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This paper presents a method for local shape modification using free-form deformation
to morph parametric geometry. The goal is analysis driven shape design which combines
CAD-like parametric solid model geometry construction with free-form-like local deformation.
A free-form deformation box is created and the geometry inside the box is deformed, where any
analytic geometry inside the box which is not by default defined by a B-spline is converted to a
B-spline. The free-form deformation is then used to move the surface B-spline control point
net. This allows for the generation of smooth geometry, while keeping the number of degrees
of freedom manageable for the optimizer. This method is demonstrated using optimization
with the objective function minimizing the 𝐿2-norm difference between a morphed and target
shape. The set-up for a generalized geometric input is also presented, along with the computed
sensitivity calculations which are necessary for shape design driven by analysis.

I. Nomenclature

𝐴𝑖 = area of a triangle element in FFD grid
𝑚 = minimum area of triangle elements divided by sum of neighboring triangle elements normalized to one
𝜖 = integrated 𝐿2-norm difference
𝑛 = length of B-spline knot sequence
𝑝 = degree of B-spline
𝑠𝑖 = 𝐿2-norm error between two B-spline knots
Y 𝑗 = square error between two points on two B-splines at the same knot value
𝑡 𝑗 = fractional distance between two B-spline knot values
𝑤 𝑗 = weight of a coordinate 𝑐 𝑗 using Gaussian quadrature
ΔP = FFD control point perturbations

II. Introduction
Aerodynamic shape design is a continuously explored area of research. Solving a shape optimization problem using

Computational Fluid Dynamics (CFD) analysis involves many steps; including geometry parameterization, surface and
volume meshing, flow analysis, and the optimization itself. Often these steps may involve a number of different tools
and disparate codes, and successful execution relies on specific setup prerequisites and careful orchestration of all of
these. Consequently, extensive knowledge of the design problem and many tools involved is necessary, and often results
in a design process that is not practical in general.

Part of the reason for the large number of codes involved in the shape optimization process comes from the
geometric modelers used. The aerospace design community tends to develop custom in-house discrete, mesh-based
tools, and commercially available shape control systems (CAD-based and CAD-free) have drawbacks. One drawback of
CAD-based tools is, for proprietary reasons, they may hide geometric components necessary to compute values like
parametric sensitivities. Furthermore, customization may be limited with these tools, so re-parameterization of the
design before or during optimization may be necessary, which is time-consuming [1]. Alternatively, CAD-free tools
lack meaningful design parameters, such as sweep or aspect ratio. Instead, the design parameters are typically defined

∗Graduate Student, Computer Science and Engineering.
†Research Engineer, Department of Aeronautics & Astronautics, AIAA Senior member.
‡Principal Research Engineer, Department of Aeronautics & Astronautics, AIAA member.

1

D
ow

nl
oa

de
d 

by
 M

IT
 L

ib
ra

ri
es

 o
n 

Se
pt

em
be

r 
18

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

36
01

 

 AIAA AVIATION 2023 Forum 

 12-16 June 2023, San Diego, CA and Online 

 10.2514/6.2023-3601 

 Copyright © 2023 by Marlena C. Gomez, Marshall C. Galbraith, Robert Haimes. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA AVIATION Forum 



via Free-form Deformation (FFD) boxes, which allow for generic shape changes, but do not provide any further insight
into the parameter space [2, 3].

Engineering Sketch Pad (ESP) is a feature-based and parametric solid modeler [4]. The build process for a model
involves the use of standard primitives solids, applied features, Boolean operators, transformations, and user-defined
primitives and functions. The goal of the proposed work is to create a user-defined function within ESP for local
deformation and optimization of aerospace geometries.

In previous research, geometry defined by B-splines was locally deformed and optimized with analysis in ESP by
directly manipulating B-spline control points defining the geometry [5]. Although this work yielded promising results,
there were also issues, including the large number of degrees of freedom. Generally, even small shapes defined by
B-splines surfaces, like the rounded wingtip described in the paper, may be defined using significant number of control
points. With each control point serving as a design parameter, this results in more degrees of freedom than is ideal.
Additionally, the design parameters need to be cleverly constrained in order to maintain valid shapes. Specifically, the
control point locations were limited to only allow movement in the positive normal direction relative to the original
geometry surface. This restriction prevents the generation of self-intersecting geometry, but also limits the possible
shapes which can be generated by the design optimization process. Without this constraint, the optimization process
regularly generates self-intersecting geometry. An example of this is shown in Fig. 1, which is a self-intersecting
geometry generated for an optimization where each control point could move without restriction in the 𝑥, 𝑦, and
𝑧-directions.

