) First five design phases

0.00 0.25 050 0.75 1.00 125 1.50 175 2.00

the benefit is a significant reduction in drag at cruise (Fig.[I0a)). Clearly this airfoil is not practical for many reasons, e.g.
high takeoff and landing speeds due to low Cy,_ . and poor stall performance due to the sharp leading edge. Even though
clever operational procedures can mitigate these challenges, the airfoil’s lack of robustness to increased turbulence
poses a problem that cannot be easily mitigated. Dropping the N value in MSES from 9.0 to 3.0 (representing
significantly more turbulence in the incoming flow) produces the results shown in Fig.[I0b] In the case of the Phase 2
airfoil, increased turbulence for the most part simply shifts the curve to the right — a drag penalty for sure, but not a
fundamental change in the airfoil performance. In contrast, the increased turbulence takes the Phase 4 airfoil’s already
small operating range and shrinks it by more than half. Furthermore, the rightward shift of the Phase 4 airfoil polar
represents a much higher proportional change, which will have ramifications throughout the entire optimal design. This
airfoil is not practical or robust and therefore must be redesigned while accounting for transition location.

2.00
—— 2. MSES Acrit = 9.0
175 2. MSES, Acrit = 3.0
1504 — 4A. Kulfan2, Acrit = 9.0
—— 4A. Kulfan2, Acrit = 3.0
1.25
g 1.00
0.75
0.50
0.25
0.00
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00

Co

le-2

(b) Comparing decreased values of N

Fig. 10 Drag polars for the first five design phases

F. Phase 4B. FlowTrip: Tripping the Flow with Kulfan CST2

1. Phase Intent and Formulation

The primary issue with the design from Phase 4A was that free transition was allowed to take place well beyond
where it would be reasonably expected in a real flow. Thus, for this phase, an MSES setting is adjusted to force transition
to occur before or at 35% of the chord length along the upper surface of the airfoil. No changes are necessary to the

12

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

optimization formulation from Phase 4A, as this is an internal MSES setting, but practically it is an addition of one
more constraint. This phase again takes the result of Phase 3B as the initial guess. The python script for Phase 4B is

shown in Appendix F

2. Examining the Phase Result

The optimization output in Table[/|now shows a modest decrease in the objective, Wy, relative to Phase 3B from
6374 N to 6223 N. The vehicle weight Wyt is also essentially identical to the Phase 3B result. However, the problems
with lack of robustness presented in the Phase 4A airfoil are no longer present in Fig. Transition occurs at the
imposed x = .35¢ location for the top surface, and the drag polar in Fig.[T2]shows that the corner has been eliminated.

Table 7 Phase 4B optimal variables summary

-2.0 7mses capsBody_1
Variable ~ Value Units Re &l aance
Wi 622256 N L tL o0
Cp cb i ?.ODQSl
AR 17.62 - o B U0 D10z
CX = -0.0101
CDI,,out- 0.004882 - cY - 0.5069
-0.5 Cx/Cy= -0.02
Cp;,out- 0.005040 - Nerit = 9.00
CLow 05147 - ool ———— BN
S 28.28 m? ““5/ N
Wwmro 37.52 kN o [
T 0.150 - 1.0
Ay, 0.262 - S
Ay, 0.296 -
Ay -0.113 - Fig. 11 Phase 4B MSES analysis, outbound condi-
Ay, -0.127 - tions

In hindsight, this case should also have utilized a trip on the lower surface, which likely would have eliminated the
slight reflex seen at the trailing edge in the pressure distribution. Further evidence that this airfoil (though optimal) is
not a great design is that the minimum drag on the polar occurs at a much lower Cr, = 0.35 than the design target at
Cr = 0.5 (Fig.[I2). A reasonable next phase would be to expand the design space to converge on a better performing
airfoil at the optimum.

2.00
1.754
1.504
1.254
o
S S R B (i e P 1. GPSize
0.75 2. MSES
rrrrrrrr 3A. Camber
0501 o 3B. CMConstraint
0.251 4A. Kulfan?
—— 4B. FlowTrip
0.00 :
0.00 0.25 0.50 0.75 100 1.25 150 1.75 2.00
Cp le-2

Fig. 12 Drag polars for the first six design phases

13

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

G. Phase 5. Kulfan4: Increasing Geometry Fidelity to Kulfan CST4

1. Phase Intent and Formulation

Although fuel burn decreased by expanding the design space to CST2, the optimal design can still be improved by
increasing the geometry to 4 Kulfan coefficients on both top and bottom surfaces, for a total of 8 variables that define
the airfoil. The optimization formulation once again does not change, though the length of vector A is now 8. Some
airfoil shaping constraints are added to the Kulfan coefficients to ensure leading and trailing edges have reasonable
minimum thicknesses, which can be seen in[Appendix 1} the python script for Phase 5. As before, the flow is tripped at
35% chord on the top surface, but allowed to transition freely on the bottom surface. This phase takes the result of
Phase 4B as the initial guess.

2. Examining the Phase Result

The fuel burn W, reported in Table [§]once again shows a notable decrease relative to the previous Phase 4B from
6222 N to 5948 N. The vehicle weight also has decreased by almost 1kN. The optimal airfoil shown in Fig.[T3]is a
different albeit reasonable geometry. The lower side transition remains unforced and occurs at x = 0.65¢. The airfoil at
this phase is again rather thick, indicating that perhaps the conservative structural model causes the optimization to
converge on a corner of the design space that should be considered carefully.

capsBaody_1

Table 8 Phase 5 optimal variables summary 2O Mach - 0.200
Aira - 2o
Variable Value Units | Variable Value Units Clps éé gugégéé
Wi 59478 N Ay 0192 - o Lo g
AR 17.61 - Au, 0313 - o5l ‘ cucrs “oion
Cp,ou- 000488 - Ay 0179 - - | T~
Cpyou- 000401 - Ay 0193 - |/ N
Crow 05053 - Ay, 0210 - 0:s ’
S 2757 m? A, 0088 - ol
Wamro 3658 kN A, 0191 - S
T 0.150 - A, 0058 -

Fig. 13 Phase 5 outbound MSES airfoil analysis

The drag polar (Fig. [I4) reveals that the optimizer is already starting to push for a single point optimum on at the
operating point of C, = 0.5, a phenomenon noted by Drela [20]. But overall performance is reasonable.

2.00
1.754
1.501 :
1.254
Y A - B 1. GPSize
O - o 2. MSES
0.754 T | e 3A. Camber
A I I 3B. CMConstraint
0.501 : 4A. Kulfan2
025 o 4B. FlowTrip
] 5. Kulfan4
0.00 :
0.00 0.25 050 0.75 1.00 125 150 1.75 2.00
Cp le-2

Fig. 14 Drag polars for the all 7 design phases

14

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

VI. Post Design Discussion

Phasing enabled a workflow to improve the fuel burn objective by incrementally refining the aerodynamic model
and geometry fidelity. Phase 1 of the design optimized the aircraft using Geometric Programming with a drag model
fitted to data points generated using XFOIL. Phase 2 represents a realistic baseline design, swapping out the fitted drag
model out with runtime queries to MSES for better drag estimates that accounted compressible drag penalties. The two
unsuccessful phases, 3A and 4A, provided valuable insight on additional constraints necessary to keep the optimization
well-behaved in a higher dimensional design space, and at the completion of Phase 5, a total savings of 7.5% has been
achieved over the baseline design in Phase 2. The history of the fuel burn in each phase shown in Fig. [T5] with the
unsuccessful phases shown in red and successful phases in blue.

6500 -

6000 -

5500 A

Total Fuel Burn [N]

5000 -

4500 A

4000 -

GPSize MSES Camber CMConstraint Kulfan2 FlowTrip Kulfan4

Fig. 15 Total fuel burn in each phase

VII. Conclusions

This paper walks the reader through a simple example that demonstrates the construction of a complete design
system using ESP and its Phasing capability. The example starts out with a conceptual-level formulation with low
modeling and geometric fidelity, then evolves to higher fidelity typically seen in preliminary design. ESP provides the
ability to directly interface with both the geometry and the optimization, which was used to compute analytic derivatives
from MSES with respect to airfoil geometry. The notion of ESP’s Phasing makes it possible to decompose a design
workflow and blur the line between conceptual and preliminary design. Although not included in this design example,
one could easily further evolve the analysis models to higher fidelity by incorporating 3D CFD or FEA. Because ESP
maintains the underlying parametric geometry and can automatically transfer data between analysis models, increasing
the fidelity becomes as simple as replacing a few lines of the pyCAPS script (e.g. replacing the call to MSES for Cr, Cp,
with a call to 3D CFD to compute the full wing lift and drag). Beyond increasing analysis fidelity, future Phases could
address and analyze performance in off-design conditions, study robustness of the design to uncertainties in the models
and assumptions, or even study entirely new configurations for the same mission.

ESP’s Phasing encompasses a single repository for the design and its associated analysis data. Because the repository
tree is not static, any Phase can be taken as a starting point at any given time to answer “what if”” questions on earlier
portions of the design without rerunning the whole process. For example, new information during a later design phase
could lead the designer to examine a new configuration and retrace the existing Phases to understand the implications of
the changes. The repository also contains an archive of the tree and any notes or annotations as to the design decisions
made. This may be useful within the Digital Thread arena. With access to the design decision tree, the reason for a
particular configuration, shape or artifact can be tracked down to the pivotal point in the tree. This can provide crucial

15

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

understanding towards the actual lifetime/performance of the design, which in turn, can enlighten the designer/design
engineer and discipline experts.

16

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Appendix A: Phase 1-3B NACA Airfoil CSM

attribute capsIntent $LINEARAERO
attribute capsAIl $msesAIM

cfgpmtr view:MSES 0

dimension params 1 3 0
set parans 0.10 0.1 6

despmtr camber .62

despmtr maxloc 0.40

despmtr thickness .12

despmtr area 30.0

despmtr aspect 20.0

despmtr taper 1.0

set span sqrt(area*aspect)
set croot area/span*2/(taper+l)
set ctip croot*taper

set xtip (croot-ctip)/2

outpmtr span

ifthen view:MSES NE 1
MARK
udparg naca thickness thickness
udparg naca camber camber
udparg naca maxloc maxloc
udparg naca sharpte 1

udprim naca
rotatex 90

scale ctip
translate xtip -span/2 0
store wing -1 1

udparg naca thickness thickness

udparg naca camber camber
udparg naca maxloc maxloc
udparg naca sharpte 1

udprim naca

rotatex 90

scale croot
store wing -1 1

udparg naca thickness thickness

udparg naca camber camber
udparg naca maxloc maxloc
udparg naca sharpte 1

udprim naca
rotatex 90

scale ctip

translate xtip span/2 0

store wing -1 1
RULE

store tessBody
restore tessBody
attribute .tParams params

else
udparg naca thickness thickness
udparg naca camber camber
udparg naca maxloc maxloc
udparg naca sharpte 1
udprim naca

endif

end

17

Appendix B: Phase 4A-5 Kulfan Airfoil CSM

attribute capsIntent $LINEARAERO
attribute capsATH $xfoilAIM;tsfoilAIM;msesAIM

cfgpmtr view:MSES ©
dimension params 1 3 0
set parans 0.10 0.1 6

despmtr nparams 2
dimension class 1 2
dimension ztail 1 2
dimension aupper 1 nparams
dimension alower 1 nparams

despmtr class "0.5; 1.0;"
despmtr ztail "0.00; 0.00;"
despmtr aupper "0.2; 0.2;"
despmtr alower

despmtr area

despmtr aspect

despmtr taper

set span sqrt(area*aspect)

set croot area/span*2/(taper+l)
set ctip croot*taper

set Xtip (croot-ctip)/2
outpmtr span

ifthen view:MSES NE 1
MARK

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

udparg kulfan
udparg kulfan
udparg kulfan
udparg kulfan
udprim kulfan

class class
ztail ztail
aupper aupper
alower alower

scale
rotatex

ctip
90

translate xtip -span/2 ©

store wing -1 1

udparg kulfan
udparg kulfan
udparg kulfan
udparg kulfan
udprim kulfan

class class
ztail ztail
aupper aupper
alower alower

scale croot

rotatex 90

store wing

udparg kulfan
udparg kulfan
udparg kulfan
udparg kulfan
udprim kulfan

-11

class class
ztail ztail
aupper aupper
alower alower

scale

rotatex

translate

store
RULE

store tessBody

ctip
90

xtip span/2 O
wing -1 1

restore tessBody
attribute .tParams params

else
udparg kulfan
udparg kulfan
udparg kulfan
udparg kulfan

class class
ztail ztail
aupper aupper
alower alower

udprim kulfan
extract 0
endif

end

18

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Appendix C: Phase 1. GPSize

import os

import pyCAPS

import numpy as np

pi = np.pi

from corsairlite import units

from corsairlite.optimization import Formulation, Constant, Variable
from corsairlite.core.data.standardAtmosphere import atm

from corsairlite.optimization.solve import solve

import argparse

Setup and read command line options
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

Set up available commandline options
parser.add_argument("-outLevel”, default=0, type=int, choices=[0, 1, 2], help="Set output verbosity")
args = parser.parse_args()

Get the pyCAPS Problem object

myProblem = pyCAPS.Problem("hoburg"”,
capsFile=os.path.join("csm", "naca.csm"),
phaseName="GPSize",
phaseContinuation=False,
outLevel=args.outLevel)

myProblem. intentPhrase(["Initial Geometric Programming sizing of wing"1)

Define optimization formulation
N_segments = 3
Constants

"Ratio of height at rear spar to maximum wing height")

A_prop = Constant(name = "A_prop", value = 0.785, units = description = "Disk area of propeller")

CDA® = Constant(name = "CDAO", value = 0.05, units = description = "fuselage drag area")

C_Lmax = Constant(name = "C_Lmax", value = 1.5, units description = "max CL with flaps down")

e = Constant(name = "e", value = 0.95, description = "Oswald efficiency factor")

eta_eng = Constant(name = "eta_eng", value = 0.35, description = "Engine Efficiency™)

eta_v = Constant(name = "eta_v", value = 0.85, description = "Propeller Viscous Efficiency")

f_wadd = Constant(name = "f_wadd", value = 2.0, units el description = "Added Weight Fraction")

g = Constant(name = "g", value = 9.81, units = "m/sA2", description = "Gravitational constant")

h_fuel = Constant(name = "h_fuel", value = 46e6, units = "J/kg", description = "Fuel Specific energy density")

k_ew = Constant (name value = 0.0372, units = "N/WA(0.803)", description = "Constant for engine weight")

mu = Constant (name value = atm.mu(3000*units.m), wunits = "kg/m/s", description = "viscosity of air")

N_lift = Constant (name value = 6.0, units =", description = "Ultimate Load Factor")

r_h = Constant(name = value = 0.75, units = "-", description =

rho = Constant(name = value = atm.rho(3000*units.m), units = "kg/m*3", description = "density of air")

rho_cap = Constant(name = "rho_cap", value = 2700, units = "kg/m*3", description = "Density of wing cap material (aluminum)")
rho_SL = Constant (name "rho_SL", value = atm.rho(0*units.m), units "kg/mA3", description = "density of air, sea level")

rho_web = Constant (name "rho_web", value 2700, units "kg/mA3", description = "Density of wing web material (aluminum)")
sigma_max = Constant (name "sigma_max", value 250, units "MPa", description = "Allowable tensile stress of aluminum")
sigma_max_shear = Constant(name = "sigma_max_shear", value = 167, units = "MPa", description = "Allowable shear stress of aluminum")
w_bar = Constant(name = "w_bar", value = .5, units =y description = "Ratio of spar box width to chord length")
W_fixed = Constant(name = "W_fixed", value = 14700, units 5 description = "fixed weight")

