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Geometric models are central to the analysis and design of complex configurations, such
as aerospace vehicles. As models expand to include more of the vehicle components, and
to include more than one discipline, they become very complex and hard to manage. This
makes understanding the linkages between components for a single discipline, or under-
standing the linkages between the various discipline analysis for a single component, very
difficult. This problem is compounded further when one realizes that the design process
involves a series of sub-models (for any component and/or discipline) that evolve over time,
in which the design is changed or fidelity is enhanced; these various versions must also be
managed.

Described herein is a new management scheme that directly attacks this problem. It
centers around a set of user-defined component files which define the geometric models of
the components that are needed by various analyses required for design. After describing
the basic ideas of the new management scheme, it is demonstrated on a transport config-
uration. Then tools that a user can employ to understand a model are described. All this
is brought together in an exercise that converts a legacy (dusty-deck) model into the new
management scheme.

The Engineering Sketch Pad (ESP)

Over the last decade, the Engineering Sketch Pad (ESP)1 has been adopted by many organizations as the
basis for the analysis of geometrically-complex configurations, such as aerospace vehicles. ESP is a geometry
creation and manipulation system whose goal is to support the analysis methods used during the design
process via the Computational Aerospace Prototype Syntheses (CAPS) program.2 ESP’s user interface runs
in any modern web browser and its calculations are executed in a server-based backend program.

ESP is a solid modeler, which means that the construction process guarantees that models are realizable
solids, with a watertight representation that is essential for mesh generators. Since some analyses require
representations in terms of sheets or wires, ESP can support those too.

ESP’s models are parametric, meaning that they are defined in terms of a feature tree (which can be
thought of as the “recipe” for how to construct the configuration) and a set of user-defined design parameters
that can be modified to generate families of designs.

Like all feature-based systems, ESP models start with the generation of primitives, which can either be
one of the standard primitives (box, sphere, cone, cylinder, torus), or can be grown from a sketch as either an
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extrusion, body of revolution, or a blend of a series of sketches. In addition, ESP allows users to create their
own primitives; for example, a series of airfoil generators are shipped with ESP. Primitives can be modified
via transformations (translate, rotate, scale, mirror) are by applying fillets, chamfers, or hollows. Finally,
bodies can be combined via boolean-like operators such as intersect, subtract, and union.

ESP maintains a set of global and local attributes on a configuration that are persistent through rebuilds.
This association is essential in the support of multi-fidelity models (wherein the attributes can be used
to associate conceptually-similar parts in the various models) and multi-disciplinary models (wherein the
attributes can be used to associate surface groups which share common loads and displacements). User-
specified attributes are also used to mark faces, edges, and nodes with information such as nominal grid
spacings or material properties.

A key difference from ESP and all other available modeling systems is that ESP allows a user to compute the
sensitivity of any part of a configuration with respect to any design parameter. Many of ESP’s commands
have been analytically “differentiated” or have used “operator overloading”, making the computation of
sensitivities efficient (since there is no need to re-generate the configuration) and accurate (since there is no
truncation error associated with “differencing”). A few feature types still require the use of finite-differenced
sensitivities, for which a new mapping technique is used to ensure robustness.

As mentioned above, ESP is extensible, in that users can add their own user-defined primitives (UDPs)
and user-defined functions (UDFs), both of which are written in C, C++, or FORTRAN and are compiled,
using either top-down or bottom-up process. UDPs/UDFs are coupled into ESP dynamically at run time.
Additionally, a user can write a user-defined component (UDC), which can be thought of as a “macro”.

ESP models are defined in .csm files, which are human readable ASCII files that use a CAD-traditional
stack-like process, but which also allows for looping (via patterns), logical (if/then) constructs, and error
recovery via thrown/caught signals.

ESP’s back-end (server) runs on a wide variety of modern compute platforms, including LINUX, MAC-OS,
and Windows. ESP’s user-interface (client) runs in most modern web browsers, including FireFox, Google
Chrome, Safari, and chromium Edge. ESP is an open-source project (using the LGPL 2.1 license) that is
distributed as source, and is available from acdl.mit.edu/ESP.