Fig. 1 Self-intersecting geometry resulting from an optimization of a wingtip surface where the B-spline x, y,
and z control point locations served as independent design parameters.

Another issue observed previously was geometry generated during the optimization with undesirable “bumps” or
“oscillations”. For example, Fig. 2 shows two intermediate shapes (generated via an optimization where CFD analysis is
driving the B-spline surface deformation of a wingtip) with significant bumps. While the final wingtip surface from this
optimization was smooth, many intermediate geometries exhibited these type of “bumps”. This is an issue because it is
difficult for the flow server to converge on geometries like this, if it does, and the solver will spend a significant amount
of time analyzing this complicated shape. It is preferable to exclude geometries like this from the design space, so the
solver is not wasting time trying to find a solution for a shape which is “obviously” not optimal.
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Fig. 2 Intermediate shapes in an optimization of a wingtip surface using the Cart3D design framework, where
B-spline control points served as the design parameters.

Free-form deformation provides a way to address these concerns above [6, 7]. FFD is a technique for deforming
a solid geometric model by deforming the space of the model. This is accomplished by first embedding the model
in a FFD box defined by a tensor product trivariate B-spline (or Bernstein) polynomial [8] with a grid of control
points, and then moving the trivariate B-spline control points to warp the space.The B-spline FFD box must be of a
topologically higher dimension than the embedded geometry. For example, in order to morph a 1-dimensional curve in
2-dimensional Cartesian space, the FFD grid must be topologically 2-dimensional. FFD is extremely useful in that it
preserves the connectivity and continuity of the underlying geometry when deforming it. Historically, this has been
used frequently in a CAD-free manor to morphing mesh points in aerodynamic shape design [9]. However, deforming
a mesh in this way may cause significant distortion to the mesh elements, resulting in a need to reparameterize and
remesh the geometry, which is a time-consuming process. Furthermore, the final shape is a discrete mesh, rather than a
Boundary Representation (Brep) geometry which can be subsequently used for other analyses or manufacturing. In
order to preserve the Brep geometry, this effort applies to FFD to deform the B-spline control point net of B-spline
surfaces instead of the points from a discrete mesh of the Brep surface. Since the geometry remains a Brep throughout
the process with this approach, there is no need for the steps of reparameterizing or remeshing the geometry.

Using FFD to morph the geometry has a number of advantages over using the geometric B-spline control points
directly as the design parameters. Firstly, this gives the user explicit control over the number of design parameters, so
they can either decrease or increase the number of degrees of freedom as desired. Secondly, the movement of the control
points of the FFD box can be restricted in such a way as to prevent the underlying geometry from self-intersecting while
maintaining a large number of possible expressed shapes. So long as the Jacobian of the FFD mapping does not change
signs, the embedded solid body will not self-intersect. In other words, if the minimum Jacobian in the FFD box is
positive (and was positive initially), the embedded solid body will not be self-intersecting [10]. The remainder of the
paper includes a description of the method, the penalty function formulated to prevent the Jacobian of the FFD mapping
from becoming negative, and the design of the ESP the user-defined primitive are outlined in Section III. Sections IV and
V are demonstrations in 2 and 3-dimensions respectively of gradient based optimization where the objective function
minimizes the 𝐿2-norm difference between a target and morphing shape.

III. Morphing Underlying B-Spline Shape with FFD
To deform a B-spline curve or surface using FFD, first the FFD parametric coordinates, (𝑢, 𝑣), are computed for

each B-spline Cartesian, (𝑥, 𝑦), control point through a linear transformation. This forms a set of FFD parametric
coordinate and Cartesian B-spline control point pairs. When the control points of the FFD box are moved in Cartesian
space, the Cartesian coordinates of the B-spline control points are updated by computing new Cartesian coordinates via
a forward evaluation of the deformed FFD box using the corresponding FFD parametric coordinate. Figure 3 shows an
example of a B-spline curve encompassed by an FFD surface along with the control points for each shape. The cubic
B-spline curve is approximating a NACA 0012 airfoil using 103 control pints, and the FFD surface is a cubic B-spline
defined by a 4 × 4 net of control points.
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Fig. 3 NACA 0012 airfoil B-spline with 103 control points, and a grid of 16 FFD control points.