Vector Variables

Lift Coefficient, segment %d"%(i)))

Fuselage Drag Coefficient, segment %d"%(i)))

v

CL

C.D

C_Dfuse

C_Dp

C_Di

Cf

T

W

Re

eta_i

eta_prop

eta_®

z_bre

for i in range(0,N_segments):
V. append(Variable(name="V_%d"%(i), o "m/s", description="Velocity, segment %d"%(i)))
C_L.append(Variable(name="C_L_%d"%(i), descriptio
C_D.append(Variable(name="C_D_%d"%(i), description="Drag Coefficient, segment %d"%(i)))
C_Dfuse.append(Variable(name="C_Dfuse %d"%(i), descriptio
C_Dp.append(Variable(name="C_Dp_%d"%(i), description=
C_Di.append(Variable(name="C_Di_%d"%(i), descriptio

Induced Drag Coefficient, segment %d"%(i)))

Wing Profile Drag Coefficient, segment %d"%(i)))

"Area moment of inertia of cap on 2D cross section, normalized by chord*4")

#2)/(1+lam_w)**2")

C_£.append(Variable(name="C_f _%d"%(i), description="Friction Coefficient, segment %d"%(i)))
T.append(T_%d"%(1), description="Thrust, segment %d"%(i)))
W.append(W_%d"%(1), description="Weight, segment %d"%(i)))
Re.append("Re_%d"%(1), description="Reynolds Number, segment %d"%(i)))
eta_i.append(eta_i_%d"%(i), description="Inviscid Propeller Efficiency, segment %d"%(i)))
eta_prop.append("eta_prop_%d"%(i), description="Propeller Efficiency, segment %d"%(i)))
eta_0.append(eta_0_%d"%(i), = N description="Overall Efficiency, segment %d"%(i)))
z_bre.append(Variable(name="z_bre_%d"%(i), guess=1.0, units = "", description="Breguet Range Factor, segment %d"%(i)))

Free Variables

AR = Variable(name = "AR", guess units description = "aspect ratio")

I_cap_bar = Variable(name = "I_cap_bar", guess units description =

M_r_bar = Variable(name guess units description = "Root Bending unit per unit chord")

nu = Variable(name guess units description = "Placeholder, (1+lam_w+lam_t

P = Variable(name guess units description = "Dummy Variable (1+2*lam_w)")

P_max = Variable(name guess 0, description = "Maximum Engine Power™)

q = Variable(name guess description = "Dummy Variable (l+lam_w)")

R = Variable(name guess description = "Single Segment range")

S = Variable(name RS guess description total wing area")

t_cap_bar = Variable(name 't_cap_bar", guess description = "Spar cap thickness per unit chord")

t_web_bar = Variable(name = "t_web_bar", guess = description = "Spar web thickness per unit chord")

tau = Variable(name guess description = "airfoil thickness to chord ratio™)

V_stall = Variable(name guess , description = "stall speed")

W_cap = Variable(name guess description = "Weight of Wing Spar Cap")

W_eng = Variable(name = guess description = "Engine Weight")

W_fuel_out = Variable(name = guess = 2500, description = "Weight of fuel, outbound")

W_fuel_ret = Variable(name = , guess = 2500, description = "Weight of fuel, return")

W_MTO = Variable(name guess = 2500, description = "Maximum Takeoff Weight")

W_pay = Variable(name = guess = 5000, description = "Payload Weight")

W_tilde = Variable(name = guess = 5000, description = "Dry Weight, no wing")

19

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

W_web = Variable(name guess = 400, units description = "Weight of Wing Spar Shear Web")
W_wing = Variable(name guess = 2500, units description = "wing weight")
W_zfw = Variable(name guess = 5000, units description = "Zero Fuel Weight")

objective = W_fuel out + W_fuel_ret

constraints = []

#

SLF

#

for i in range(0,N_segments):
constraints += [W[i] == 0.5 * rho * V[i]**2 * C_L[i] * S]
constraints += [T[i] >= 0.5 * rho * V[i]**2 * C_D[i] * S]
constraints += [Re[i] == rho * V[i] * S**0.5 / (AR* 5 % mu)]

#

Landing

#

constraints [
W_MTO == 0.5 * rho_SL * V_stall
V_stall <= 38*units.m/units.s

1

#

Sprint

#

constraints += [
P_max >= T[2] * V[2] / eta_O[2],
V[2] >= 150*units.m/units.s
]
#
Drag Model
#
for i in range(0,N_segments):
constraints += [C_Dfuse[i] == CDA®/S]
constraints += [C_Di[i] C_L[i]**2/(np.pi * e * AR)]
constraints += [C_D[i] C_Dfuse[i] + C_Dp[i] + CDi[i]]

#
Propulsive Efficiency
#
for i in range(0,N_segments):
constraints += [eta_0[i] == eta_eng * eta_prop[i]]
constraints += [eta_prop[i] == eta_i[i] * eta_v]
constraints += [4*eta_i[i] + T[i]*eta_i[i / (0.5 * rho * V[i] * A_prop) <= 4]
#
Range
#

constraints += [R >= 5000 * units.km]
for i in range(0,N_segments-1):

constraints += [z_bre[i] == g * R * T[i] / (h_fuel
constraints += [W_fuel out/W[0] >= z_bre[0] + z_bre[0]
constraints += [W_fuel ret/W[1] >= z_bre[1] + z_bre[1]
#
Weight
#
constraints += [

W_pay >= 500*units.kg * g,

W_tilde >= W_fixed + W_pay + W_eng,

W_zfw >= W_tilde + W_wing,

W_eng >= k_ew * P_max**0.803,

W_wing / f_wadd >= W_web + W_cap,

W[O0] >= W_zfw + W_fuel_ ret,

W_MTO >= W[0] + W_fuel_out,

W[1] >= W_zfw,

W[2] == W[o]

eta O[i] * W[iD]
/2 + z_bre[01%¥3/6 + z_bre[0]*
/2 + z_bre[1]

]
#
Wing Structure
#

constraints += [

2%q >= 1 + p,

p >= 1.9,

M_r_bar == W_tilde * AR * p / 24,
0.92 * w_bar *
N_lift *

* w_bar * tau
sigma_max),
sigma_max_shear),

W_cap >= 8 * rho_cap * g
W_web >= 8 * rho_web * g

* t_cap_bar * S$**1.5 * nu / (3*AR**0.5),
r_h * tau * t_web_bar * $**1.5 * nu / (3 * AR**0.5),

tau <= 0.15,
q <= 2
]
#
GP compatible XFOIL fit drag model
#
for i in range(0,N_segments):
constraints += [1 >= (2.56 * C_L[i] 5 -3.32) * .26) +
3.80e-9 * C_L[i] -0 6.23) * .57) +
2.20e-3 * C_L[i]**(-0. 0.03) *] .73) +
1.19e4 * C_L[il**(9 “(1.76) * Re[i]**(-1.00) * C_Dp[il* L91) +
6.14e-6 * C_L[i]**(6 #4(-0.52) * Re[i]**(-0.99) * C_Dp[i 19) 1

formulation = Formulation(objective, constraints)

Limit thickness
bdc = [vr >= le-12 * vr.units for vr in formulation.variables_only]
formulation.constraints.extend(bdc)

Set to GP and solve
formulation.solverOptions.solver = 'cvxopt'
formulation.solverOptions.solveType = 'gp'
rs = solve(formulation)

Save results as CAPS parameters

for vname in rs.variables.keys():
vl = rs.variables[vname].magnitude

20

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

ut = '{:C}'.format(rs.variables[vname].units)
myProblem.parameter.create(vname, vl * pyCAPS.Unit(ut))

print(rs.result(10))

Geometry quantities from optimization result
maxCamber = 0.02

maxLoc =0.4

thickness rs.variables['tau'].to('").magnitude

area = rs.variables['S'].to('m"2') .magnitude
aspect = rs.variables['AR'].to('') .magnitude

taper = rs.variables['q'].to('"') .magnitude - 1

Fuel weight and drag from optimization result
fuelTot = rs.objective.magnitude

fuelTot *= pyCAPS.caps.Unit(str(rs.objective.units))
CDO = rs.variables['C_D_0'].to('').magnitude
D1 rs.variables['C_D_1'].to('').magnitude

CD_avg = (CD® + CD1) / 2

Update geometry in ESP
myProblem.geometry.despmtr["camber”].value = maxCamber
myProblem.geometry.despmtr["maxloc”].value = maxLoc
myProblem.geometry.despmtr["thickness"].value = thickness
myProblem.geometry.despmtr["area"”].value = area
myProblem.geometry.despmtr["aspect”].value = aspect
myProblem.geometry.despmtr["taper”].value = taper

myProblem.closePhase()

21

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Appendix D: Phase 2. MSES

import os

import numpy as np

pi = np.pi

import pyCAPS

from corsairlite.optimization.solve import solve

from corsairlite.optimization import Variable, RuntimeConstraint, Constant, Formulation
from corsairlite.core.data.standardAtmosphere import atm

from corsairlite import units

from fullModelNACA import fullModel

import argparse

Setup and read command line options
parser = argparse.ArgumentParser(formatter_class-argparse.ArgumentDefaultsHelpFormatter)

Set up available commandline options
parser.add_argument ("-outLevel"”, default=0, type=int, choices=[0, 1, 2], help="Set output verbosity")
args = parser.parse_args()

Get the pyCAPS Problem object
myProblem = pyCAPS.Problem("hoburg",
=0s.path. join("csm", "naca.csm"),
"MSES",
phaseStart="GPSize",
phaseContinuation=True,
outLevel=args.outLevel)
myProblem.intentPhrase(["Run MSES for better drag model"])

myProblem.geometry.cfgpmtr["view:MSES"].value = 1

Define optimization formulation
N_segments = 3
Constants

A_prop = Constant(name = "A_prop", value = 0.785, units = "mA2", description = "Disk area of propeller")

CDA® = Constant(name = "CDAQ", value = 0.05, units "mA2", description = "fuselage drag area")

C_Lmax = Constant(name = "C_Lmax", value = 1.5, units =", description = "max CL with flaps down")

e = Constant(name = "e", value = 0.95, units ", description = "Oswald efficiency factor™)

eta_eng = Constant(name = "eta_eng", value = 0.35, units R description = "Engine Efficiency")

eta_v = Constant(name = "eta_v", value = 0.85, units Wy description = "Propeller Viscous Efficiency")

f_wadd = Constant (name "f_wadd", value = 2.0, units N description = "Added Weight Fraction")

g = Constant(name = "g", value = 9.81, units = "m/s*2", description = "Gravitational constant")

h_fuel = Constant(name = "h_fuel", value = 46e6, units = "J/kg", description = "Fuel Specific energy density")

k_ew = Constant(name = "k_ew", value = 0.0372, units = "N/WA(0.803)", description = "Constant for engine weight")

mu = Constant(name = "mu", value = atm.mu(3000*units.m), units = "kg/m/s", description = "viscosity of air")

N_lift = Constant(name = "N_lift", value = 6.0, units = "-", description = "Ultimate Load Factor")

r_h = Constant (name "r_h", value = 0.75, units =", description = "Ratio of height at rear spar to maximum wing height")
rho = Constant (name "rho", value atm.rho(3000%units.m), units "kg/mA3", description = "density of air")

rho_cap = Constant(name = "rho_cap", value = 2700, units = "kg/mr3", description = "Density of wing cap material (aluminum)")
rho_SL = Constant(name = "rho_SL", value = atm.rho(0*units.m), units = "kg/m*3", description = "density of air, sea level")

rho_web = Constant(name = "rho_web", value = 2700, units "kg/mA3", description = "Density of wing web material (aluminum)")
sigma_max = Constant(name = "sigma_max", value = 250, units = "MPa", description = "Allowable tensile stress of aluminum")
sigma_max_shear = Constant(name = "sigma_max_shear", value = 167, units = "MPa", description = "Allowable shear stress of aluminum")
w_bar = Constant(name = "w_bar", value = .5, units " description = "Ratio of spar box width to chord length")
W_fixed = Constant(name = "W_fixed", value = 14700, units description = "fixed weight")

Vector Variables
v

C_L

D
C_Dfuse
C_Dp
C_Di
cf

T

W

Re

eta_i
eta_prop
eta_®
z_bre =0

for i in range(0,N_segments):

V.append(Variable(name="V_%d"%(i),
C_L.append(Variable(name="C_L_%d"%(i),
C_D.append(Variable(name="C_D_%d"%(i),
C_Dfuse.append(Variable(name="C_Dfuse_%d"%(i),
C_Dp.append(Variable(name="C_Dp_%d"%(i),

C_Di.append(

Variable (nam

C_£.append(Variable (name
T.append(
W. append(
Re.append(Variable (name
eta_i.append(Variable (name

eta_prop.append(
eta_0.append(
z_bre.append(

Free Variables

AR
I_cap_bar
M_r_bar

nu

P

P_max

a

R

S
t_cap_bar
t_web_bar
tau
V_stall
W_cap
W_eng
W_fuel_out
W_fuel_ret

Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess =
Variable(name guess
Variable(name guess
Variable(name guess =
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name = "W_fuel_out", guess
Variable(name = "W_fuel_ret", guess

Variable (nam
Variable (nam
Variable(name:

"C_f_%d"%(1),
T_%d"%(1),
"W_%d"% (1),
Re_%d"%(1),

C_Di_%d"%(i),

Yeta_i_%d"%(1),

eta_prop_%d"%(i),
eta_0_%d"%(i),
z_bre_%d"%(i),

guess=1
guess=1.

guess=1.0,

guess=1.0, units =

1000.0,

units
units
units
units
units
units
units
units
units
units

units
units
units
units
units
units

"m/s", description="Velocity, segment %d"%(i)))

description =
description =
description =
description =
description =
description
description =
description =
description =
description =
description =
description =
description =
description =
description =
description =
description =

22

description="Lift Coefficient, segment %d"%(i)))
description="Drag Coefficient, segment %d"%(i)))
description="Fuselage Drag Coefficient, segment %d"%(i)))
description="Wing Profile Drag Coefficient, segment %d"%(i)))

description="Induced Drag Coefficient, segment %d"%(i)))
description="Friction Coefficient, segment %d"%(i)))
description="Thrust, segment %d"%(i)))
description="Weight, segment %d"%(i)))
description="Reynolds Number, segment %d"%(i)))
description=
descriptio
descriptio
description="Breguet Range Factor, segment %d"%(i)))

"Inviscid Propeller Efficiency, segment %d"%(i)))
Propeller Efficiency, segment %d"%(i)))
Overall Efficiency, segment %d"%(i)))

"aspect ratio")

"Area moment of inertia of cap on 2D cross section, normalized by chord*4")

"Root Bending unit per unit chord")
"Placeholder, (l+lam_w+lam_w**2)/(1+lam w)**2")
"Dummy Variable (1+2*lam_w)")
Maximum Engine Power")

Dummy Variable (l+lam_w)")

"Single Segment range")

"total wing area")

"Spar cap thickness per unit chord")
"Spar web thickness per unit chord")
"airfoil thickness to chord ratio")
"stall speed")

"Weight of Wing Spar Cap")

"Engine Weight")

"Weight of fuel, outbound")

"Weight of fuel, return")

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

description = "Maximum Takeoff Weight")
description = "Payload Weight")

description = "Dry Weight, no wing")
description = "Weight of Wing Spar Shear Web")

W_MTO = Variable(name = "W_MTO", guess
W_pay = Variable(name = guess
W_tilde = Variable(name guess
W_web = Variable(name guess
W_wing = Variable(name = guess description = "wing weight")
W_zfw = Variable(name guess