Multi-X Models (Views)

During the design of an aircraft, various coupled models are needed, representing different disciplines
(such as aerodynamics, structures, thermal, controls, . . . ) and different fidelities (such as in conceptual
design, preliminary design, and detailed design). These various models are called “views” herein. Although
these various views are distinct, there needs to be communication between them.

One of the strengths of ESP is that it can build and manage multiple “views” of a single configuration,
each tailored to a specific analysis method. To be effective, the views need to be driven by a single set of
Design Parameters. Likewise, it is important that the views are attributed so that “common” features could
be linked together.

The Table of Contents

With a multi-view model of a complex configuration, it is not uncommon that the script used to build and
manage the models can get large; the script(s) for the transport configuration that will be shown in next
section are more than 3000 lines long. Clearly writing a model that is understandable is a challenging task.

The first tool for managing such a large model is the creation of a table of contents of the various com-
ponents and associated views. Figure 1 shows the (automatically-created) table of contents for a transport
configuration. The various rows in the table correspond to the various components, while the columns show
the various available views:

• bem is a built-up element model, which is a structural model comprised of shells (as shown in Figure 2)
for use in a tool such as ASTROS3 or NASTRAN;4
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• cfdInviscid is a model of the outer mold line (OML) and a far-field box, with the control surfaces cut
so that there is putty filling the various gaps (as shown in Figure 3), for use in a tool such as SU25 or
FUN3D;6

• cfdViscous is a model of the outer mold line (OML) and a far-field box, with the control surfaces cut
so that the control surfaces fly in formation with the aircraft (giving the necessary gaps around the
controls) (as shown in Figure 4), for use in a tool such as SU2 or FUN3D;

• concept is view of the layout of the various components, which is useful while the model is being built
and to communicate with the various (human) stakeholders (as shown in Figures 5 and 6); and

• vlm contains the various “cuts” through the lifting surfaces that are needed for vortex-lattice calcula-
tions (as shown in Figure 7), for use in a tool such as AVL.7

Clearly with so many views and components, there needs to be a clear set of interfaces amongst the
models. In ESP, all these interfaces are managed with the use of attributes on the sub-model itself, or
any of its constitutive Nodes, Edges, or Faces. For example, with appropriate attributes, it is easy to
identify collections of Faces on two different discipline sub-models that can be used to transfer loads or
displacements between them. Attributes on various component sub-models can be used to define their
geometric interfaces. And because attributes in ESP are persistent, linking parts of the model over various
versions is done automatically.

Organizing with User-Defined Components (UDCs)

ESP has a macro-like capability, called used-defined components (UDCs), through which a large file can
be broken into pieces. The use of UDCs will be central to managing the complexity of the overall model.

High-level UDCs

The top level UDCs are used to control the overall process. For the transport, these include:

• transport.csm — definition of various “views”;

• transport init — definition of various components.

Next, there are UDC that are responsible for creating one of the views. These build specific geometric
models that are suitable for a specific analysis program. For the transport, these include:

• viewConcept — conceptual view, useful to understand interactions;

• viewVlm — for a vortex lattice method;

• viewCfdInviscid — outer-model line, including deflected controls and farfield boundaries for CFD
analyses;

• viewCfdViscous — outer-model line, including free-flying controls and farfield boundaries, for CFD
analyses; and

• viewBem — built-up element model, for use by structural solvers.

An example of the “concept” view is given in Figure 8. It simply gathers up the models (bodies) made
in other UDCs.
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UDCs for each Component

There are three types of UDCs in this category. This set is written for each component. For the wing
component of the transport, these include:

• Initialization

– wingPmtrs — definition of configuration parameters (CFGPMTRs) and design parameters (DESPMTRs)

– wingCalc — high-level values computed from the CFGPMTRs and DESPMTRs

• Primitives — lowest-level geometries

– wingOml — outer mold line

– wingWaffle — arrangement of spars and ribs

– wingHinges — location of hinge lines for control surfaces (such as ailerons and flaps)

• Models — geometric models, created by various combinations of the primitives

– wingVlm — cross-sectional cuts

– wingCfdInviscid — outer mold line, including deflected control surfaces

– wingCfdViscous — outer mold line, including free-flying control surfaces

– wingBem — built-up element model, built by intersecting a waffle with the wing shape

All of these UDCs are written as include-type UDCs, meaning that they act in a similar manner to
#include files in the C pre-processor. An example of wingPmtrs is given in Figure 9; it contains only
DIMENSION, CFGPMTR, and DESPMTR statements. An example of wingCalcs (see Figure 10) contains only
OUTPMTR and SET statements (for values that are useful by other components).