Figure 4 shows the effect on the airfoil geometry of moving one control point of the FFD grid. Because the FFD grid
is a cubic B-spline, the movement of the single control point has a non-local impact, and actually deforms the entire
airfoil in this example. As a result, this new geometry does not have a sharp bump, as happens when moving one of
the B-spline control points directly, as show in Fig. 5. The extent of the non-locality is controllable by increasing or
decreasing the polynomial degree of the FFD B-spline.

Fig. 4 Movement of one control point of an FFD grid, and the resulting new geometry. The yellow surface is the
original NACA 0012 airfoil, and the new airfoil after perturbation via FFD is shown as a red outline.

Fig. 5 Movement of one control point of the B-spline of the airfoil. The pink surface is the original NACA 0012
airfoil, and the new airfoil after moving one control point is shown as a red outline.

However, using FFD to morph the B-spline may still produce invalid self-intersecting geometry. As shown in Fig. 6,
where the degree of the FFD B-spline polynomial is reduced to one, moving one of the control points of the FFD grid
such that the FFD grid has a negative Jacobian results in an invalid curve with self-intersections. In order to prevent this,
the control point locations of the FFD grid must be restricted such that there are no negative Jacobians, and therefore, no
invalid geometry shapes generated. So long as the FFD surface does not have folds, then the embedded geometry will
also not have folds.
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Fig. 6 A control point in the FFD grid moved such that there is a negative Jacobian in the FFD grid, and the
resulting geometry is invalid.

A. Penalty Function
In order to prevent negative Jacobians in the FFD control point grid, any FFD control point must not move outside of

the bounds of its neighbors. One way to do this is to ensure the areas formed by an FFD control point and its neighboring
control points are always positive. For an interior control point in the FFD grid, there are four triangular areas formed by
neighboring control points. The triangle elements shown for an individual point, which implies element are overlapping
throughout the mesh. Initially, these areas are all equal and positive. To prevent these areas from becoming negative
during the optimization, a penalty term is added to the objective function. For the initial FFD grid, there is no penalty
value. During the optimization, a control point may move, and if it does so while maintaining a positive area for all four
of the triangles, then there still should not be any penalty value. However, when any one of the triangle areas becomes
negative, as seen for an interior control point in Fig. 7c, there should be a penalty. The penalty term should scale such
that, when added to the objective function, the optimizer will avoid negative triangular areas. Additionally, the penalty
term should scale such that larger negative areas are penalized more than smaller negative areas. This will drive the
optimizer towards the situation where all the triangular elements of the FFD grid have positive areas, and all the FFD
control points are therefore within the bounds of their neighbors.

(a) Penalty = 0 (b) Penalty = 0 (c) Penalty > 0

Fig. 7 Interior FFD control point.

The minimum area of the neighboring triangle elements divided by the summation of all neighboring triangle
element areas serves as a an indicator, 𝑚, for the penalty function. This indicator is positive when the center control
point lies within the neighbors, grows linearly, and is normalized to one for the initial FFD grid where all triangle
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elements have equivalent areas:

𝑚 =


4 · min(Ai )∑4

𝑖=1 𝐴𝑖

if interior control point

2 · min(Ai )∑2
𝑖=1 |𝐴𝑖 |+Y

∑2
𝑖=1 𝐴0

𝑖

else (boundary control point)
(1)

where 𝐴𝑖 is the area of a triangle neighboring the a given control point, 𝐴0
𝑖

are the triangle areas of the un-deformed
FFD, and Y is a small number (i.e. 10−11). The Y term in the denominator serves to prevent division by zero.

For control points on the boundary of the FFD grid, only two triangle areas are influenced by the movement of an
edge point, as shown in Fig. 8 and Fig. 9. Hence, the indicator 𝑚 only includes two triangles, and becomes negative
if one triangle area changes sign, as shown in Fig. 8b. However, as shown in Fig. 8c, it is possible for both of the
influenced triangle to have negative areas. In order for the indicator to change sign in this situation, the denominator for
boundary points is the sum of absolute values.

(a) Penalty = 0 (b) Penalty > 0 (c) Penalty > 0

Fig. 8 Boundary FFD control point.

(a) Penalty = 0 (b) Penalty = 0 (c) Penalty > 0

Fig. 9 Corner FFD control point.