Add MSES relevant variables
Alpha_p20_MSES = []

C_L_MSES = []

for i in range(0,N_segments):

C_L_MSES. append (Variable(name="C_L_MSES_%d"%(i), guess=1.0, units = "-",
Alpha_p20_MSES.append(Variable(name="Alpha_p20_MSES_%d"%(i), guess=22.0, units = "deg",

objective = W_fuel out + W_fuel ret
constraints = []

#
SLF
#
for i in range(0,N_segments):
constraints += [W[i] 0.5 * rho * V[i] * CL[] * S 1]
constraints += [T[i] >= 0.5 * rho * V[i]**2 * C_D[i] * S]
constraints += [Re[i] == rho * V[i] * S**0.5 / (AR**0.5 * mu)]

#
Landing
#

constraints += [
W_MTO == 0.5 * rho_SL * V_stall**2 * C_Lmax * S,
V_stall <= 38*units.m/units.s

1
#
Sprint
#

constraints += [
P_max >= T[2] * V[2] / eta_O[2],
V[2] >= 150*units.m/units.s

Drag Model

LR

for i in range(0,N_segments):
constraints += [C_Dfuse[i] CDAO/S]
constraints += [C_Di[i] == C_L[i]**2/(np.pi * e * AR)]
constraints += [CD[i] >= C_Dfuse[i] + CDp[i] + CDi[i]]

#
Propulsive Efficiency
#
for i in range(0,N_segments):
constraints += [eta_0[i] == eta_eng * eta_prop[i]]
constraints += [eta_prop[i] == eta_i[i] eta_v]
constraints += [4*eta_i[i] + T[i]*eta_i[i] / (0.5 * rho * V[i]** A_prop) <= 4]
#
Range
#

constraints += [R >= 5000 * units.km]
for i in range(0,N_segments-1):

constraints += [z_bre[i] == R * T[i] / (h_fuel * eta_0[i] * W[il)]
constraints += [W_fuel out/W[0] z_bre[0] + z_bre[0] /2 + z_bre[0]1%%3/6 + z_bre[0]
constraints += [W_fuel ret/W[1] >= z_bre[1] + z_bre[1]**2/2 + z_bre[1]%*3/6 + z_bre[1]
#
Weight
#
constraints += [

W_pay >= 500*units.kg * g,

W_tilde >= W_fixed + W_pay + W_eng,

W_zfw >= W_tilde + W_wing,

W_eng >= k_ew * P_max .803,

W_wing / f_wadd >= W_web + W_cap,

W[O0] >= W_zfw + W_fuel ret,

W_MTO >= W[0] + W_fuel_out,

W[1] W_zfw,

W[zl w[ol

]
#
Wing Structure
#

constraints += [
2%q >= 1 + p,
p >= 1.9,
M_r_bar == W_tilde *

tau*

2 + I_cap_bar <= 0.92%*2 / 2 * w_bar
2 * tau / (S * I_cap_bar * sigma_max),
* q**2 / (tau * S * t_web_bar * sigma_max_shear),
0.56),

2 * t_cap_bar * S**1.5 * nu / (3*AR**0.5),
8 * rho_web * g * r_h * tau * t_web_bar * S**1.5 * nu / (3 * AR**0.5),

8 == N_lift * M_r_|

tau <= 0.15,
q<=2
]
#
MSES Runtime Drag Model
#

for i in range(0,N_segments):
fm = fullModel ()
fm.inputMode = 6
fm.outputMode = 1
fm.maxCamber = 0.02
fm.camberDistance = 0.40

fm.Mach = 0.2
fm.Coarse_Iteration = 50
fm.Fine_Tteration = 50

fm.problemObj = myProblem

23

t_cap_bar ,

description = "Zero Fuel Weight")

description="Lift Coefficient from MSES, segment %d"%(i)))
description="Angle of Attack + 20deg from MSES, segment %d"%(i)))

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

constraints += [RuntimeConstraint([C_Dp[i], C_L_MSES[il],['>=", '=='1,[Alpha_p20_MSES[i],Re[i],tau],fm)]

constraints += [C_L_MSES[i] == C_L[i] for i in range(0,N_segments)]
formulation = Formulation(objective, constraints)

bdc = [vr >= le-12 * vr.units for vr in formulation.variables_only]
formulation.constraints.extend(bdc)

Get initial guess from previous phase parameters
newX® = {}
for vname in myProblem.parameter.keys(Q):
vl = myProblem.parameter[vname] .value
if isinstance(vl, pyCAPS.Quantity):
vl = vl.value() * getattr(units, str(vl.unit(Q)))
else:
vl = vl * units.dimensionless
newX0[vname] = vl

Set initial guesses for new variables
newX0['Alpha_p20_MSES_0'] = 22 * units.deg
newX0['Alpha_p20_MSES_1'] = 22 * units.deg
newX0['Alpha_p20_MSES_2'] 19 * units.deg
newX0['C_L_MSES_0'] = 0.5 * units.dimensionless
newXO['C_L_MSES_1'] = 0.5 * units.dimensionless
newXO['C_L_MSES_2'] = 0.2 * units.dimensionless

formulation.solverOptions.x® = newX®

formulation.solverOptions.solver = 'cvxopt'

formulation.solverOptions.solveType = 'slcp'

formulation.solverOptions.relativeTolerance = le-5

formulation.solverOptions.baseStepSchedule = [1.0] * 15 + (1/np.linspace(1,100,100)**0.6).tolist()
formulation.solverOptions.progressFilename = None

rs = solve(formulation)

print(rs.result(10))

Save results as CAPS parameters
for vname in rs.variables.keys():
vl = rs.variables[vname].magnitude
ut = '{:C}'.format(rs.variables[vname].units)
capsVar = vl * pyCAPS.Unit(ut)
if vname in myProblem.parameter:
myProblem.parameter[vname] .value = capsVar
else:
myProblem.parameter.create(vname, capsVar)

Geometric quantities from optimization result
maxCamber = 0.02

maxLoc =0.4

thickness = rs.variables['tau'].to('').magnitude
area = rs.variables['S'].to('m"2') .magnitude
aspect rs.variables['AR'].to('") .magnitude

taper rs.variables['q'].to('") .magnitude - 1

Fuel weight and drag from optimization result

fuelOut = rs.variables['W_fuel_out'].to('N').magnitude
fuelRet = rs.variables['W_fuel _ret'].to('N').magnitude
fuelTot = fuelOut + fuelRet

CDO = rs.variables['C_D_0'].to('').magnitude

D1 rs.variables['C_D_1'].to('').magnitude
CD_avg = (CDO + CD1) / 2

Update geometry in ESP
myProblem.geometry.despmtr["camber"].value = maxCamber
myProblem.geometry.despmtr[“maxloc"].value = maxLoc
myProblem.geometry.despmtr["thickness"].value = thickness
myProblem.geometry.despmtr["area” J.value = area
myProblem.geometry.despmtr["aspect”].value = aspect
myProblem.geometry.despmtr["taper”].value = taper
myProblem.geometry.cfgpmtr[“view:MSES"].value = 0

myProblem.closePhase()

24

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Appendix E: Phase 3A. Camber

import os

import numpy as np

pi = np.pi

import pyCAPS

from corsairlite.optimization.solve import solve

from corsairlite.optimization import Variable, RuntimeConstraint, Constant, Formulation
from corsairlite.core.data.standardAtmosphere import atm

from corsairlite import units

from fullModelNACA import fullModel

import argparse

Setup and read command line options
parser = argparse.ArgumentParser(formatter_class-argparse.ArgumentDefaultsHelpFormatter)

Set up available commandline options
parser.add_argument ("-outLevel"”, default=0, type=int, choices=[0, 1, 2], help="Set output verbosity")
args = parser.parse_args()

Get the pyCAPS Problem object
myProblem = pyCAPS.Problem("hoburg",
=0s.path.join("csm"”, "naca.csm"),

phaseStart="MSES",

phaseContinuation=True,

outLevel=args.outLevel)
myProblem.intentPhrase(["Vary airfoil max camber and camber location"])

myProblem.geometry.cfgpmtr["view:MSES"].value = 1
Define optimization formulation

N_segments = 3
Constants

A_prop = Constant(name = "A_prop", value = 0.785, units = "mA2", description = "Disk area of propeller")

CDA® = Constant(name = "CDAQ", value = 0.05, units "mA2", description = "fuselage drag area")

C_Lmax = Constant(name = "C_Lmax", value = 1.5, units =", description = "max CL with flaps down")

e = Constant(name = "e", value = 0.95, units ", description = "Oswald efficiency factor™)

eta_eng = Constant(name = "eta_eng", value = 0.35, units R description = "Engine Efficiency")

eta_v = Constant(name = "eta_v", value = 0.85, units Wy description = "Propeller Viscous Efficiency")

f_wadd = Constant (name "f_wadd", value = 2.0, units N description = "Added Weight Fraction")

g = Constant(name = "g", value = 9.81, units = "m/s*2", description = "Gravitational constant")

h_fuel = Constant(name = "h_fuel", value = 46e6, units = "J/kg", description = "Fuel Specific energy density")

k_ew = Constant(name = "k_ew", value = 0.0372, units = "N/WA(0.803)", description = "Constant for engine weight")

mu = Constant(name = "mu", value = atm.mu(3000*units.m), units = "kg/m/s", description = "viscosity of air")

N_lift = Constant(name = "N_lift", value = 6.0, units = "-", description = "Ultimate Load Factor")

r_h = Constant (name "r_h", value = 0.75, units =", description = "Ratio of height at rear spar to maximum wing height")
rho = Constant (name "rho", value atm.rho(3000%units.m), units "kg/mA3", description = "density of air")

rho_cap = Constant(name = "rho_cap", value = 2700, units = "kg/mr3", description = "Density of wing cap material (aluminum)")
rho_SL = Constant(name = "rho_SL", value = atm.rho(0*units.m), units = "kg/m*3", description = "density of air, sea level")

rho_web = Constant(name = "rho_web", value = 2700, units "kg/mA3", description = "Density of wing web material (aluminum)")
sigma_max = Constant(name = "sigma_max", value = 250, units = "MPa", description = "Allowable tensile stress of aluminum")
sigma_max_shear = Constant(name = "sigma_max_shear", value = 167, units = "MPa", description = "Allowable shear stress of aluminum")
w_bar = Constant(name = "w_bar", value = .5, units " description = "Ratio of spar box width to chord length")
W_fixed = Constant(name = "W_fixed", value = 14700, units description = "fixed weight")

Vector Variables
v

C_L

D
C_Dfuse
C_Dp
C_Di
cf

T

W

Re

eta_i
eta_prop
eta_®
z_bre =0

for i in range(0,N_segments):

V.append(Variable(name="V_%d"%(i),
C_L.append(Variable(name="C_L_%d"%(i),
C_D.append(Variable(name="C_D_%d"%(i),
C_Dfuse.append(Variable(name="C_Dfuse_%d"%(i),
C_Dp.append(Variable(name="C_Dp_%d"%(i),

C_Di.append(

Variable (nam

C_£.append(Variable (name
T.append(
W. append(
Re.append(Variable (name
eta_i.append(Variable (name

eta_prop.append(
eta_0.append(
z_bre.append(

Free Variables

AR
I_cap_bar
M_r_bar

nu

P

P_max

a

R

S
t_cap_bar
t_web_bar
tau
V_stall
W_cap
W_eng
W_fuel_out
W_fuel_ret

Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess =
Variable(name guess
Variable(name guess
Variable(name guess =
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name = "W_fuel_out", guess
Variable(name = "W_fuel_ret", guess

Variable (nam
Variable (nam
Variable(name:

"C_f_%d"%(1),
T_%d"%(1),
"W_%d"% (1),
Re_%d"%(1),

C_Di_%d"%(i),

Yeta_i_%d"%(1),

eta_prop_%d"%(i),
eta_0_%d"%(i),
z_bre_%d"%(i),

guess=1
guess=1.

guess=1.0,

guess=1.0, units =

1000.0,

units
units
units
units
units
units
units
units
units
units

units
units
units
units
units
units

"m/s", description="Velocity, segment %d"%(i)))

description =
description =
description =
description =
description =
description
description =
description =
description =
description =
description =
description =
description =
description =
description =
description =
description =

25

description="Lift Coefficient, segment %d"%(i)))
description="Drag Coefficient, segment %d"%(i)))
description="Fuselage Drag Coefficient, segment %d"%(i)))
description="Wing Profile Drag Coefficient, segment %d"%(i)))

description="Induced Drag Coefficient, segment %d"%(i)))
description="Friction Coefficient, segment %d"%(i)))
description="Thrust, segment %d"%(i)))
description="Weight, segment %d"%(i)))
description="Reynolds Number, segment %d"%(i)))
description=
descriptio
descriptio
description="Breguet Range Factor, segment %d"%(i)))

"Inviscid Propeller Efficiency, segment %d"%(i)))
Propeller Efficiency, segment %d"%(i)))
Overall Efficiency, segment %d"%(i)))

"aspect ratio")

"Area moment of inertia of cap on 2D cross section, normalized by chord*4")

"Root Bending unit per unit chord")
"Placeholder, (l+lam_w+lam_w**2)/(1+lam w)**2")
"Dummy Variable (1+2*lam_w)")
Maximum Engine Power")

Dummy Variable (l+lam_w)")

"Single Segment range")

"total wing area")

"Spar cap thickness per unit chord")
"Spar web thickness per unit chord")
"airfoil thickness to chord ratio")
"stall speed")

"Weight of Wing Spar Cap")

"Engine Weight")

"Weight of fuel, outbound")

"Weight of fuel, return")

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

W_MTO = Variable(name = "W_MTO", guess description = "Maximum Takeoff Weight")

W_pay = Variable(name = guess description = "Payload Weight")

W_tilde = Variable(name guess description = "Dry Weight, no wing")

W_web = Variable(name guess description = "Weight of Wing Spar Shear Web")
W_wing = Variable(name = guess description = "wing weight")

W_zfw = Variable(name guess description = "Zero Fuel Weight")

Add MSES relevant variables and camber variables

maxCamber = Variable(name = "maxCamber", guess = 0.02, description maximum airfoil camber scaled by chord")
camberLocation = Variable(name = "camberLocation", guess = 0.5, description = "location of maximum airfoil camber scaled by chord")
Alpha_p20_MSES = []
C_L_MSES = []
for i in range(0,N_segments):
C_L_MSES. append(Variable(name="C_L_MSES_%d"%(i), guess=1.0, units = "-", description="Lift Coefficient from MSES, segment %d"%(i)))

Alpha_p20_MSES.append(Variable(name="Alpha_p20_MSES_%d"%(i), guess=22.0, units =

description="Angle of Attack + 20deg from MSES, segment %d"%(i)))

objective = W_fuel out + W_fuel ret
constraints = []

#
SLF
#
for i in range(0,N_segments):
constraints += [W[i] 0.5 * rho * V[i] C_L[i] * S]
constraints += [T[i] 0.5 * rho * V[i] CD[i] * S]
constraints += [Re[i] == rho * V[i] * $**0.5 / (AR**0.5 * mu)]

#

Landing

#

constraints [
W_MTO == 0.5 * rho_SL * V_stall**2 * C_Lmax * S,
V_stall <= 38*units.m/units.s

]

#

Sprint

#

constraints += [
P_max >= T[2] * V[2] / eta_O[2],
V[2] >= 150*units.m/units.s
]
#
Drag Model
#
for i in range(0,N_segments):
constraints += [C_Dfuse[i] == CDA®/S]
constraints += [C_Di[i] == C_L[i]**2/(np.pi * e * AR)]
constraints += [C_D[i] >= C_Dfuse[i] + C_Dp[i] + C_Di[i]]