The rules for other component-related UDCs include that they are written as an include-type UDC
(INTERFACE . ALL), they should return immediately if the Body already exists, they should build all subor-
dinate models and primitives, they should put all Bodys into one STOREd Group (with the name matching
the model or primitive name), and they should leave the stack the same as it was upon entry. For the trans-
port, these are quite a bit more complex than the initialization UDCs. See Session 10 of the ESP training8

for complete details.
Component UDCs are added to the system by updating transport init.udc, as shown in Figure 11.

UDCs for each View

These UDCs are responsible for building or restoring the various needed Bodys, adding view-specific analysis
attributes, providing a name, and leaving all associated Bodys on the stack. An examples of this type of
UDC is given in Figures 12. View UDCs are incorporated by adding appropriate lines to transport.csm,
such as shown in Figure 13.

Building Up Configuration in Multiple Versions

Even with the above organization scheme, writing a very large model can be daunting. This is com-
pounded by the fact that one does not always know beforehand the details of the design. Therefore it has
been found that building up the configuration incrementally has been very effective.

For the transport configuration, the various versions that were built are:

1. add transport.csm, transport init.udc, wingPmtrs.udc, wingCalc.udc, wingOml.udc*, and viewConcept.udc*

2. add viewVlm.udc*

3. add wingHinges.udc*
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4. add viewCfdInviscid.udc*

5. add wingWaffle.udc* and wingBem.udc*, viewBem.udc*

6. add htailPmtrs.udc, htailCalc.udc, htailOml.udc*, htailHinges.udc*, and htailVlm.udc*

7. add htailWaffle.udc*, htailBem.udc*

8. add vtailPmtrs.udc, vtailCalc.udc, vtailOml.udc*, vtailHinges.udc*, and vtailVlm.udc*

9. add vtailWaffle.udc*, vtailBem.udc*

10. add fusePmtrs.udc, fuseCalc.udc, and fuseOml.udc*

11. add fuseIml.udc*, fuseWaffle.udc*, and fuseBem.udc*

12. add nacellePmtrs.udc, nacelleCalc.udc, nacelleOml.udc*, pylonPmtrs.udc, pylonCalc.udc, and
pylonOml.udc*

13. add payloadPmtrs.udc and payload.udc*

14. add viewCfdViscous.udc*

15. add CAPS Attributes to all view* files

16. add viewCantilever.udc*, viewSimplySupport.udc*, and viewSkins.udc*

In the above discussion, the figures were created from version 5 (wing only). The associated models are
shown in Figures 14 through 18.

Exploring a Model

With the generation of so many inter-connected models of so many components, it can be challenging
to understand a model. This can either happen when encountering the model for the first time or when
re-visiting a model that was created in the past. As a result, several new tracing tools have been recently
added to ESP.

The first new way of tracing is to view the hierarchy of the files used in the model; Figure 19 is an
example of such a call tree. The figure clearly shows that some UDCs are called several times from different
places.

The second new way of tracing is to look at the Bodys that are stored; This trace is generated by starting
from a user-defined pattern. An example of the wing-related Bodys built for the “concept” view of the
transport is shown in Figure 20.

The third new way of tracing is to focus on the various parameters that are shared by the various models
(in the various UDCs). Figure 21 shows the result of tracing all the wing-related parameters for the transport.

Finally, a user can trace through the attributes of a configuration, such as shown in Figure 22, which
shows the places where the gap attributes are defined.

Experience has shown that these new tracing tools can greatly facilitate the understanding of a complex
model such as the transport.