For the gradient-based optimization, the penalty function needs to be differentiable, smooth, and monotonic. The
penalty function also needs to be zero when the indicator is positive, and grow in magnitude when the indicator is “close
to” or below zero. This behavior is readily accomplished with a switch-like function. Since gradient-based optimization
is used, the switch function, as well as the penalty function, must be continuous and differentiable. The complementary
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error function, shown in Fig. 10 is used for this purpose:

erfc(𝑥) = 2
√
𝜋

∫ ∞

𝑥

𝑒−𝑡
2
𝑑𝑡 (2)

Fig. 10 Complementary error function (erfc)

Combing the function for the variable 𝑚 and the complementary error function provides a framework for testing out
a number of constants to appropriately scale the penalty term, so enough of a penalty is introduced in comparison to
the objective function. A number of possible penalty functions formulated around the indicator 𝑚 were considered
and tested using the examples in Sections IV and V in order to get the desired behavior. Equation 3 shows the penalty
function formulated with the constants determined through testing, and Fig. 11 shows the penalty value versus the value
of 𝑚. The penalty function approximates zero until the argument 𝑚 starts to approach zero. The value of 𝑚 is zero when
any of the triangle elements have an area of zero, so in order to prevent negative triangle element areas, the penalty
value is introduced as the minimum element approaches zero. As the value of 𝑚 decreases past zero, indicating a larger
negative triangle element area, the penalty value increases. This penalty function, where the growth is linear past a
value of 𝑚 = −1, was found to work the best with the optimizer of the penalty functions tested.

𝑃(𝑚) = erfc(10 · m) · ( 1
4
− 1

2
· m) (3)

Fig. 11 Penalty Function
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Figure 12 shows the penalty functions contour values when an interior control point is moved while neighboring
point are fixed. The penalty function is zero as long as the middle control point remains within the neighboring triangles,
and grows if any of the triangle areas are negated. However, the penalty function is not differentiable due to the minimum
function used to compute 𝑚, which is only 𝐶0-continuous. As shown in Fig. 12, the sharp corners in the contours
indicate where the penalty function is 𝐶0-continuous.

Fig. 12 Colormapping of penalty function where the interior FFD control point is moved to that location, and
the outer frame of control points are fixed.

(a) 𝛼 = 10 (b) 𝛼 = 1000

Fig. 13 Colormapping of the penalty value when moving an interior FFD control point, using the smooth
minimum function.

To resolve this issue, a smooth minimum function, which is a differentiable approximation of the minimum function,
is used, as defined in Eq. 4 [11]. As illustrated in the plot in Fig. 13a, there are no sharp corners in the plot, which shows
the function is continuous and differentiable. The variable 𝛼 in the smooth minimum function controls the function
approximation, a higher value of 𝛼 results in sharper corners, as shown with Fig. 13b. It is more difficult to tell that the
function is differentiable at the corners visually, but the smooth minimum function is still differentiable for any value of
𝛼. For the optimization results shown, the penalty function uses 𝛼 = 1000.
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smoothmin(A0,A1) =


𝐴0 − log(1+exp(−𝛼∗(𝐴1−𝐴0 ) ) )

𝛼
if 𝐴0 < 𝐴1

𝐴1 − log(1+exp(−𝛼∗(𝐴0−𝐴1 ) ) )
𝛼

else
(4)

B. ESP User-Defined Functions
The goal of this work is to incorporate the method of shape control defined above into a user-defined function (UDF)

in ESP. This allows a user to define an FFD box, with a desired number of control points and spline degree, around any
model they wish to morph. Additionally, the UDF provides the sensitivities required for optimization, so it can be used
in a design optimization loop. The UDF requires an input model for the body to be morphed, for example, the geometry
shown in Fig. 14 where a hemisphere joined with a cylinder.

Notably, none of the underlying geometry used to construct the Hemisphere-Cylinder are B-splines. Hence, before
this geometry can be morphed, the appropriate geometric components of the geometry must be converted to B-splines.
This results in a two-step process implemented with two UDFs: a conversion UDF and a morphing UDF. The process
is broken into two UDF’s because, during an optimization, the UDF which morphs the geometry is called each
design iteration, but the conversion to B-splines of the model only needs to occur once. Hence, the conversion UDF
accomplishes the B-spline conversion, and the output model from the conversion UDF is the input model for the
morphing UDF.

Fig. 14 Hemisphere-Cylinder Body.