#
Propulsive Efficiency
#
for i in range(0,N_segments):
constraints += [eta_0[i] == eta_eng * eta_prop[il]
constraints += [eta_prop[i] == eta_i[i] * eta_v]
constraints += [4*eta_i[i] + T[il*eta_i[il / (0.5 * rho * V[i]**2 * A_prop) <= 4]
#
Range
#

constraints += [R >= 5000 * units.km]
for i in range(0,N_segments-1):

constraints += [z_bre[i] == g * R * T[i] / (h_fuel * eta_0[i] * W[i])]
constraints += [W_fuel_out/W[0] >= z_bre[0] + z_bre[0] /2 + z_bre[0]1%*3/6 + z_bre[0]
constraints += [W_fuel_ret/W[1] >= z_bre[1] + z_bre[1]**2/2 + z_bre[1]**3/6 + z_bre[1]
#
Weight
#
constraints += [

W_pay >= 500*units.kg * g,

W_tilde >= W_fixed + W_pay + W_eng,

W_zfw >= W_tilde + W_wing,

W_eng >= k_ew * P_max .803,

W_wing / f_wadd >= W_web + W_cap,

W[0] >= W_zfw + W_fuel_ret,

W_MTO >= W[0] + W_fuel_out,

w[il W_zfw,

W[2] == W[o]

]
#
Wing Structure
#

constraints += [

2%q >= 1 + p,
p >= 1.9,
M_r_bar == W_tilde *

= 0.92%%2 / 2 * w_bar * tau**
N_lift * M_r_bar * AR * q**2 * tau / (S * I_cap_bar * sigma_max),

AR * W_tilde * N_lift * g**2 / (tau * S * t_web_bar * sigma_max_shear),
nu*¥3.94 >= 0.86 * p**(-2.38) + 0.14*p**(0.56),

W_cap >= 8 * rho_cap * g * w_bar * t_cap_bar * S**1.5 * nu / (3*AR**0.5),
W_web >= 8 * rho_web * g * r_h * tau * t_web_bar * .5 *nu / (3 * AR*¥0.5),

* t_cap_bar ,

tau <= 0.15,
q <=2

]

#

MSES Runtime Drag Model

#

for i in range(0,N_segments):
fm = fullModel()
fm.inputMode = 5

fm.outputMode = 1

fm.Mach = 0.2
fm.Coarse_Iteration = 50
fm.Fine_Tteration = 50

fm.problemObj = myProblem

26

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

constraints += [RuntimeConstraint([C_Dp[i], C_L_MSES[i]l,['>=',
constraints += [C_L_MSES[i] == C_L[i] for i in range(0,N_segments)]

formulation = Formulation(objective, constraints)

bdc = [vr >= le-12 * vr.units for vr in formulation.variables_only]
formulation.constraints.extend(bdc)

Get initial guess from previous phase parameters
newX® = {}
for vname in myProblem.parameter.keys(Q):
vl = myProblem.parameter[vname] .value
if isinstance(vl, pyCAPS.Quantity):
vl = vl.value() * getattr(units, str(vl.unit(Q)))
else:
vl = vl * units.dimensionless
newX0[vname] = vl

Set initial guesses for new variables
newX0['maxCamber'] = 0.03 * units.dimensionless
newX0['camberLocation'] = 0.6 * units.dimensionless

formulation.solverOptions.x® = newX®
formulation.solverOptions.tau = 0.3
formulation.solverOptions.solver = 'cvxopt'
formulation.solverOptions.solveType = 'slcp'
formulation.solverOptions.relativeTolerance = le-5

'=='], [Alpha_p20_MSES[i],Re[i],maxCamber, camberLocation, tau], fm)]

formulation.solverOptions.baseStepSchedule = [1.0] * 15 + (1/np.linspace(l,100,100)**0.6).tolist()

formulation.solverOptions.progressFilename = None
rs = solve(formulation)

Save results as CAPS parameters
for vname in rs.variables.keys():
vl = rs.variables[vname] .magnitude
ut = '{:C}'.format(rs.variables[vname].units)
capsVar = vl * pyCAPS.Unit(ut)
if vname in myProblem.parameter:
myProblem.parameter[vname].value = capsVar
else:
myProblem.parameter.create(vname, capsVar)

print(rs.result(10))

Geometric quantities from optimization result

maxCamber = rs.variables['maxCamber'].to('').magnitude
maxLoc rs.variables['camberLocation'].to('').magnitude
thickness = rs.variables['tau'].to('').magnitude

area = rs.variables['S'].to('m*2') .magnitude
aspect = rs.variables['AR'].to('") .magnitude
taper = rs.variables['q'].to('"') .magnitude - 1

Fuel weight and drag from optimization result

fuelOut rs.variables['W_fuel out'].to('N').magnitude
fuelRet rs.variables['W_fuel_ret'].to('N') .magnitude
fuelTot fuelOut + fuelRet

DO = rs.variables['C_D_0'].to('").magnitude

CD1 = rs.variables['C_D_1'].to('").magnitude
CD_avg = (CD® + CD1) / 2

Update geometry in ESP

myProblem.geometry.despmtr[“camber”].value = maxCamber
myProblem.geometry.despmtr["maxloc”].value = maxLoc
myProblem.geometry.despmtr["thickness"].value = thickness
myProblem.geometry.despmtr["area"].value = area
myProblem.geometry.despmtr[“aspect"].value = aspect
myProblem.geometry.despmtr["taper"].value = taper
myProblem.geometry.cfgpmtr["view:MSES"].value = 0

myProblem.parameter["_fuel"].value = fuelTot
myProblem.parameter["CD"].value = CD_avg

myProblem.closePhase()

27

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Appendix F: Phase 3B. CMConstraint

import os

import numpy as np

pi = np.pi

import pyCAPS

from corsairlite.optimization.solve import solve

from corsairlite.optimization import Variable, RuntimeConstraint, Constant, Formulation
from corsairlite.core.data.standardAtmosphere import atm

from corsairlite import units

from fullModelNACA import fullModel

import argparse

Setup and read command line options
parser = argparse.ArgumentParser(formatter_class-argparse.ArgumentDefaultsHelpFormatter)

Set up available commandline options
parser.add_argument ("-outLevel"”, default=0, type=int, choices=[0, 1, 2], help="Set output verbosity")
args = parser.parse_args()

Get the pyCAPS Problem object

myProblem = pyCAPS.Problem("hoburg",

=0s.path. join("csm", "naca.csm"),

"CMConstraint",
phaseStart="MSES",
phaseContinuation=True,
outLevel=args.outLevel)

myProblem.intentPhrase(["Add CM constraint to reduce aft camber"])

myProblem.geometry.cfgpmtr["view:MSES"].value = 1

Define optimization formulation
N_segments = 3
Constants

A_prop = Constant(name = "A_prop", value = 0.785, units = "mA2", description = "Disk area of propeller")

CDA® = Constant(name = "CDAQ", value = 0.05, units "mA2", description = "fuselage drag area")

C_Lmax = Constant(name = "C_Lmax", value = 1.5, units =", description = "max CL with flaps down")

e = Constant(name = "e", value = 0.95, units ", description = "Oswald efficiency factor™)

eta_eng = Constant(name = "eta_eng", value = 0.35, units R description = "Engine Efficiency")

eta_v = Constant(name = "eta_v", value = 0.85, units Wy description = "Propeller Viscous Efficiency")

f_wadd = Constant (name "f_wadd", value = 2.0, units N description = "Added Weight Fraction")

g = Constant(name = "g", value = 9.81, units = "m/s*2", description = "Gravitational constant")

h_fuel = Constant(name = "h_fuel", value = 46e6, units = "J/kg", description = "Fuel Specific energy density")

k_ew = Constant(name = "k_ew", value = 0.0372, units = "N/WA(0.803)", description = "Constant for engine weight")

mu = Constant(name = "mu", value = atm.mu(3000*units.m), units = "kg/m/s", description = "viscosity of air")

N_lift = Constant(name = "N_lift", value = 6.0, units = "-", description = "Ultimate Load Factor")

r_h = Constant (name "r_h", value = 0.75, units =", description = "Ratio of height at rear spar to maximum wing height™)
rho = Constant (name "rho", value atm.rho(3000%units.m), units "kg/mA3", description = "density of air")

rho_cap = Constant(name = "rho_cap", value = 2700, units = "kg/mr3", description = "Density of wing cap material (aluminum)")
rho_SL = Constant(name = "rho_SL", value = atm.rho(0*units.m), units = "kg/m*3", description = "density of air, sea level")

rho_web = Constant(name = "rho_web", value = 2700, units "kg/mA3", description = "Density of wing web material (aluminum)")
sigma_max = Constant(name = "sigma_max", value = 250, units = "MPa", description = "Allowable tensile stress of aluminum")
sigma_max_shear = Constant(name =

"sigma_max_shear", value = 167, units = "MPa", description = "Allowable shear stress of aluminum")
Constant(name = "w_bar", value = .5, units " description = "Ratio of spar box width to chord length")
Constant(name = "W_fixed", value = 14700, units description = "fixed weight")

w_bar
W_fixed

Vector Variables

v

C_L

D

C_Dfuse

C_Dp

C_Di

cf

T

W

Re

eta_i

eta_prop

eta_®

z_bre =0

for i in range(0,N_segments):
V.append(Variable(name="V_%d"%(i), guess=1.0, units = "m/s", description="Velocity, segment %d"%(i)))
C_L.append(Variable(name="C_L_%d"%(i), guess=1.0, description="Lift Coefficient, segment %d"%(i)))
C_D.append(Variable(name="C_D_%d"%(i), -0 description="Drag Coefficient, segment %d"%(i)))
C_Dfuse.append(Variable(name="C_Dfuse_%d"%(i), .0 description="Fuselage Drag Coefficient, segment %d"%(i)))
C_Dp.append(Variable(name="C_Dp_%d"%(i), .0 description="Wing Profile Drag Coefficient, segment %d"%(i)))
C_Di.append(Variable(name="C_Di_%d"%(i), .0 description="Induced Drag Coefficient, segment %d"%(i)))
C_£.append(Variable(name="C_f_%d"%(i), .0 description="Friction Coefficient, segment %d"%(i)))
T.append(i T_%d"%(1), .0 description="Thrust, segment %d"%(i)))
W. append ("W_%d"%(i), .0 description="Weight, segment %d"%(i)))
Re.append(Variable(name="Re_%d"%(i), description="Reynolds Number, segment %d"%(i)))
eta_i.append(Variable(name="eta_i_%d"%(i), description="Inviscid Propeller Efficiency, segment %d"%(i)))
eta_prop.append(Variable(name="eta_prop_%d"%(i), description="Propeller Efficiency, segment %d"%(i)))
eta_0.append(Variable(name="eta_0_%d"%(i), guess=1.0, description="0Overall Efficiency, segment %d"%(i)))

z_bre.append(

Free Variables

AR
I_cap_bar
M_r_bar

nu

P

P_max

a

R

S
t_cap_bar
t_web_bar
tau
V_stall
W_cap
W_eng
W_fuel_out
W_fuel_ret

Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess =
Variable(name guess
Variable(name guess
Variable(name guess =
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name guess
Variable(name = "W_fuel_out", guess
Variable(name = "W_fuel_ret", guess

Variable(name:

z_bre_%d"%(i),

guess=1.0, units =

1000.0,

units
units
units
units
units
units
units
units
units
units

units
units
units
units
units
units

description =
description =
description =
description =
description =
description
description =
description =
description =
description =
description =
description =
description =
description =
description =
description =
description =

28

description="Breguet Range Factor, segment %d"%(i)))

"aspect ratio")

"Area moment of inertia of cap on 2D cross section, normalized by chord*4")

"Root Bending unit per unit chord")
"Placeholder, (l+lam_w+lam_w**2)/(1+lam w)**2")
"Dummy Variable (1+2*lam_w)")
Maximum Engine Power")

Dummy Variable (l+lam_w)")

"Single Segment range")

"total wing area")

"Spar cap thickness per unit chord")
"Spar web thickness per unit chord")
"airfoil thickness to chord ratio")
"stall speed")

"Weight of Wing Spar Cap")

"Engine Weight")

"Weight of fuel, outbound")

"Weight of fuel, return")

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

W_MTO = Variable(name = "W_MTO", guess = 2500, description = "Maximum Takeoff Weight'")

W_pay = Variable(name = guess = 5000, description = "Payload Weight")

W_tilde = Variable(name guess = 5000, description = "Dry Weight, no wing")

W_web = Variable(name guess = 400, description = "Weight of Wing Spar Shear Web")

W_wing = Variable(name = guess = 2500, description = "wing weight")

W_zfw = Variable(name guess = 5000, description = "Zero Fuel Weight")

Add MSES and camber relevant variables

maxCamber Variable(name = "maxCamber", guess = 0.02, description maximum airfoil camber scaled by chord")

camberLocation = Variable(name = "camberLocation", guess = 0.5, description = "location of maximum airfoil camber scaled by chord")

Alpha_p20_MSES = []

C_L_MSES = []

negCMpl = []

for i in range(0,N_segments):
C_L_MSES. append(Variable(name="C_L_MSES_%d"%(i), guess=1.0, units = "-", description="Lift Coefficient from MSES, segment %d"%(i)))
Alpha_p20_MSES.append(Variable(name="Alpha_p20_NSES_%d"%(i), guess=22.0, units = "deg”, description="Angle of Attack + 20deg from MSES, segment %d"%(i)))
negCMp1.append(Variable(name="negCMpl_%d"%(i), guess=1.05, units = "-", description="Negative CM about 0.25c + 1, segment %d"%(i)))

objective = W_fuel out + W_fuel ret
constraints = []

#
SLF
#
for i in range(0,N_segments):
constraints += [W[i]
constraints += [T[i]
constraints += [Re[i]

* rho * V[i]**2 * C_L[i] * S]
.5 * rho * V[i]**2 * C_D[i] * S]
rho * V[i] * $*%0.5 / (AR**0.5 * mu)]

#
Landing
#
constraints += [
W_MTO == 0.5 * rho_SL * V_stall**2 * C_Lmax * S,
V_stall <= 38*units.m/units.s

]
#
Sprint
#
constraints += [
P_max >= T[2] * V[2] / eta_O[2],
V[2] >= 150*units.m/units.s

1
#
Drag Model
#
for i in range(0,N_segments):

constraints += [C_Dfuse[i] == CDA®/S]

constraints += [C_Di[i] == C_L[i]**2/(np.pi * e * AR)]

constraints += [C_D[i] >= C_Dfuse[i] + C_Dp[i] + C_Di[i]]

#
Propulsive Efficiency
#
for i in range(0,N_segments):
constraints += [eta_0[i] == eta_eng * eta_prop[il]
constraints += [eta_prop[i] == eta_i[i] * eta_v]
constraints += [4*eta_i[i] + T[il*eta_i[i]**2 / (0.5 * rho * V[i]**2 * A_prop) <= 4]
#
Range
#

constraints += [R >= 5000 * units.km]
for i in range(0,N_segments-1):

constraints += [z_bre[i] == g * R * T[i] / (h_fuel * eta_®[i] * W[i])]
constraints += [W_fuel out/W[0] >= z_bre[0] + z_bre[0]**2/2 + z_bre[0]**3/6 + z_bre[0]
constraints += [W_fuel_ret/W[1] >= z_bre[1] + z_bre[1]**2/2 + z_bre[1]**3/6 + z_bre[1]
#
Weight
#
constraints += [