Case Study 2: Canard Fighter

Modern complex geometry representations require these entities to be structured for multiple-uses,
collaborative-friendly, and be able to update as the analysis and design process evolves. Thus, setting-
up the script based on specific guidelines is crucial to facilitate this ever changing and evolving need. To
explore the proposed management scheme in the effort, a legacy “dusty-deck” model was converted into this
new scheme.
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The “dusty-deck” representation was scripted during the first phase of the CAPS project and the outcomes
were published in9 and.10 As a summary, firstly, the legacy script was a single giant file with close to two
thousand lines of code. Secondly, at this phase, the interface to allow automated linking of geometry to
meshing and analysis was still in the development stage. So, the representation did not have the notion of
“analysis views”, described above. And thirdly, the build time to generate a water-tight representation was
around 10 minutes. The script is still part of the ESP test suite, to check that the legacy features still work,
as backward compatibility is one of the philosophical features of the ESP development. So, the goal of this
exercise was to incorporate the enhancements, features as well as conveniences to modernize the script status
and enable future improvements with ease.

At present, all the geometry features have been transferred into the new scheme. The management
scheme used for the transport configuration, described in the previous sections, was used as a template.
This greatly accelerated the process of conversion. This also allowed to re-use the attribution scheme as
much as possible, so the UDCs that generate analysis views required minimal modifications. Finally, the
template also enabled incorporating all the new scripting language features and geometry enhancements, as
the examples were readily available in the template and easily convertible from transport configuration to
update this suite of legacy scripts.

The current state of the organized script-suite is illustrated here in the Figures 23 through 25 with three
views: (a) Concept View: shows that the transfer of all the geometry features from the dusty-deck to the
modern scheme, (b) a complete VLM View: which was partially implemented in the original script, and
(c) a CFD View: that incorporates the improved attribution and geometry features that enable automated
mesh generation and CFD analysis (suitable for SU2, FUN3D or Cart3D11 solvers, as an example) workflow.
This updated representation gets build in around 2 minutes (compared to 10 minutes with old version of the
script, using the old version of ESP). This demonstrates the enhancements that have been implemented in
ESP, including updated version of OpenCASCADE. In summary, realizing the benefits of using the proposed
management scheme, the on-going effort is to convert all the previous scripts into this new scheme. This will
enable a consistent user experience, making these scripts easy to understand and update by script developers
as well as ESP users.

Summary

A new method for managing geometric models for multi-component, multi-disciplinary analysis and
design is described. It is based upon the use of user-defined components (UDCs) that are organized to
create the various sub-models that are needed. All of this in enabled by ESP, which supports multiple linked
models, persistent attribution, and sensitivities.
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Table of contents:

bem cfdInviscid cfdViscous concept vlm

fuse X X X X

htail X X X X X

nacelle X X X

payload X

pylon X X X

vtail X X X X X

wing X X X X X

Figure 1. Table of contents for the transport configuration

Figure 2. “bem” view of transport, with some transparent panels
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Figure 3. “cfdInviscid” view of transport, with farfield box removed

Figure 4. “cfdViscous”view of transport, with farfield box removed
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Figure 5. “Concept” view of transport, showing all primitives

Figure 6. “Concept” view of transport, with waffle off and transparent OML
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Figure 7. “vlm” view of transport

# .udc to make the Concept view

# written by John Dannenhoffer

INTERFACE . ALL

# make sure we have the necessary Bodys

IFTHEN COMP:wing NE 0

UDPRIM $/wingOml

UDPRIM $/wingWaffle

UDPRIM $/wingHinges

ENDIF

# now that we have all the Bodys, show them

IFTHEN COMP:wing NE 0

RESTORE wingOml

ATTRIBUTE _name $wingOml

RESTORE wingWaffle

ATTRIBUTE _name $wingWaffle

PATBEG ihinge wing:hinge.nrow*COMP:controls

RESTORE wingHinge ihinge

PATEND

ENDIF

END

Figure 8. Listing of viewConcept.udc

10

D
ow

nl
oa

de
d 

by
 M

IT
 L

ib
ra

ri
es

 o
n 

Se
pt

em
be

r 
18

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

35
99

 