Both UDFs take as input the body to be morphed and an FFD box body, which is created with the desired dimensions
using the BOX primitive in ESP. The FFD box may either encompass some or all of the geometry, as shown in Fig. 15.
The conversion UDF converts any surfaces and edges of the morphing body inside the FFD box to B-splines. This UDF
uses the intersection between the two bodies to determine which parts of the model are inside the FFD box, and then
converts only the relevant geometric entities to B-splines using the EGADS framework in ESP. This converted body is the
input to the second morphing UDF.

The FFD box for the morphing UDF must be attributed in the ESP script to have the desired number of control
points and degree for the FFD splines in the 𝑥, 𝑦, and 𝑧-directions. Figure 16 shows the FFD box and a user specified
number of control points for the box. The morphing UDF takes in a list of design parameter values which correspond
to the (𝑥, 𝑦, 𝑧) perturbation of the FFD control points. The user can manipulate these values to control and shape the
geometry the FFD box encompasses. Figure 17 shows two possible deformations of the Hemisphere-Cylinder body by
moving select control points in the FFD box. Using perturbations to deform the FFD box simplifies setting constraints
on various control points in an optimization statement.
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Fig. 15 Body to be morphed and FFD box.

Fig. 16 Body to be morphed and FFD box points.
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Fig. 17 Example of morphed bodies.

For gradient-based optimization, the sensitivities of the tessellation must be computed with respect to the design
parameters, which for the FFD framework is the perturbation values of the FFD control points. These are computed for
the FFD box control points using operator overloaded automatic differentiation [12]. Figure 18 depicts the sensitivities
for the three components of a single FFD control point.

(a) X (b) Y (c) Z

Fig. 18 Sensitivities of an FFD box control point in the 𝑥, 𝑦, and 𝑧-directions.

The implementation of the analytic sensitivities computed using operator overloaded automatic differentiation are
verified with a comparison to finite differences. The error between the analytic and finite difference sensitivities for
two FFD control points are shown in Fig. 19 for a range of finite difference step sizes. The error is decaying at the
anticipated 1st-order rate; consistent with the order of accuracy of the finite difference scheme. This is reasonable
verification that the analytic sensitivities are correctly implemented.
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Fig. 19 Error of sensitivities using operator overloaded automatic differentiation for a number of control points.
.

IV. Optimization in 2D

A. 2D 𝐿2-difference Minimization Examples
The results from the first case described in Section II of Ref. [5] are reproduced here using FFD to transform the

underlying B-spline geometry. This case morphs a B-spline from an initial NACA 0012 airfoil shape to a NACA 8416
shape using the NLopt optimizer with the LBFGS algorithm [13, 14].

In order to do this, the B-splines for the airfoils are created using the EGADS framework in ESP [15] and the NACA
4-series equations. The starting airfoil B-spline is fitted to the shape of a NACA 0012 airfoil and the target airfoil
is fitted to the shape of a NACA 8416 airfoil. The last coefficient of the NACA 4-series equations is changed from
−0.1015 to −0.1036 to produce airfoils with a sharp trailing edge [16]. The B-spline curve defining each of the two
airfoils is made up of 103 control points. Figure 20 shows the two airfoil B-splines.

(a) NACA 0012 (b) NACA 8416

Fig. 20 The starting and target airfoil B-splines.

A cubic B-spline square FFD surface that encompasses the space of the airfoil, which is defined by 16 control
points, is also created as shown in Fig. 3. Perturbations to the FFD control points serve as the design parameters in the
optimization. Since each control point can move in 𝑥 and 𝑦, it follows there are 16 · 2 = 32 degrees of freedom. This is
a significant reduction compared to the 103 B-spline control points which serve as design parameters in Ref. [5], which
is 206 degrees of freedom.

As in the case from Ref. [5], the objective function is the 𝐿2-norm difference between a morphing B-spline and a
target B-spline. To compute the total 𝐿2-norm error, 𝜖 , over a knot sequence of length 𝑛 of a B-spline with degree 𝑝 is:

𝜖 =

√√√√𝑛−𝑝−1∑︁
𝑖=𝑝+1

𝑠𝑖 , (5)
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The 𝐿2-norm error between two knot values, 𝑠𝑖 is defined as:

𝑠𝑖 =

3∑︁
𝑗=0

Y 𝑗 . (6)

The square error of the two points (𝑥0, 𝑦0) of the morphing B-Spline and (𝑥1, 𝑦1) of the target B-spline at the knot value
𝑡 𝑗 are multiplied by the size of the interval to calculate Y 𝑗 :