W_pay >= 500*units.kg * g,

W_tilde >= W_fixed + W_pay + W_eng,

W_zfw >= W_tilde + W_wing,

W_eng >= k_ew * P_max .803,

W_wing / f_wadd >= W_web + W_cap,

W[0] >= W_zfw + W_fuel_ret,

W_MTO >= W[0] + W_fuel out,

W[1] >= W_zfw,

w2] w[ol

Wing Structure

]

constraints += [
2%q >= 1 + p,
p >= 1.9,
M_r_bar W_tilde * AR * p / 24,
w_bar * tau * t_cap_bar**2 + I_cap_bar <= 0.92%*2 / 2 * w_bar * tau
N_lift * M_r_bar * AR * gq**2 * tau / (S * I_cap_bar * sigma_max),
AR * W_tilde * N_lift * gq**2 / (tau * S * t_web_bar * sigma_max_shear),

“ t_cap_bar ,

W_cap >= 8 * rho_cap g _] * t_cap_bar * 1.5 * nu / (3*AR*%0.5),
W_web >= 8 * rho_web * g * r_h * tau * t_web_bar .5 *nu / (3 * AR*¥0.5),
tau <= 0.15,
q <=2

]

#

MSES Runtime Drag Model

#

for i in range(0,N_segments):
fm = fullModel)
fm.inputMode = 5
fm.outputMode = 3

fm.Mach = 0.2
fm.Coarse_Iteration = 50
fm.Fine_Tteration = 50

29

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

fm.problemObj = myProblem

constraints += [RuntimeConstraint([C_Dp[i], C_L_MSES[i], negCMpl[il],['>=",
constraints += [C_L_MSES[i] == C_L[i] for i in range(0,N_segments)]
Impose moment constraint
constraints += [negCMpl[i] <= 1.06 for i in range(0,N_segments)]

'], [Alpha_p20_MSES[i],Re[i],maxCamber,camberLocation,tau], fm)]

formulation = Formulation(objective, constraints)

bdc = [vr >= le-12 * vr.units for vr in formulation.variables_only]
formulation.constraints.extend(bdc)

names = [vr.name for vr in formulation.variables_only]
AR = formulation.variables_only[names.index('AR')]
S = formulation.variables_only[names.index('S')]

phantomConstraints = [
AR >= 17,
S <= 40 * units.m**2
]

formulation.constraints.extend(phantomConstraints)

Get initial guess from previous phase parameters
newX0 = {}
for vname in myProblem.parameter.keys():
vl = myProblem.parameter [vname] .value
if isinstance(vl, pyCAPS.Quantity):
vl = vl.value() * getattr(units, str(vl.unit()))
else:
vl = vl * units.dimensionless
newX0[vname] = vl

Set initial guesses for new variables

newX0['maxCamber'] = 0.02 * units.dimensionless
newX0[' camberLocation'] = 0.4 * units.dimensionless
newX0['negCMpl_0'] = 1.05 * units.dimensionless
newX0['negCMpl_1'] = 1.05 * units.dimensionless
newX0['negCMp1_2'] = 1.05 * units.dimensionless

formulation.solverOptions.x0 = newX®

formulation.solverOptions.tau = 0.3

formulation.solverOptions.solver = 'cvxopt'

formulation.solverOptions.solveType = 'slcp'
formulation.solverOptions.relativeTolerance = le-5
formulation.solverOptions.baseStepSchedule = [1.0] * 15 + (1/np.linspace(l,100,100)*
formulation.solverOptions.progressFilename = None

rs = solve(formulation)

.6).tolist)

Save results as CAPS parameters
for vname in rs.variables.keys():
vl = rs.variables[vname].magnitude
ut = '{:C}'.format(rs.variables[vname].units)
capsVar = vl * pyCAPS.Unit(ut)
if vname in myProblem.parameter:
myProblem.parameter[vname] .value = capsVar
else:
myProblem.parameter.create(vname, capsVar)

print(rs.result(10))

Geometric quantities from optimization result

maxCamber = rs.variables['maxCamber'].to('").magnitude
maxLoc = rs.variables['camberLocation'].to("'").magnitude
thickness = rs.variables['tau'].to('"').magnitude

@

area = rs.variables['S'].to('m*2").magnitude

aspect = rs.variables['AR'].to(' ') .magnitude

taper = rs.variables['q'].to('") .magnitude - 1

Fuel weight and drag from optimization result

fuelOut = rs.variables['W_fuel _out'].to('N').magnitude
fuelRet rs.variables['W_fuel_ret'].to('N').magnitude
fuelTot = fuelOut + fuelRet

CDO = rs.variables['C_D_0'].to('').magnitude

D1 = rs.variables['C_D_1"'].to('').magnitude
CD_avg = (CD® + CD1) / 2

Update geometry in ESP
myProblem.geometry.despmtr["camber”].value = maxCamber
myProblem.geometry.despmtr["maxloc”].value = maxLoc
myProblem.geometry.despmtr["thickness"].value = thickness
myProblem.geometry.despmtr[“area”].value = area
myProblem.geometry.despmtr[“aspect”].value = aspect
myProblem.geometry.despmtr["taper"].value = taper
myProblem.geometry.cfgpmtr["view:MSES"].value = 0

myProblem.closePhase ()

30

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Appendix G: Phase 4A

import dill

import copy

import sys

import os

import numpy as np

pi = np.pi

import pyCAPS

from corsairlite.optimization.solve import solve

from corsairlite.optimization import Variable, RuntimeConstraint, Constant, Formulation
from corsairlite.core.data.standardAtmosphere import atm

from corsairlite import units

from corsairlite.analysis.models.geometry.airfoilThickness.kulfan import computeThickness
from corsairlite.core.dataTypes.kulfan import Kulfan

from fullModelKulfan import fullModel

import argparse

Setup and read command line options
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

Set up available commandline options
parser.add_argument ("-outLevel”, default=0, type=int, choices=[0, 1, 2], help="Set output verbosity")
args = parser.parse_args()

Get the pyCAPS Problem object
myProblem = pyCAPS.Problem("hoburg”,
capsFile=os.path. join("csm", "kulfan.csm"),
phaseName="Kulfan2",
phaseStart="CMConstraint",
phaseContinuation=True,
outLevel=args.outLevel)
myProblem. intentPhrase(["Increase geometry DOF with 2 parameter Kulfan airfoil"])

myProblem.geometry.cfgpmtr["view:MSES"].value = 1

myProblem.geometry.despmtr["nparams"].value = 2

Define optimization formulation

N_segments = 3

Constants

A_prop = Constant(name = "A_prop", value = 0.785, units

CDA® = Constant(name = "CDA®", value = 0.05, units =

C_Lmax = Constant(name = "C_Lmax", value = 1.5, units

e = Constant(name = "e", value = 0.95, units

eta_eng = Constant(name = "eta_eng", value = 0.35, units ",
eta_v = Constant(name = "eta_v", value = 0.85, units "y
£_wadd = Constant(name = "f_wadd", value = 2.0, units "y

g = Constant(name = "g", value = 9.81, units = "m/s*2",
h_fuel = Constant(name = "h_fuel", value = 46e6, units = "J/kg",
k_ew = Constant(name = "k_ew", value = 0.0372, units "N/WA(0.803)",
mu = Constant(name = "mu", value = atm.mu(3000%units.m), units = "kg/m/s",
N_lift = Constant(name = "N_lift", value = 6.0, units "y

r_h = Constant(name = "r_h", value = 0.75, units = "-",

rho = Constant(name = "rho", value = atm.rho(3000*units.m), units = "kg/m*3",
rho_cap = Constant (name "rho_cap", value 2700, units "kg/mA3",
rho_SL = Constant(name = "rho_SL", value = atm.rho(0*units.m), units = "kg/mr3",
rho_web = Constant(name = "rho_web", value = 2700, units = "kg/m*3",
sigma_max = Constant(name = "sigma_max", value = 250, units = "MPa",
sigma_max_shear = Constant(name = "sigma_max_shear", value = 167, units = "MPa",
w_bar = Constant(name = "w_bar", value = .5, units = "-",
W_fixed = Constant(name = "W_fixed", value = 14700, units

Vector Variables

for i in range(0,N_segments):

Kulfan2

description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description

"Disk area of propeller")
"fuselage drag area")
"max CL with flaps down")

"Oswald efficiency factor")

"Engine Efficiency")

"Propeller Viscous Efficiency")

"Added Weight Fraction")
"Gravitational constant")

"Fuel Specific energy density")
"Constant for engine weight")

"viscosity of air")
"Ultimate Load Factor")

"Ratio of height at rear spar to maximum wing height")

"density of air")

"Density of wing cap material (aluminum)")
"density of air, sea level")

"Density of wing web material (aluminum)")
"Allowable tensile stress of aluminum")
"Allowable shear stress of aluminum")
"Ratio of spar box width to chord length")

"fixed weight")

Lift Coefficient, segment %d"%(i)))

V.append(Variable(name="V_%d"%(i), guess=1.0, units = "m/s", description="Velocity, segment %d"%(i)))
C_L.append(guess=1.0, units = 5 description=
C_D.append(guess=1.0, units = "", description="Drag Coefficient, segment %d"%(i)))

C_Dfuse.append(
C_Dp.append(
C_Di.append(

C_Dfuse_%d"%(i), guess=1.
C_Dp_%d"%(1), guess=1.
C_Di_%d"%(i), gues

descriptios
description=
descriptio

Fuselage Drag Coefficient, segment %d"%(i)))
Wing Profile Drag Coefficient, segment %d"%(i)))
Induced Drag Coefficient, segment %d"%(i)))

C_£f.append(C_f_%d"%(i), guess . description="Friction Coefficient, segment %d"%(i)))
T.append(Variable(name="T_%d"%(i), guess N description="Thrust, segment %d"%(i)))

W.append(Variable(name="W_%d"%(i), guess=1. description="Weight, segment %d"%(i)))

Re.append(Variable(name="Re_%d"%(i), guess=1le7, description="Reynolds Number, segment %d"%(i)))

eta_i_%d"%(i), guess=1.0, 9 descriptior
5 descriptio

5 descriptio

eta_i.append(Variable (nam
eta_prop.append(Variable(name="eta_prop_%d"%(i), guess=1.0,
eta_0.append(Variable(name="eta_0_%d"%(i), guess
z_bre.append(Variable(name="z_bre_%d"%(i), guess=1.0,

Free Variables

Inviscid Propeller Efficiency, segment %d"%(i)))
Propeller Efficiency, segment %d"%(i)))

Overall Efficiency, segment %d"%(i)))

, description="Breguet Range Factor, segment %d"%(i)))

AR = Variable(name = "AR", guess units description = "aspect ratio")

I_cap_bar = Variable(name guess units description = "Area moment of inertia of cap on 2D cross section, normalized by chord+4")
M_r_bar = Variable(name guess units description = "Root Bending unit per unit chord")

nu = Variable(name guess units description Placeholder, (1+lam_w+lam_w**2)/(1+lam_w)**2")
P = Variable(name guess units description Dummy Variable (1+2*lam_w)")

P_max = Variable(name guess units description = "Maximum Engine Power™)

q = Variable(name guess units description = "Dummy Variable (l+lam_w)")

R = Variable(name guess units description = "Single Segment range")

S = Variable(name guess units description = "total wing area")

t_cap_bar = Variable(name "t_cap_bar", guess units description = "Spar cap thickness per unit chord")

t_web_bar = Variable(name "t_web_bar", guess = .05, units description = "Spar web thickness per unit chord")

31

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

tau = Variable(name = "tau", guess description = "airfoil thickness to chord ratio™)
V_stall = Variable(name = "V_stall", guess description = "stall speed")

W_cap = Variable(name guess description = "Weight of Wing Spar Cap")
W_eng = Variable(name guess description = "Engine Weight")

W_fuel_out = Variable(name = , guess description = "Weight of fuel, outbound")
W_fuel_ret = Variable(name guess description = "Weight of fuel, return")

W_MTO = Variable(name guess description = "Maximum Takeoff Weight™)

W_pay = Variable(name guess description = "Payload Weight")

W_tilde = Variable(name guess description = "Dry Weight, no wing")

W_web = Variable(name guess description = "Weight of Wing Spar Shear Web")
W_wing = Variable(name guess description = "wing weight")

W_zfw = Variable(name description = "Zero Fuel Weight")

guess

Add Kulfan variables

Aupperl = Variable(name = "Aupperl", guess

units = "-", description = "Kulfan coefficient + 1, upper surface mode 1")

Aupper2 = Variable(name "Aupper2", guess g description = "Kulfan coefficient + 1, upper surface mode 2 ")
Alowerl = Variable(name "Alowerl", guess , units description = "-Kulfan coefficient + 1, lower surface mode 1")
Alower2 = Variable(name = "Alower2", guess , units description = "-Kulfan coefficient + 1, lower surface mode 2")
Alpha_p20_MSES = []
C_L_MSES = []
negChMpl = []
for i in range(0,N_segments):
C_L_MSES. append(Variable(name="C_L_MSES_%d"%(i), guess=1.0, units = " description="Lift Coefficient from MSES, segment %d"%(i)))

Alpha_p20_MSES.append(Variable(name="Alpha_p20_MSES_%d"%(i), guess=22.0, units = "deg", description="Angle of Attack + 20deg from MSES, segment %d"%(i)))
negCMp1.append(Variable(name="negCMpl_%d"%(i), guess=1.05, units = "-", description="Negative CM about 0.25c + 1, segment %d"%(i)))

objective = W_fuel out + W_fuel ret
constraints = []

#
SLF
#
for i in range(0,N_segments):
constraints += [W[i] == 0.5 * rho * V[i]**2 * C_L[i] * S]
constraints += [T[i] 0.5 * rho * V[i] * CD[i] * S 1
constraints += [Re[i] == rho * V[i] * $**0.5 / (AR**0.5 * mu)]

#
Landing
#

constraints += [
W_MTO == 0.5 * rho_SL * V_stall*
V_stall <= 38*units.m/units.s

2 * C_Lmax * S,

1
#
Sprint
#

constraints += [
P_max >= T[2] * V[2] / eta_0[2],
V[2] >= 150*units.m/units.s

-

Drag Model

for i in range(0,N_segments):
constraints += [C_Dfuse[i] == CDA®/S]
constraints += [C_Di[i] C_L[i]**2/(np.pi * e * AR)]
constraints += [C_D[i] C_Dfuse[i] + C_Dp[i] + C_Di[i]]

#
Propulsive Efficiency
#
for i in range(0,N_segments):
constraints += [eta_0[i] == eta_eng * eta_prop[il]
constraints += [eta_prop[i] == eta_i[i] * eta_v]
constraints += [4*eta_i[i] + T[i]*eta_i[i] / (0.5 * rho * V[i]**2 * A_prop) <= 4]
#
Range
#

constraints += [R >= 5000 * units.km]
for i in range(0,N_segments-1):

constraints += [z_bre[i] == g * R * T[i] / (h_fuel * eta_0[i] * W[i])]
constraints += [W_fuel out/W[0] >= z_bre[0] + z_bre[0] /2 + z_bre[0]1%*3/6 + z_bre[0]
constraints += [W_fuel ret/W[1] >= z_bre[1] + z_bre[1]**2/2 + z_bre[1]**3/6 + z_bre[1]
#
Weight
#
constraints += [

W_pay >= 500*units.kg * g,

W_tilde >= W_fixed + W_pay + W_eng,

W_zfw >= W_tilde + W_wing,

W_eng >= k_ew * P_max**0.803,

W_wing / f_wadd >= W_web + W_cap,

W[O] >= W_zfw + W_fuel_ret,

W_MTO >= W[0] + W_fuel_out,

w1 W_zfw,

w2] w[ol

]
#
Wing Structure
#

constraints += [

2%q >= 1 + p,

p >= 1.9,

M_r_bar == W_tilde

0.92 * w_bar * tau = 0.92%*2 / 2 * w_bar * tau**2 * t_cap_bar ,
8 N_lift * M_r_bar q I_cap_bar * sigma_max),