# .udc to define the DESPMTRs and CFGPMTRs for a wing

# written by John Dannenhoffer

INTERFACE . ALL

# wing Oml

DESPMTR wing:area 4240 # area

DESPMTR wing:aspect 9.00 # aspect ratio

DESPMTR wing:taperi 0.48 # inboard taper ratio

DESPMTR wing:tapero 0.23 # outboard taper ratio

DESPMTR wing:sweep 35.0 # leading edge sweep

DESPMTR wing:dihedral 7.0 # dihedral

DESPMTR wing:break 0.37 # inboard/outboard

DESPMTR wing:alphar -1.0 # setting angle at root

DESPMTR wing:thickr 0.10 # thickness ratio at root

DESPMTR wing:camberr 0.08 # camber ratio at root

DESPMTR wing:alphab -3.0 # setting angle at break

DESPMTR wing:thickb 0.15 # thickness ratio at break

DESPMTR wing:camberb 0.04 # camber ratio at break

DESPMTR wing:alphat -8.0 # setting angle at tip

DESPMTR wing:thickt 0.08 # thickness ratio at tip

DESPMTR wing:cambert 0.01 # camber ratio at tip

DESPMTR wing:xroot 50.0 # xloc at root LE

DESPMTR wing:zroot -8.0 # zloc at root LE

# wing hinge lines

DIMENSION wing:hinge 6 9 1 # ymin ymax

# theta x/c y/span z/t x/c y/span z/t gap grp

DESPMTR wing:hinge "-10.0; 0.75; -0.98; 0.50; 0.75; -0.70; 0.50; 0.25; 1; \ left aileron

+10.0; 0.75; -0.69; 0.00; 0.75; -0.43; 0.00; 0.25; 2; \ left oflap

+15.0; 0.85; -0.33; 0.00; 0.90; -0.14; 0.00; 0.25; 3; \ left iflap

+15.0; 0.90; 0.14; 0.00; 0.85; 0.33; 0.00; 0.25; 3; \ rite iflap

+10.0; 0.75; 0.43; 0.00; 0.75; 0.69; 0.00; 0.25; 2; \ rite oflap

+10.0; 0.75; 0.70; 0.50; 0.75; 0.98; 0.50; 0.25; 4" # rite aileron

# wing structure

DESPMTR wing:spar1 0.20 # fraction of chord for LE spar

DESPMTR wing:spar2 0.70 # fraction of chord for TE spar

CFGPMTR wing:nrib1 2 # number of internal ribs in region 1

CFGPMTR wing:nrib2 4 # number of internal ribs in region 1

CFGPMTR wing:nrib3 12 # number of internal ribs in region 1

DESPMTR wing:waffleGap 1 # distance between fuselage and wing root rib

DESPMTR wing:dxnom 2.0 # nominal .bdf element side length

END

Figure 9. Listing of wingPmtrs.udc
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# .udc to calculate critial locations and dimensions for a wing

# written by John Dannenhoffer

INTERFACE . ALL

OUTPMTR wing:mac

OUTPMTR wing:span

SET wing:span sqrt(wing:aspect*wing:area)

SET wing:yroot 0

SET wing:ytip -wing:span/2

SET wing:xtip wing:xroot-wing:ytip*tand(wing:sweep)

SET wing:ztip wing:zroot-wing:ytip*tand(wing:dihedral)

SET wing:ybreak wing:ytip*wing:break

SET wing:xbreak wing:xroot-wing:ybreak*tand(wing:sweep)

SET wing:zbreak wing:zroot-wing:ybreak*tand(wing:dihedral)

SET wing:chordr wing:area/((wing:yroot-wing:ybreak)*(wing:taperi+1)\

+(wing:ybreak-wing:ytip)*wing:taperi*(wing:tapero+1))

SET wing:chordb wing:chordr*wing:taperi

SET wing:chordt wing:chordb*wing:tapero

SET wing:mac sqrt(wing:area/wing:aspect)

SET wing:sharpte SHARP_TE

END

Figure 10. Listing of wingcalcs.udc
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# .udc to set up DESPMTRs, CFGPMTRs, and critical locations and dimensions