Y 𝑗 = 2𝑤 𝑗 (𝑡𝑖+1 − 𝑡𝑖) [(𝑥0 − 𝑥1)2 + (𝑦0 − 𝑦1)2], 𝑗 ∈ [0, 3] (7)

The knot value 𝑡 𝑗 represents the fractional distance between two knots 𝑡𝑖 and 𝑡𝑖+1:

𝑡 𝑗 = 𝑐 𝑗 (𝑡𝑖+1 − 𝑡𝑖) + 𝑡𝑖 , 𝑗 ∈ [0, 3] (8)

The 𝑤 𝑗 and 𝑐 𝑗 values are the weights and coordinates for a Gaussian quadrature rule, which approximates an integral as:∫ 1

0
𝑓 (𝑥)𝑑𝑥 ≈

𝑛∑︁
𝑖=1

𝑤𝑖 𝑓 (𝑥(𝑐𝑖)). (9)

Both the morphing and target airfoils shapes are cubic B-splines, so the polynomial which results from the square
difference calculation has a degree of six. A 4-point Gaussian quadrature, with values shown in Table 1, integrates the
𝐿2-norm exactly, since the 𝑝-point Gaussian quadrature rule integrates an exact result for polynomials of degrees less
than 2𝑝 − 1.

Table 1 4-point Gaussian Quadrature.

Index ( 𝑗) Coordinate (𝑐 𝑗 ) Weight (𝑤 𝑗 )

0 1
2

√︂
3
7 − 2

7

√︃
6
5

1
2

18+
√

30
36

1 − 1
2

√︂
3
7 − 2

7

√︃
6
5

1
2

18+
√

30
36

2 1
2

√︂
3
7 + 2

7

√︃
6
5

1
2

18−
√

30
36

3 − 1
2

√︂
3
7 + 2

7

√︃
6
5

1
2

18−
√

30
36

Adding the penalty function in Eq. 3 to Eq. 5 give the unconstrained optimization statement:

minimize
ΔP

𝜖 (ΔP) + 𝑃(𝑚(ΔP)) (10)

where ΔP is the set of control point perturbations that deform the FFD B-spline. In order to use gradient-based
optimization, the derivative of the objective function is computed with respect to the ΔP0

𝑖
values grid using operator

overloaded automatic differentiation [12] for both the 𝐿2-norm error and penalty functions, and the derivatives are
verified using finite difference.

Two cases of this optimization are shown with different numbers of FFD grid control points for comparison. The
FFD box is made up of cubic B-Splines, and the control points of the FFD grid are evenly distributed in the 𝑥 and 𝑦

directions. The initial NACA 0012 airfoil B-spline is defined in space from 𝑥 = 0 to 𝑥 = 1.
In the first case shown in Fig. 21, the FFD box has a 4 by 4 grid of control points, which is the minimum number

possible using cubic B-splines, and, hence, the optimization has 4 × 4 × 2 = 32 degrees of freedom. The FFD surface is
defined in the Cartesian range [−0.1, 1.1] × [−0.15, 0.15]. This optimization completed after 244 objective function
iterations, with a final objective function value of 4.0 × 10−7. The optimizer terminated when the difference between
the value of subsequent objective function evaluations was less than or equal to 1 × 10−17. Despite a small number
of degrees of freedom in the optimization, the 𝐿2-norm difference between the morphing and target airfoil shapes is
remarkably small.
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(a) Initial (b) Final
X-range [-0.1, 1.1]
Y-range [-0.15, 0.15]

Degrees of Freedom 32
Number of Iterations 244

Best Objective Function Value 4.0 × 10−7

(c) Summary of the optimization

Fig. 21 A 4 by 4 cubic FFD grid optimization. The FFD grid surface geometry is in pink and the control point
locations are the small black squares.

In the second case, shown in Fig. 22, the number of control points defining the FFD grid is increased such that
there are 7 control points in the 𝑥-direction and 5 control points in the 𝑦-direction. There are therefore, 7 × 5 × 2 = 70
degrees of freedom in the optimization. The FFD surface is defined by the same Cartesian range as in the first case,
[−0.1, 1.1] × [−0.15, 0.15]. This optimization completed after 682 objective function iterations. Since the number of
degrees of freedom increased in comparison to the previous case, a larger number of objective function iterations is
expected. However, the increased number of degrees of freedom also allows for about an order of magnitude further
reduction in the objective function relative to the first case.