12 AR * W_tilde * N_lift * g**2 / (tau * S * t_web_bar * sigma_max_shear),

nu**3.94 >= 0.86 * p**(-2.38) + 0.14*p**(0.56),

W_cap >= 8 * rho_cap * g * w_bar * t_cap_bar * S**1.5 * nu / (3*AR**0.5)
W_web >= 8 * rho_web * g * r_h * tau * t_web_bar * S**1.5 * nu / (3 * AR**0.5),
tau <= 0.15,

q <= 2

32

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

MSES Runtime Drag Model
#
for i in range(0,N_segments):

fm = fullModel()

fm.N = 2

fm.inputMode = 4

fm.outputMode = 3

fm.Mach = 0.2

fm.Coarse_Iteration = 50

fm.Fine_Iteration = 50

fm.problemObj = myProblem

constraints += [RuntimeConstraint([C_Dp[i], C_L_MSES[il, negCMp1l[il],['>=", '==",
constraints += [C_L_MSES[i] == C_L[i] for i in range(0,N_segments)]

g

variableStack = [Aupperl, Aupper2, Alowerl, Alower2]
ct = computeThickness()

ct.N =2
ct.inputMode = 2
constraints += [RuntimeConstraint([tau],['=='],variableStack,ct)]

formulation = Formulation(objective, constraints)

bdc = [vr >= le-12 * vr.units for vr in formulation.variables_only]
formulation.constraints.extend(bdc)

Get initial guess from previous phase parameters
newX0 = {}
for vname in myProblem.parameter.keys():
vl = myProblem.parameter[vname].value
if isinstance(vl, pyCAPS.Quantity):
vl = vl.value() * getattr(units, str(vl.unitQ)))

vl = vl * units.dimensionless
newX0[vname] = vl

Set initial guesses for new variables

afl = Kulfan()

afl.naca4_like(newX@['maxCamber'].to('').magnitude*100,
newX0['camberLocation'].to('") .magnitude*10,
newX0['tau'].to('') .magnitude*100)

afl.changeOrder(2)

newX0['Aupperl'] =

newX®['Aupper2'] =

¢ * units.dimensionless
[¢
newX0['Alowerl'] = (-
(
E.

* units.dimensionless
units.dimensionless
* units.dimensionless

afl.upperCoefficients[0] + 1.0
afl.upperCoefficients[1] + 1.0
afl.lowerCoefficients[0] + 1.0
“afl.lowerCoefficients[1] + 1
S_2'] = 22.0 * units.deg

newXo['Alower2'] =
newX0['Alpha_p20_NS

formulation.solverOptions.x® = newX®

formulation.solverOptions.tau = 0.3

formulation.solverOptions.solver = 'cvxopt'

formulation.solverOptions.solveType = 'slcp’'

formulation.solverOptions.relativeTolerance = le-5

formulation.solverOptions.baseStepSchedule = [1.0] * 15 + (1/np.linspace(l,100,100)**0.6).tolist()
formulation.solverOptions.progressFilename = None

rs = solve(formulation)

Save results as CAPS parameters
for vname in rs.variables.keys():
vl = rs.variables[vname].magnitude
ut = '{:C}"'.format(rs.variables[vname].units)
capsVar = vl * pyCAPS.Unit(ut)
if vname in myProblem.parameter:
myProblem.parameter[vname] .value = capsVar
else:
myProblem.parameter.create(vname, capsVar)

print(rs.result(10))

Geometric quantities from optimization result

Aupperl = rs.variables['Aupperl'].to('').magnitude - 1
Aupper2 = rs.variables['Aupper2'].to('') .magnitude - 1
Alowerl = -rs.variables['Alowerl'].to('').magnitude - 1
Alower2 = -rs.variables['Alower2'].to('"').magnitude - 1
area = rs.variables['S'].to('m*2") .magnitude

aspect rs.variables['AR'].to('").magnitude

taper = rs.variables['q'].to('"') .magnitude - 1

Fuel weight and drag from optimization result

fuelOut = rs.variables['W_fuel out'].to('N').magnitude
fuelRet = rs.variables['W_fuel _ret'].to('N').magnitude
fuelTot fuelOut + fuelRet

CDO = rs.variables['C_D_0'].to('").magnitude

cDn1 rs.variables['C_D_1"'].to('').magnitude

CD_avg = (CD® + CD1) / 2

Update geometry in ESP
myProblem.geometry.despmtr["aupper"
myProblem.geometry.despmtr["alower"

value = [Aupperl, Aupper2]
value = [Alowerl, Alower2]

B

1o
myProblem.geometry.despmtr["area"”].value = area
myProblem.geometry.despmtr[“aspect”].value = aspect
myProblem.geometry.despmtr["taper”].value = taper
myProblem.geometry.cfgpmtr["view:MSES"].value = 0

myProblem.closePhase ()

33

'], [Alpha_p20_MSES[i],Re[i],Aupperl, Aupper2, Alowerl, Alower2],fm)]

Appendix H: Phase 4B. FlowTrip

import dill

import copy

import sys

import os

import numpy as np

pi = np.pi

import pyCAPS

from corsairlite.optimization.solve import solve

from corsairlite.optimization import Variable, RuntimeConstraint, Constant, Formulation
from corsairlite.core.data.standardAtmosphere import atm

from corsairlite import units

from corsairlite.analysis.models.geometry.airfoilThickness.kulfan import computeThickness
from corsairlite.core.dataTypes.kulfan import Kulfan

from fullModelKulfan import fullModel

import argparse

Setup and read command line options
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

Set up available commandline options
parser.add_argument("-outLevel”, default=0, type=int, choices=[0, 1, 2], help="Set output verbosity")
args = parser.parse_args()

Get the pyCAPS Problem object

myProblem = pyCAPS.Problem("hoburg”,
capsFile=os.path. join("csm", "kulfan.csm"),
phaseName="FlowTrip",
phaseStart="CMConstraint",
phaseContinuation=True,
outLevel=args.outLevel)

myProblem.intentPhrase(["Impose a turbulent flow trip at .35c in MSES"])

myProblem.geometry.cfgpmtr["view:MSES"].value = 1
myProblem.geometry.despmtr["nparams"].value = 2

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Define optimization formulation
N_segments = 3
Constants

A_prop = Constant(name = "A_prop", value = 0.785, units = "mA2", description = "Disk area of propeller")
CDA® = Constant(name = "CDAO", value = 0.05, units = description = "fuselage drag area")
C_Lmax = Constant(name = "C_Lmax", value = 1.5, units description = "max CL with flaps down")
e = Constant(name = "e" value = 0.95, units description = "Oswald efficiency factor")
eta_eng = Constant(name = "eta_eng" value = 0.35, units description = "Engine Efficiency™)
eta_v = Constant(name = "eta_v", value = 0.85, units N description = "Propeller Viscous Efficiency")
f_wadd = Constant(name = "f_wadd", value = 2.0, units = "", description = "Added Weight Fraction")
g = Constant(name = "g", value = 9.81, units = "m/s*2", description = "Gravitational constant")
h_fuel = Constant(name = "h_fuel", value = 46e6, units "3/kg", description = "Fuel Specific energy density")
k_ew = Constant (name value = 0.0372, units = "N/WA(0.803)", description = "Constant for engine weight™)
mu = Constant (name value = atm.mu(3000%units.m), units = "kg/m/s", description = "viscosity of air")
N_lift = Constant (name value = 6.0, units = "-", description = "Ultimate Load Factor")
r_h = Constant (name value 0.75, units o=y description = "Ratio of height at rear spar to maximum wing height")
rho = Constant (name value = atm.rho(3000*units.m), units = "kg/m*3", description = "density of air")
rho_cap = Constant(name = "rho_cap", value = 2700, units = "kg/mA3", description = "Density of wing cap material (aluminum)")
rho_SL = Constant(name = "rho_SL", value = atm.rho(0*units.m), units = "kg/m*3", description = "density of air, sea level")
rho_web = Constant(name = "rho_web", value = 2700, units = "kg/m*3", description = "Density of wing web material (aluminum)")
sigma_max = Constant(name = "sigma_max", value = 250, units = "MPa", description = "Allowable tensile stress of aluminum")
sigma_max_shear = Constant(name "sigma_max_shear", value = 167, units "MPa", description = "Allowable shear stress of aluminum")
w_bar = Constant (name "w_bar" value = .5, i description = "Ratio of spar box width to chord length")
W_fixed = Constant(name = "W_fixed", value = 14700, units = description = "fixed weight")
Vector Variables
eta_i =[]
for i in range(0,N_segments):
V.append(Variable(name="V_%d"%(i), guess=1.0, units = "m/s", description="Velocity, segment %d"%(i)))
C_L.append(Variable(name="C_L_%d"%(i), guess=1.0, i description="Lift Coefficient, segment %d"%(i)))
C_D.append(C_D_%d"%(i), N description="Drag Coefficient, segment %d"%(i)))

C_Dfuse.append(
C_Dp.append(

C_Dfuse_%d"%(i),
C_Dp_%d"%(i),

description=
descriptio

Fuselage Drag Coefficient, segment %d"%(i)))
Wing Profile Drag Coefficient, segment %d"%(i)))

C_Di.append(C_Di_%d"%(i), description="Induced Drag Coefficient, segment %d"%(i)))
C_f.append("C_f_%d"%(1), N description="Friction Coefficient, segment %d"%(i)))
T.append(T_%d"%(1), .0, description="Thrust, segment %d"%(i)))

W.append("W_%d"%(1), guess=1.0, description="Weight, segment %d"%(i)))

Re.append(Re_%d"%(i), guess=le7, description="Reynolds Number, segment %d"%(i)))
eta_i.append(eta_i_%d"%(i), guess=1.0, description="Inviscid Propeller Efficiency, segment %d"%(i)))
eta_prop.append(eta_prop_%d"%(i), guess: description="Propeller Efficiency, segment %d"%(i)))
eta_0.append(Variable(name="eta_0_%d"%(i), guess=1.0, description="0Overall Efficiency, segment %d"%(i)))

z_bre.append(

Free Vari

ables

Variable(name="z_bre_%d"%(i),

guess=1.0,

description="Breguet Range Factor, segment %d"%(i)))

AR = Variable(name = guess units description = "aspect ratio")

I_cap_bar = Variable(name guess units description "Area moment of inertia of cap on 2D cross section, normalized by chord*4")
M_r_bar = Variable(name "M_r_bar", guess units description Root Bending unit per unit chord")

nu = Variable(name guess units description Placeholder, (1+lam_w+lam_w**2)/(1+lam_w)**2")

P = Variable(name guess units description = "Dummy Variable (1+2*lam_w)")

P_max = Variable(name guess units description = "Maximum Engine Power™)

q = Variable(name guess = 2, units description = "Dummy Variable (l+lam_w)")

R = Variable(name guess = 5000, units description = "Single Segment range")

S = Variable(name guess 10.0, units description "total wing area")

t_cap_bar = Variable(name = "t_cap_bar", guess = .05, units description "Spar cap thickness per unit chord")

34

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

t_web_bar = Variable(name = "t_web_bar", guess

tau = Variable(name = guess
V_stall = Variable(name guess
W_cap = Variable(name guess
W_eng = Variable(name = guess

W_fuel_out = Variable(name guess

W_fuel_ret = Variable(name guess
W_MTO = Variable(name guess
W_pay = Variable(name guess
W_tilde = Variable(name guess
W_web = Variable(name guess
W_wing = Variable(name guess
W_zfw = Variable(name = "W_zfw", guess

Add Kulfan variables

Aupperl = Variable(name = "Aupperl", guess
Aupper2 = Variable(name "Aupper2", guess
Alowerl = Variable(name "Alowerl", guess
Alower2 = Variable(name = "Alower2", guess

units = "-",
units
units N
units = "-",

Alpha_p20_MSES = []

C_L_MSES = []

negClpl = []

for i in range(0,N_segments):
C_L_MSES. append (Variable(name="C_L_MSES_%d"%(i),
Alpha_p20_MSES.append(Variable (name
negCMp1.append(Variable (name

objective = W_fuel out + W_fuel ret
constraints = []

#
SLF
#
for i in range(0,N_segments):
constraints += [W[i] 0.5 * rho * V[i] C_L[i] * S]
constraints += [T[i] >= 0.5 * rho * V[i]**2 * C_D[i] * S]
constraints += [Re[i] == rho * V[i] * $**0.5 / (AR**0.5 * mu)]

#

Landing

#

constraints += [
W_MTO == 0.5 * rho_SL * V_stall**2 * C_Lmax * S,
V_stall <= 38*units.m/units.s

]

#

Sprint

#

constraints += [
P_max >= T[2] * V[2] / eta_O[2],
V[2] >= 150*units.m/units.s
]
#
Drag Model
#
for i in range(0,N_segments):
constraints += [C_Dfuse[i] == CDA®/S]
constraints += [C_Di[i] == C_L[i]**2/(np.pi * e * AR)]
constraints += [C_D[i] >= C_Dfuse[i] + C_Dp[i] + C_Di[i]]

description
description

description
description
description
description
description
description
description
description
description
description
description
description
description

guess=1.0, units
'Alpha_p20_MSES_%d"%(i), guess=22.0, units
negCMpl_%d"%(i), guess=1.05, units = "-", description="Negative CM about 0.25c + 1, segment %d"%(i)))

"Spar web thickness per unit chord")
"airfoil thickness to chord ratio™)
"stall speed")

"Weight of Wing Spar Cap")

"Engine Weight")

"Weight of fuel, outbound")
"Weight of fuel, return")

"Maximum Takeoff Weight")

"Payload Weight")

"Dry Weight, no wing")

"Weight of Wing Spar Shear Web")
"wing weight")

"Zero Fuel Weight")

description = "Kulfan coefficient + 1, upper surface mode 1")
"_", description = "Kulfan coefficient + 1, upper surface mode 2 ")
= "-Kulfan coefficient + 1, lower surface mode 1")
= "-Kulfan coefficient + 1, lower surface mode 2")

description="Lift Coefficient from MSES, segment %d"%(i)))
description="Angle of Attack + 20deg from MSES, segment %d"%(i)))

#
Propulsive Efficiency
#
for i in range(0,N_segments):
constraints += [eta_0[i] == eta_eng * eta_prop[i]]
constraints += [eta_prop[i] == eta_i[i] * eta_v]
constraints += [4*eta_i[i] + T[i]*eta_i[i]**2 / (0.5 * rho * V[i]**2 * A_prop) <= 4]
#
Range
#

constraints += [R >= 5000 * units.km]
for i in range(0,N_segments-1):

constraints += [z_bre[i] ==
constraints += [W_fuel_out/W[0] z_bre[0] + z_bre[0]
constraints += [W_fuel_ret/W[1] >= z_bre[1] + z_bre[1]
#
Weight
#

/2 + z_bre[0
/2 + z_bre[l

constraints += [
W_pay >= 500*units.kg * g,
W_tilde >= W_fixed + W_pay + W_eng,
W_zfw >= W_tilde + W_wing,
W_eng >= k_ew * P_max .803,
W_wing / f_wadd >= W_web + W_cap,
W[0] >= W_zfw + W_fuel_ret,
W_MTO >= W[0] + W_fuel out,
w[1l W_zfw,
w2] w[ol