# written by John Dannenhoffer

INTERFACE . ALL

# global tolerance

set EPS06 1.0e-6

# make a list of the components

CFGPMTR COMP:wing 1

# controls must be either 0=off or 1=on

CFGPMTR COMP:controls 1

IFTHEN COMP:controls NE 0 AND COMP:controls NE 1

MESSAGE COMP:controls_must_be_0_or_1

THROW -999

ENDIF

# define the DESPMTRs and CFGPMTRs

UDPRIM $/wingPmtrs

# put sharp trailing edges on all aero surfaces

SET SHARP_TE 1

# compute critical locations / dimensions

UDPRIM $/wingCalc

# CG location used to drive design parametres, not the actual CG

DIMENSION CG:ref 3 1

DESPMTR CG:ref "90; 0; 0"

END

Figure 11. Listing of transport init.udc
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# .udc to make the Bem

# written by John Dannenhoffer

INTERFACE . ALL

# make sure we have the wingBem

IFTHEN COMP:wing NE 0

UDPRIM $/wingBem

ENDIF

IFTHEN COMP:wing NE 0

RESTORE wingBem

ATTRIBUTE _name $wingBem

ENDIF

END

Figure 12. Listing of viewBem.udc
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# transport

# written by John Dannenhoffer

# define the views

CFGPMTR VIEW:Concept 1

CFGPMTR VIEW:Vlm 0

CFGPMTR VIEW:CfdInviscid 0

CFGPMTR VIEW:Bem 0

UDPRIM $/transport_init

IFTHEN VIEW:Concept NE 0

UDPRIM $/viewConcept

ENDIF

IFTHEN VIEW:Vlm NE 0

UDPRIM $/viewVlm

ENDIF

IFTHEN VIEW:CfdInviscid NE 0

UDPRIM $/viewCfdInviscid

ENDIF

IFTHEN VIEW:Bem NE 0

UDPRIM $/viewBem

ENDIF

END

Figure 13. Listing of transport.csm
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Figure 14. Concept view for version 5 of the transport (wing only), showing all primitives

Figure 15. Concept view for version 5 of the transport (wing only), with waffle off and transparent OML
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Figure 16. Vlm view for version 5 of the transport (wing only)

Figure 17. CfdInviscid view for version 5 of the transport (wing only)
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Figure 18. Bem view for version 05 of the transport (wing only), with some transparent panels
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Files used in previous build:

[[../data/BigModels/transport/version14/transport.csm:1]]

[[../data/BigModels/transport/version14/transport_init.udc:1]]

[[../data/BigModels/transport/version14/wingPmtrs.udc:1]]

[[../data/BigModels/transport/version14/fusePmtrs.udc:1]]

[[../data/BigModels/transport/version14/htailPmtrs.udc:1]]

[[../data/BigModels/transport/version14/vtailPmtrs.udc:1]]

[[../data/BigModels/transport/version14/pylonPmtrs.udc:1]]

[[../data/BigModels/transport/version14/nacellePmtrs.udc:1]]

[[../data/BigModels/transport/version14/payloadPmtrs.udc:1]]

[[../data/BigModels/transport/version14/wingCalc.udc:1]]

[[../data/BigModels/transport/version14/htailCalc.udc:1]]

[[../data/BigModels/transport/version14/vtailCalc.udc:1]]

[[../data/BigModels/transport/version14/fuseCalc.udc:1]]

[[../data/BigModels/transport/version14/pylonCalc.udc:1]]

[[../data/BigModels/transport/version14/nacelleCalc.udc:1]]

[[../data/BigModels/transport/version14/viewConcept.udc:1]]

[[../data/BigModels/transport/version14/wingOml.udc:1]]

[[../data/BigModels/transport/version14/wingWaffle.udc:1]]

[[../data/BigModels/transport/version14/wingOml.udc:1]]

[[../data/BigModels/transport/version14/wingHinges.udc:1]]

[[../data/BigModels/transport/version14/wingOml.udc:1]]

[[../data/BigModels/transport/version14/nacelleOml.udc:1]]

[[../data/BigModels/transport/version14/htailOml.udc:1]]