(a) Initial (b) Final
X-range [-0.1, 1.1]
Y-range [-0.15, 0.15]

Degrees of Freedom 70
Number of Iterations 682

Best Objective Function Value 1.2 × 10−8

(c) Summary of the optimization

Fig. 22 A 7 by 5 cubic FFD grid optimization. The FFD grid surface geometry is in pink and the control point
locations are the small black squares.

Figure 23 shows the convergence history for the optimization case above with the 7 by 5 FFD control point grid.
This shows that most of the optimizations iterations are actually used trying to lower the objective function from ∼10−7

to ∼10−8. Assuming an objective of ∼10−7 is acceptable, the optimization would terminate in ∼20 iterations. This
shows the power of gradient based optimizations to rapidly converge.
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Fig. 23 Objective Function Convergence History

The results indicate this method of using FFD to perturb the control points of an underlying B-spline is accurate,
while reducing the number of degrees of freedom when compared to using the B-spline control points themselves as
design parameters. In fact, even using the minimum number of control points, as used in the cubic FFD box case shown
in Fig. 21 where there were 16 total control points, this method is highly flexible in morphing a B-spline to accurately
match a target shape.

V. Optimization in 3D

A. Penalty Function
In 3-dimensions, the same penalty function and constants can be used, but instead of computing triangle areas

formed by neighboring control points of the FFD grid, the FFD elements are tetrahedron volumes.

B. 3D 𝐿2-difference Minimization Examples
To verify the FFD method of shape design in 3-dimensions, the same optimization is performed using NLopt, where

the objective function is a 3-dimensional 𝐿2-norm difference with the addition of the penalty function. However, instead
of an airfoil, the geometry optimized is a wingtip. For this case, a B-spline surface defining the wingtip of a NACA 0012
airfoil rectangular wing is made using the ESP blend function [17]. Figure 24 depicts the initial and target wingtips.
The wingtip is defined by 25 control points in the vertical direction, and 47 control points in the chord length direction,
which is 1175 control points in total (i.e. 3525 degrees of freedom).

(a) Initial geometry for the optimization, which is a wingtip
of radius one, shown with the control points defining it.

(b) Target geometry of the optimization, which is a wingtip
of radius two.

Fig. 24 Wingtips used in optimization.

The FFD box encompasses only the wingtip surface. The outer frame of control points of the FFD box are fixed, so
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only the wingtip surface is moved during the optimization, and this surface does not separate from the rest of the wing.
The FFD grid has 8 control points in the 𝑥-direction, 5 control points in the 𝑦-direction, and 4 control points in the
𝑧-direction (which is the spanwise direction), as shown in Fig. 25a. The FFD box is made of linear B-splines, instead of
the cubic B-splines used previously, and the final shape along with a summary of this optimizations is shown in Fig. 25.
The optimization completes in 112 iterations, with a best objective function value of 9.6 × 10−6.

(a) Initial (b) Final
X-range [-0.25, 1.25]
Y-range [-0.17, 0.17]
Z-range [-0.01, 0.5]

Degrees of Freedom 480
Number of Iterations 112

Best Objective Function Value 9.6 × 10−6

(c) Summary of the optimization

Fig. 25 NLopt wingtip optimization.

VI. Conclusion
A method of using free-form deformation to morph underlying B-spline of Brep geometry is presented. The

method decreases the number of degrees of freedom in optimization when compared to directly manipulating the
B-spline control point net, while allowing for a broader range of possible shapes. Self-intersections of geometry are
prevented by formulating a penalty function which serves to prevent folds in the FFD control point net, and thus the
underlying B-spline control point net. A two-step process of user-defined functions in the ESP framework generalizes
the technique to any input body. The first UDF converts the necessary surfaces and edges to B-splines, and the second
UDF step morphs the geometry and provides the sensitivities needed for optimization. The method is demonstrated on
optimization cases in 2D and 3D which minimized the 𝐿2-norm difference between a morphed and target shape.

Future work will use the generalized UDF functions to solve shape optimization problems driven with CFD analysis.
The UDF can be connected with CFD analysis in either the Cart3D design framework, or using CAPS in ESP combined
with an optimizer like OpenMDAO. Each design iteration the optimizer updates the design parameters, which are inputs
to the UDF, and the UDF outputs the morphed geometry with tessellation sensitivities. This morphed geometry can
then go through the analysis framework and optimization algorithm to complete the design cycle.
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