Wing Structure

oW oW

constraints += [
2%q >= 1 + p,

* tau *
8 == N_lift * M_r_bar *

2 + I_cap_bar 0.9
* tau / (S * I_cap_bar * sigma_max),

5

¥3.94 >= 0.86 * p**(-2.38) + 0.14*p**(0.56),
W_cap >= 8 * rho_cap * g * w_bar * t_cap_bar *
W_web >= 8 * rho_web * g * r_h * tau *
tau 0.15,

q <=

.5 % nu / (3*AR**0.
t_web_bar * § .5 *nu / 3

2/ 2 * w_bar *

AR * W_tilde * N_lift * g**2 / (tau * S * t_web_bar * sigma_max_:

R * T[i] / (h_fuel * eta_O[i] * W[i])]
3/6 + z_bre[0]
3/6 + z_bre[1]

tau
shear),

5),

* AR¥*Q.5),

35

t_cap_bar ,

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

MSES Runtime Drag Model
#
for i in range(0,N_segments):
fm = fullModel()
fm.N = 2
fm.inputMode = 4
fm.outputMode = 3
fm.Mach = 0.2

fm.xTransition_Upper = 0.40
fm.xTransition_Lower = 0.65
fm.Coarse_Iteration = 50
fm.Fine_Iteration = 50

fm.problemObj = myProblem
constraints += [RuntimeConstraint([C_Dp[i], C_L_MSES[i], negCMp1[il],['>=", '=="',

constraints += [C_L_MSES[i] == C_L[i] for i in range(0,N_segments)]

constraints += [Alpha_p20_MSES[0] >= Alpha_p20_MSES[1]]
constraints += [Alpha_p20_MSES[1] >= Alpha_p20_MSES[2]]

constraints += [Alpha_p20_MSES[0] <= 25*units.deg ,
Alpha_p20_MSES[1] <= 25*units.deg ,
Alpha_p26_MSES[2] 20*units.deg]
constraints += [Alpha_p20_MSES[0] >= “units.deg ,
Alpha_p20_MSES[1] >= 20*units.deg
]

variableStack = [Aupperl, Aupper2, Alowerl, Alower2]
ct = computeThickness()

ct.N =2

ct.inputMode = 2

constraints += [RuntimeConstraint([tau],['=='],variableStack,ct)]

formulation = Formulation(objective, constraints)

bdc = [vr >= le-12 * vr.units for vr in formulation.variables_only]
formulation.constraints.extend(bdc)

Get initial guess from previous phase parameters
newX0 = {}
for vname in myProblem.parameter.keys(Q):
vl = myProblem.parameter[vname] .value
if isinstance(vl, pyCAPS.Quantity):
vl = vl.value() * getattr(units, str(vl.unit(Q)))
else:
vl = vl * units.dimensionless
newX0[vname] = vl

Set initial guesses for new variables

afl = Kulfan()

afl.naca4_like(newX@['maxCamber'].to('').magnitude*100,
newX0['camberLocation'].to('"') .magnitude*10,
newX0['tau'].to('") .magnitude*100)

afl.changeOrder(2)

newX0['Aupperl'] = (afl.upperCoefficients[0] + 1.0) * units.dimensionless

newX0['Aupper2'] = (afl.upperCoefficients[1] + 1.0) * units.dimensionless

newX0['Alowerl'] = (-1*afl.lowerCoefficients[0] + 1.0) * units.dimensionless

newX0['Alower2'] = (-1*afl.lowerCoefficients[1] + 1.0) * units.dimensionless

formulation.solverOptions.x0 = newX®

formulation.solverOptions.tau = 0.3

formulation.solverOptions.solver = 'cvxopt'

formulation.solverOptions.solveType = 'slcp'
formulation.solverOptions.relativeTolerance = le-5
formulation.solverOptions.baseStepSchedule = [1.0] * 15 + (1/np.linspace(1,300,300)*
formulation.solverOptions.progressFilename = None

formulation. solverOptions.debugOutput = True

rs = solve(formulation)

.6).tolist()

Save results as CAPS parameters
for vname in rs.variables.keys():
vl = rs.variables[vname].magnitude
ut = '{:C}'.format(rs.variables[vname].units)
capsVar = vl * pyCAPS.Unit(ut)
if vname in myProblem.parameter:
myProblem.parameter[vname].value = capsVar
else:
myProblem.parameter.create(vname, capsVar)

print(rs.result(10))

Geometric quantities from optimization result

Aupperl = rs.variables['Aupperl'].to('').magnitude - 1
Aupper2 = rs.variables['Aupper2'].to('') .magnitude - 1
Alowerl = -rs.variables['Alowerl'].to('').magnitude - 1
Alower2 = -rs.variables['Alower2'].to('').magnitude - 1
area = rs.variables['S'].to('m*2') .magnitude

aspect = rs.variables['AR'].to('") .magnitude

taper = rs.variables['q'].to('") .magnitude - 1

Fuel weight and drag from optimization result

fuelOut = rs.variables['W_fuel out'].to('N').magnitude
fuelRet = rs.variables['W_fuel ret'].to('N').magnitude
fuelTot = fuelOut + fuelRet

CDO = rs.variables['C_D_0'].to('').magnitude

D1 rs.variables['C_D_1"'].to('').magnitude

CD_avg (CDo + D) / 2

Update geometry in ESP
myProblem.geometry.despmtr["aupper"
myProblem.geometry.despmtr[“alower" value = [Alowerl, Alower2]
myProblem.geometry.despmtr[“area” value = area

J.value = [Aupperl, Aupper2]
15
1o
myProblem.geometry.despmtr[“aspect”].value = aspect
Js
.

myProblem.geometry.despmtr["taper"” value = taper
myProblem.geometry.cfgpmtr["view:MSES"].value = 0

myProblem.closePhase ()

36

'], [Alpha_p20_MSES[i],Re[i],Aupperl, Aupper2, Alowerl, Alower2],fm)]

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Appendix I: Phase 5. Kulfan4

import dill

import copy

import sys

import os

import numpy as np

pi = np.pi

import pyCAPS

from corsairlite.optimization.solve import solve

from corsairlite.optimization import Variable, RuntimeConstraint, Constant, Formulation
from corsairlite.core.data.standardAtmosphere import atm

from corsairlite import units

from corsairlite.analysis.models.geometry.airfoilThickness.kulfan import computeThickness
from corsairlite.core.dataTypes.kulfan import Kulfan

from fullModelKulfan import fullModel

import argparse

Setup and read command line options
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

Set up available commandline options
parser.add_argument ("-outLevel”, default=0, type=int, choices=[0, 1, 2], help="Set output verbosity")
args = parser.parse_args()

Get the pyCAPS Problem object

myProblem = pyCAPS.Problem("hoburg”,
capsFile=os.path. join("csm", "kulfan.csm"),
phaseName="Kulfan4"
phaseStart="FlowTrip",
phaseContinuation=True,
outLevel=args.outLevel)

myProblem. intentPhrase(["Increase geometry DOF with 4 parameter Kulfan airfoil"])

myProblem.geometry.cfgpmtr["view:MSES"].value = 1

myProblem.geometry.despmtr["nparams"].value = 4

Define optimization formulation

N_segments = 3

Constants

A_prop = Constant(name = "A_prop", value = 0.785, units

CDA® = Constant(name = "CDA®", value = 0.05, units =

C_Lmax = Constant(name = "C_Lmax", value = 1.5, units

e = Constant(name = "e", value = 0.95, units

eta_eng = Constant(name = "eta_eng", value = 0.35, units ",
eta_v = Constant(name = "eta_v", value = 0.85, units "y
£_wadd = Constant(name = "f_wadd", value = 2.0, units "y

g = Constant(name = "g", value = 9.81, units = "m/s*2",
h_fuel = Constant(name = "h_fuel", value = 46e6, units = "J/kg",
k_ew = Constant(name = "k_ew", value = 0.0372, units "N/WA(0.803)",
mu = Constant(name = "mu", value = atm.mu(3000%units.m), units = "kg/m/s",
N_lift = Constant(name = "N_lift", value = 6.0, units "y

r_h = Constant(name = "r_h", value = 0.75, units = "-",

rho = Constant(name = "rho", value = atm.rho(3000*units.m), units = "kg/m*3",
rho_cap = Constant (name "rho_cap", value 2700, units "kg/mA3",
rho_SL = Constant(name = "rho_SL", value = atm.rho(0*units.m), units = "kg/mr3",
rho_web = Constant(name = "rho_web", value = 2700, units = "kg/m*3",
sigma_max = Constant(name = "sigma_max", value = 250, units = "MPa",
sigma_max_shear = Constant(name = "sigma_max_shear", value = 167, units = "MPa",
w_bar = Constant(name = "w_bar", value = .5, units = "-",
W_fixed = Constant(name = "W_fixed", value = 14700, units

Vector Variables

for i in range(0,N_segments):

description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description
description

"Disk area of propeller")
"fuselage drag area")
"max CL with flaps down")

"Oswald efficiency factor")

"Engine Efficiency")

"Propeller Viscous Efficiency")

"Added Weight Fraction")
"Gravitational constant")

"Fuel Specific energy density")
"Constant for engine weight")

"viscosity of air")
"Ultimate Load Factor")

"Ratio of height at rear spar to maximum wing height")

"density of air")

"Density of wing cap material (aluminum)")
"density of air, sea level")

"Density of wing web material (aluminum)")
"Allowable tensile stress of aluminum")
"Allowable shear stress of aluminum")
"Ratio of spar box width to chord length")

"fixed weight")

Lift Coefficient, segment %d"%(i)))

V.append(Variable(name="V_%d"%(i), guess=1.0, units = "m/s", description="Velocity, segment %d"%(i)))
C_L.append(guess=1.0, units = 5 description=
C_D.append(guess=1.0, units = "", description="Drag Coefficient, segment %d"%(i)))

C_Dfuse.append(
C_Dp.append(
C_Di.append(

C_Dfuse_%d"%(i), guess=1.
C_Dp_%d"%(1), guess=1.
C_Di_%d"%(i), gues

descriptios
description=
descriptio

Fuselage Drag Coefficient, segment %d"%(i)))
Wing Profile Drag Coefficient, segment %d"%(i)))
Induced Drag Coefficient, segment %d"%(i)))

C_£f.append(C_f_%d"%(i), guess . description="Friction Coefficient, segment %d"%(i)))
T.append(Variable(name="T_%d"%(i), guess N description="Thrust, segment %d"%(i)))

W.append(Variable(name="W_%d"%(i), guess=1. description="Weight, segment %d"%(i)))

Re.append(Variable(name="Re_%d"%(i), guess=1le7, description="Reynolds Number, segment %d"%(i)))

eta_i_%d"%(i), guess=1.0, 9 descriptior
5 descriptio

5 descriptio

eta_i.append(Variable (nam
eta_prop.append(Variable(name="eta_prop_%d"%(i), guess=1.0,
eta_0.append(Variable(name="eta_0_%d"%(i), guess
z_bre.append(Variable(name="z_bre_%d"%(i), guess=1.0,

Free Variables

Inviscid Propeller Efficiency, segment %d"%(i)))
Propeller Efficiency, segment %d"%(i)))

Overall Efficiency, segment %d"%(i)))

, description="Breguet Range Factor, segment %d"%(i)))

AR = Variable(name = "AR", guess units description = "aspect ratio")

I_cap_bar = Variable(name guess units description = "Area moment of inertia of cap on 2D cross section, normalized by chord+4")
M_r_bar = Variable(name guess units description = "Root Bending unit per unit chord")

nu = Variable(name guess units description Placeholder, (1+lam_w+lam_w**2)/(1+lam_w)**2")
P = Variable(name guess units description Dummy Variable (1+2*lam_w)")

P_max = Variable(name guess units description = "Maximum Engine Power™)

q = Variable(name guess units description = "Dummy Variable (l+lam_w)")

R = Variable(name guess units description = "Single Segment range")

S = Variable(name guess units description = "total wing area")

t_cap_bar = Variable(name "t_cap_bar", guess units description = "Spar cap thickness per unit chord")

t_web_bar = Variable(name "t_web_bar", guess = .05, units description = "Spar web thickness per unit chord")

37

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

tau = Variable(name = "tau", guess description = "airfoil thickness to chord ratio™)
V_stall = Variable(name = "V_stall", guess description = "stall speed")

W_cap = Variable(name guess description = "Weight of Wing Spar Cap")
W_eng = Variable(name = "W_eng guess description = "Engine Weight")

W_fuel_out = Variable(name = , guess description = "Weight of fuel, outbound")
W_fuel_ret = Variable(name guess description = "Weight of fuel, return")

W_MTO = Variable(name guess description = "Maximum Takeoff Weight™)

W_pay = Variable(name guess description = "Payload Weight")

W_tilde = Variable(name guess description = "Dry Weight, no wing")

W_web = Variable(name guess description = "Weight of Wing Spar Shear Web")
W_wing = Variable(name guess description = "wing weight")

W_zfw = Variable(name guess description = "Zero Fuel Weight")

Add Kulfan variables

Aupperl Variable(name = "Aupperl", guess = 1.2, units = "-", description = "Kulfan coefficient + 1, upper surface mode 1")
Aupper2 Variable(name 1.3, i description = "Kulfan coefficient + 1, upper surface mode 2")
Aupper3 Variable(name 1.2, units -y description = "Kulfan coefficient + 1, upper surface mode 3")
Aupper4 Variable(name 1.3, units y description = "Kulfan coefficient + 1, upper surface mode 4")
Alowerl = Variable(name = "Alowerl 1.2, wunits = "-", description = "-Kulfan coefficient + 1, lower surface mode 1")
Alower2 = Variable(name = "Alower2", guess = 1.2, units description = "-Kulfan coefficient + 1, lower surface mode 2")
Alower3 = Variable(name = "Alower3 = 1.2, units description = "-Kulfan coefficient + 1, lower surface mode 3")
Alower4 = Variable(name = "Alower4", guess = 1.2, units description = "-Kulfan coefficient + 1, lower surface mode 4")
Alpha_p20_MSES = []
C_L_MSES = []
negCMpl = []
for i in range(0,N_segments):
C_L_MSES. append (Variable(name="C_L_MSES_%d"%(i), guess=1.0, units = "-", description="Lift Coefficient from MSES, segment %d"%(i)))
Alpha_p20_MSES.append(Variable(name="Alpha_p20_MSES_%d"%(i), guess=22.0, wunits = "deg", description="Angle of Attack + 20deg from MSES, segment %d"%(i)))
negCMp1. append(Variable(name="negCMpl_%d"%(i), guess=1.05, units = "-", description="Negative CM about 0.25c + 1, segment %d"%(i)))
objective = W_fuel out + W_fuel ret
constraints = []
#
SLF
#
for i in range(0,N_segments):
constraints += [W[i] “2 % CLL[i] * s]
constraints += [T[i] *2 % CD[i] * S]

constraints += [Re[i] .5/ (AR*#0.5 * mw)]
#
Landing
#
constraints += [
W_MTO == 0.5 * rho_SL * V_stal.
V_stall <= 38*units.m/units.s

S,

]

#

Sprint

#

constraints += [
P_max >= T[2] * V[2] / eta_®[2],
V[2] >= 150*units.m/units.s

]

#

Drag Model

#

for i in range(0,N_segments):
constraints += [C_Dfuse[i] == CDAO/S]
constraints += [C_Di[i] == C_L[i]**2/(np.pi * e * AR)]
constraints += [C_D[i] >= C_Dfuse[i] + C_Dp[i] + C_Di[i]]