[[../data/BigModels/transport/version14/htailWaffle.udc:1]]

[[../data/BigModels/transport/version14/htailOml.udc:1]]

[[../data/BigModels/transport/version14/htailHinges.udc:1]]

[[../data/BigModels/transport/version14/htailOml.udc:1]]

[[../data/BigModels/transport/version14/vtailOml.udc:1]]

[[../data/BigModels/transport/version14/vtailWaffle.udc:1]]

[[../data/BigModels/transport/version14/vtailOml.udc:1]]

[[../data/BigModels/transport/version14/htailWaffle.udc:1]]

[[../data/BigModels/transport/version14/vtailHinges.udc:1]]

[[../data/BigModels/transport/version14/vtailOml.udc:1]]

[[../data/BigModels/transport/version14/fuseOml.udc:1]]

[[../data/BigModels/transport/version14/fuseWaffle.udc:1]]

[[../data/BigModels/transport/version14/fuseOml.udc:1]]

[[../data/BigModels/transport/version14/fuseIml.udc:1]]

[[../data/BigModels/transport/version14/wingWaffle.udc:1]]

[[../data/BigModels/transport/version14/htailWaffle.udc:1]]

[[../data/BigModels/transport/version14/payload.udc:1]]

[[../data/BigModels/transport/version14/fuseIml.udc:1]]

Figure 19. Call-tree for transport
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Trace of Storages matching "wing*":

wingOml 0

made in [[../data/BigModels/transport/version14/wingOml.udc:95]]

used in [[../data/BigModels/transport/version14/wingOml.udc:14]]

used in [[../data/BigModels/transport/version14/wingOml.udc:14]]

used in [[../data/BigModels/transport/version14/wingWaffle.udc:34]]

used in [[../data/BigModels/transport/version14/wingOml.udc:14]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:29]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:34]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:41]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:46]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:40]]

wingWaffle 0

made in [[../data/BigModels/transport/version14/wingWaffle.udc:153]]

used in [[../data/BigModels/transport/version14/wingWaffle.udc:12]]

used in [[../data/BigModels/transport/version14/wingWaffle.udc:12]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:42]]

wingHinge 1

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 2

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 3

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 4

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 5

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 6

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

Figure 20. Trace of wing-related Bodys created during the build of the “concept” view of the transport
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Trace of Storages matching "wing*":

wingOml 0

made in [[../data/BigModels/transport/version14/wingOml.udc:95]]

used in [[../data/BigModels/transport/version14/wingOml.udc:14]]

used in [[../data/BigModels/transport/version14/wingOml.udc:14]]

used in [[../data/BigModels/transport/version14/wingWaffle.udc:34]]

used in [[../data/BigModels/transport/version14/wingOml.udc:14]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:29]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:34]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:41]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:46]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:40]]

wingWaffle 0

made in [[../data/BigModels/transport/version14/wingWaffle.udc:153]]

used in [[../data/BigModels/transport/version14/wingWaffle.udc:12]]

used in [[../data/BigModels/transport/version14/wingWaffle.udc:12]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:42]]

wingHinge 1

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 2

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 3

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 4

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 5

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

wingHinge 6

made in [[../data/BigModels/transport/version14/wingHinges.udc:53]]

used in [[../data/BigModels/transport/version14/wingHinges.udc:17]]

used in [[../data/BigModels/transport/version14/viewConcept.udc:45]]

Figure 21. Trace of wing-related parameters associated with the transport

Trace of Attributes matching "gap":

"gap" applied to [[../data/BigModels/transport/version14/wingHinges.udc:54]]

"gap" applied to [[../data/BigModels/transport/version14/htailHinges.udc:54]]

"gap" applied to [[../data/BigModels/transport/version14/vtailHinges.udc:54]]

Figure 22. Trace of “gap” attribute for the transport

21

D
ow

nl
oa

de
d 

by
 M

IT
 L

ib
ra

ri
es

 o
n 

Se
pt

em
be

r 
18

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

35
99

 



Figure 23. Concept view for canard fighter

Figure 24. Vlm view for canard fighter
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Figure 25. CFD view for canard fighter
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