#
Propulsive Efficiency
#
for i in range(0,N_segments):

constraints += [eta_0[i] == eta_eng * eta_prop[il]

constraints += [eta_prop[i] == eta_i[i] eta_v]

constraints += [4*eta_i[i] + T[i]*eta_i[i]**2 / (0.5 * rho * V[i]**

“ A_prop) <= 4]
#
Range
#
constraints += [R >= 5000 * units.km]
for i in range(0,N_segments-1):

constraints += [z_bre[i] == g * R * T[i] / (h_fuel * eta_O[i] * W[il])]
constraints += [W_fuel_out/W[0] >= z_bre[0] + z_bre[01%*2/2 + z_bre[01**3/6 + z_bre[0]**4/24]
constraints += [W_fuel_ret/W[1] >= z_bre[1] + z_bre[11%*2/2 + z_bre[1]**3/6 + z_bre[1]**4/24]
#
Weight
#
constraints += [

W_pay >= 500*units.kg * g,

W_tilde >= W_fixed + W_pay + W_eng,

W_zfw >= W_tilde + W_wing,

W_eng >= k_ew * P_max**0.803,

W_wing / f_wadd >= W_web + W_cap,

W[0] >= W_zfw + W_fuel_ret,

W_MTO >= W[0] + W_fuel_ out,

W[1] >= W_zfw,

w[2] w[oj

Wing Structure

oW oW

constraints += [

2%q >= 1 + p,

p>= 1.9,

M_r_bar == W_tilde * AR * p / 24,

0.92 * w_bar * tau * t_cap_bar**2 + I_cap_bar <= 0.92%%2 / 2 * w_bar * tau®*2 * t_cap_bar ,
N_lift * M_r_bar * AR * q**2 * tau / (S * I_cap_bar * sigma_max),
AR * W_tilde * N_lift * 2/ (tau * S * t_web_bar * sigma_max_shear),

* t_cap_bar *

W_web >= 8 * rho_web * g * r_h * tau * t_web_bar

38

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

tau <= 0.15,
q<=2

MSES Runtime Drag Model

oW W

for i in range(0,N_segments):
fm = fullModel()
fm.N = 4
fm.inputMode = 4
fm.outputMode = 3
fm.Mach = 0.2
fm.xTransition_Upper = 0.40
fm.xTransition_Lower = 0.65

fm.Coarse_Iteration = 50
fm.Fine_Iteration = 50
fm.problemObj = myProblem

constraints += [RuntimeConstraint

constraints += [C_L_MSES[i] == C_L[i]

constraints += [Alpha_p20_MSES[0] >=
constraints [Alpha_p20_MSES[1]
constraints += [Alpha_p20_MSES[0] <=
Alpha_p20_MSES[1]
Alpha_p20_MSES[2]
constraints += [Alpha_p20_MSES[0] >=

Alpha_p20_MSES[1] >

([C_Dp[i], C_L_MSES[i], negCMp1[il],['>="', '==', '=='],[Alpha_p20_MSES[i],Re[i],Aupperl, Aupper2, Aupper3, Aupper4,

for i in range(0,N_segments)]

Alpha_p26_MSES[1]]
Alpha_p26_MSES[2]]
26*units.deg ,
26*units.deg ,
20*units.deg]
20*units.deg ,
20*units.deg]

Alowerl, Alower2, Alower3, Alower4],fm)]

variableStack = [Aupperl, Aupper2, Aupper3, Aupper4, Alowerl, Alower2, Alower3, Alower4]
ct = computeThickness()

ct.N = 4

ct.inputMode = 2

constraints += [RuntimeConstraint([tau],['=='],variableStack,ct)]

constrain kulfan coefficients to reasonable values
for kulfanCoeff in variableStack:
constraints += [kulfanCoeff >= 1.0]

constraints += [Aupperl == Alowerl]
constraints += [Alowerl >= 1.18]
constraints

Aupper3 >
Alowerl
Aupper4
Aupperl + Alowerl >= 2.4

]
formulation = Formulation(objective, constraints)

bdc = [vr >= le-12 * vr.units for vr in formulation.variables_only]
formulation.constraints.extend(bdc)

Get initial guess from previous phase parameters
newX0 = {}
for vname in myProblem.parameter.keys():
vl = myProblem.parameter [vname] .value
if isinstance(vl, pyCAPS.Quantity):
vl = vl.value() * getattr(units, str(vl.unit()))
else:
vl = vl * units.dimensionless
newX0[vname] = vl

Set initial guesses for new Kulfan4 variables
afl = Kulfan()

afl.upperCoefficients = np.array([newX®['Aupperl'].magnitude-1, newX0['Aupper2'].magnitude-1]) * units.dimensionless
afl.lowerCoefficients = np.array([-1*newXO['Alowerl'].magnitude+l, -1*newXO['Alower2'].magnitude+1]) * units.dimensionless

afl.changeOrder(4)
newX0['Aupperl'] =
newX0['Aupper2'] =
newX0['Aupper3'] =
newX0['Aupperd'] =

(* units.dimensionless
(
(
C
newX0['Alowerl'] = (-
&
@
@

* units.dimensionless
* units.dimensionless
* units.dimensionless

afl.upperCoefficients[0]
afl.upperCoefficients[1] +
afl.upperCoefficients[2] +
afl.upperCoefficients[3] +

.

.lowerCoefficients[0] + units.dimensionless
newX0['Alower2'] = .lowerCoefficients[1] + units.dimensionless
newX0['Alower3'] = .lowerCoefficients[2] + units.dimensionless
newX0['Alower4'] = .lowerCoefficients[3] + * units.dimensionless

formulation.solverOptions.x0 = newX0

formulation.solverOptions.tau = 0.3

formulation.solverOptions.solver = 'cvxopt'

formulation.solverOptions.solveType = 'slcp'

formulation.solverOptions.relativeTolerance = le-5
formulation.solverOptions.baseStepSchedule = [1.0] * 15 + (1/np.linspace(l,100,100)**0.6)
formulation.solverOptions.progressFilename = None

formulation.solverOptions.debugOutput = True

rs = solve(formulation)

Save results as CAPS parameters
for vname in rs.variables.keys():
vl = rs.variables[vname].magnitude
ut = '{:C}"'.format(rs.variables[vname].units)
capsVar = vl * pyCAPS.Unit(ut)
if vname in myProblem.parameter:
myProblem.parameter[vname] .value = capsVar
else:
myProblem.parameter.create(vname, capsVar)

print(rs.result(10))

Geometric quantities from optimization result

Aupper1l rs.variables['Aupperl'].to('') .magnitude - 1
Aupper2 rs.variables['Aupper2'].to('') .magnitude - 1
Aupper3 rs.variables['Aupper3'].to('').magnitude - 1
Aupper4 rs.variables['Aupper4'].to('').magnitude - 1
Alowerl = -rs.variables['Alowerl'].to('').magnitude - 1

39

.tolist()

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Alower2 = -rs.variables['Alower2'].to('').magnitude -

Alower3 = -rs.variables['Alower3'].to('').magnitude
Alower4 = -rs.variables['Alower4'].to('').magnitude
area = rs.variables['S'].to('m*2") .magnitude

aspect = rs.variables['AR'].to('"') .magnitude

taper = rs.variables['q'].to('"') .magnitude - 1

Fuel weight and drag from optimization result

fuelOut = rs.variables['W_fuel out'].to('N').magnitude
fuelRet rs.variables['W_fuel _ret'].to('N').magnitude
fuelTot fuelOut + fuelRet

CDO = rs.variables['C_D_0'].to('").magnitude

CD1 = rs.variables['C_D_1'].to('').magnitude
CD_avg = (CDO + CD1) / 2

Update geometry in ESP
myProblem.geometry.despmtr["aupper”]
myProblem.geometry.despmtr["alower"].value
myProblem.geometry.despmtr["area"].value = area
myProblem.geometry.despmtr[“aspect”].value = aspect
]
"1

myProblem.geometry.despmtr["taper" .value = taper
myProblem.geometry.cfgpmtr["view:MSES"].value = 0

myProblem.closePhase()

1
1
1

.value = [Aupperl, Aupper2, Aupper3, Aupper4]
[Alowerl, Alower2, Alower3, Alower4]

40

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

Acknowledgements
The authors would like to thank Justin Gray for his input on the optimization formulation and Mark Drela for his

help with MSES.

This work was funded by the EnCAPS project, AFRL Contract FA8650-20-2-2002 — Enhanced Computational

Aircraft Prototype Syntheses, with Dr. Ryan Durscher as the Technical Monitor.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

References
Haimes, R., and Dannenhofter, J. F., “The engineering sketch pad: A solid-modeling, feature-based, web-enabled system for
building parametric geometry,” 2013. https://doi.org/10.2514/6.2013-3073,

Dannenhofter, J. F., “OpenCSM: An open-source constructive solid modeler for MDAO,” 2013. https://doi.org/10.2514/6.2013-
701.

Haimes, R., and Drela, M., “On The Construction of Aircraft Conceptual Geometry for High-Fidelity Analysis and Design,”
American Institute of Aeronautics and Astronautics, 2012. https://doi.org/10.2514/6.2012-683, URL https://arc.aiaa.org/do1/10|
2514/6.2012-683|

Galbraith, M. C., and Haimes, R., “A Parametric G1-continuous Rounded Wing Tip Treatment for Preliminary Aircraft
Design,” American Institute of Aeronautics and Astronautics, 2022. https://doi.org/10.2514/6.2022-1734, URL https:
/larc.aiaa.org/doi/10.2514/6.2022-1734,

Galbraith, M. C., Allmaras, S. R., and Darmofal, D. L., “A verification driven process for rapid development of CFD software,”
American Institute of Aeronautics and Astronautics Inc, AIAA, 2015. https://doi.org/10.2514/6.2015-0818|

Bhagat, N., and Alyanak, E., “Computational geometry for multifidelity and multidisciplinary analysis and optimization,”
American Institute of Aeronautics and Astronautics Inc., 2014. https://doi.org/10.2514/6.2014-0188.

Dannenhoffer, J., and Haimes, R., “Conservative Fitting for Multi-Disciplinary Analysis,” American Institute of Aeronautics
and Astronautics, 2014. https://doi.org/10.2514/6.2014-0294, URL https://arc.aiaa.org/do1/10.2514/6.2014-0294,

Dannenhoffer, J., and Haimes, R., “Generation of Multi-fidelity, Multi-discipline Air Vehicle Models with the Engineering
Sketch Pad,” American Institute of Aeronautics and Astronautics, 2016. https://doi.org/10.2514/6.2016-1925, URL https!
/larc.aiaa.org/doi/10.2514/6.2016-1925,

Bryson, D. E., Haimes, R., and Dannenhofter, J. F., “Toward the realization of a highly integrated, multidisciplinary, multifidelity
design environment,” American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. https://doi.org/10.2514/6.2019-2225,

Durscher, R., and Reedy, D., “Pycaps: A python interface to the computational aircraft prototype syntheses,” American Institute
of Aeronautics and Astronautics Inc, AIAA, 2019. https://doi.org/10.2514/6.2019-2226,.

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A., “OpenMDAO: An open-source framework for
multidisciplinary design, analysis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075-1104. https://doi.org/10.1007/s00158-019-02211-z|

Hoburg, W., and Abbeel, P., “Geometric Programming for Aircraft Design Optimization,” AIAA Journal, Vol. 52, No. 11, 2014,
pp. 2414-2426. https://do1.org/10.2514/1.J052732.

Drela, M., “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,” Low Reynolds Number Aerodynamics,
edited by T. J. Mueller, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989, pp. 1-12.

Drela, M., “A User’s Guide to MSES 3.05,”, Jul 2017. URL https://web.mit.edu/drela/Public/web/mses/mses.pdf.

Kulfan, B. M., “Universal Parametric Geometry Representation Method,” Journal of Aircraft, Vol. 45, No. 1, 2008, pp. 142-158.
https://doi.org/10.2514/1.29958.

Karcher, C. J., “Logspace Sequential Quadratic Programming for Design Optimization,” AIAA Journal, Vol. 60, No. 3, 2022,
pp. 1471-1481. https://doi.org/10.2514/1.J060950.

Karcher, C., and Haimes, R., “A Method of Sequential Log-Convex Programming for Engineering Design,” Optimization and
Engineering, 2022. https://doi.org/10.1007/s11081-022-09750-3.

Karcher, C., “An Optimization Centered Approach to Multifidelity Aircraft Design,” Ph.D. thesis, Massachusetts Institute of
Technology, 2022.

41

https://doi.org/10.2514/6.2013-3073
https://doi.org/10.2514/6.2013-701
https://doi.org/10.2514/6.2013-701
https://doi.org/10.2514/6.2012-683
https://arc.aiaa.org/doi/10.2514/6.2012-683
https://arc.aiaa.org/doi/10.2514/6.2012-683
https://doi.org/10.2514/6.2022-1734
https://arc.aiaa.org/doi/10.2514/6.2022-1734
https://arc.aiaa.org/doi/10.2514/6.2022-1734
https://doi.org/10.2514/6.2015-0818
https://doi.org/10.2514/6.2014-0188
https://doi.org/10.2514/6.2014-0294
https://arc.aiaa.org/doi/10.2514/6.2014-0294
https://doi.org/10.2514/6.2016-1925
https://arc.aiaa.org/doi/10.2514/6.2016-1925
https://arc.aiaa.org/doi/10.2514/6.2016-1925
https://doi.org/10.2514/6.2019-2225
https://doi.org/10.2514/6.2019-2226
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.2514/1.J052732
https://web.mit.edu/drela/Public/web/mses/mses.pdf
https://doi.org/10.2514/1.29958
https://doi.org/10.2514/1.J060950
https://doi.org/10.1007/s11081-022-09750-3

Downloaded by Marshall Galbraith on February 13, 2023 | http://arc.aiaa.org | DOI: 10.2514/6.2023-1162

[19] Palacios, F., Colonno, M. R., Aranake, A. C., Campos, A., Copeland, S. R., Economon, T. D., Lonkar, A. K., Lukaczyk,
T. W., Taylor, T. W., and Alonso, J. J., “Stanford University Unstructured (SU2): An open-source integrated computational
environment for multi-physics simulation and design,” 2013. |https://doi.org/10.2514/6.2013-287.

[20] Drela, M., “Pros & Cons of Airfoil Optimization,” Frontiers of Computational Fluid Dynamics 1998, World Scientific, 1998,
pp- 363-381. https://doi.org/10.1142/9789812815774_0019.

42

https://doi.org/10.2514/6.2013-287
https://doi.org/10.1142/9789812815774_0019

	Nomenclature
	Introduction
	The Aircraft Design Optimization Problem
	Phasing Workflow and Outline
	Design Phases
	Phase 1. GPSize: Solving the Original Geometric Program
	Phase Intent and Formulation
	Examining the Phase Result
	ESP Viewer

	Phase 2. MSES: Increasing Aerodynamic Model Fidelity with MSES
	Phase Intent and Formulation
	Setting Up the Problem in a Phase and Obtaining an Optimal Solution
	Examining the Phase Result

	Phase 3A. Camber: Adding New Geometry Variables
	Phase Intent and Formulation
	Examining the Phase Result

	Phase 3B. CMConstraint: Imposing a Constraint on Moment Coefficient
	Phase Intent and Formulation
	Examining the Phase Result

	Phase 4A: Using a Kulfan CST2 Representation of the Airfoil Geometry
	Phase Intent and Formulation
	Examining the Phase Result

	Phase 4B. FlowTrip: Tripping the Flow with Kulfan CST2
	Phase Intent and Formulation
	Examining the Phase Result

	Phase 5. Kulfan4: Increasing Geometry Fidelity to Kulfan CST4
	Phase Intent and Formulation
	Examining the Phase Result

	Post Design Discussion
	Conclusions

