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The Engineering Sketch Pad (ESP) is a CAD-like system for the generation of geometric
models for the analysis and design of complex configurations, such as aircraft. It is a
feature-based, parametric solid modeler, that is freely available. A typical use of ESP is
to generate the various views of a configuration that are required for multi-fidelity and
multi-disciplinary models; these various views are typically linked to each other via ESP’s
rich attribution that are applied to the entities in the boundary representations. A unique
feature of ESP is that the geometry creation process has been fully differentiated, so that
one knows the sensitivity of every part of the configuration with respect to the user-defined
design parameters.

Since its introduction in 2013, ESP has attracted a large user base of over 1000 users
in more than 50 organizations and is used as the embedded geometry system in several
mesh generation and analysis systems. Many of ESP’s enhancements, such as a collaboration
environment and its integration with the Computational Aerospace Prototype Syntheses
(CAPS) system have been documented elsewhere; this paper provides an overview of those
enhancements in one place.

The Engineering Sketch Pad (ESP)

Over the last decade, the Engineering Sketch Pad (ESP)1 has been adopted by many organizations as the
basis for the analysis of geometrically-complex configurations, such as aerospace vehicles. ESP is a geometry
creation and manipulation system whose goal is to support the analysis methods used during the design
process via the Computational Aerospace Prototype Syntheses (CAPS) program.2,3 ESP’s user interface
runs in any modern web browser and its calculations are executed in a server-based backend program.

ESP is a solid modeler, which means that the construction process guarantees that models are realizable
solids, with a watertight representation that is essential for mesh generators. Since some analyses require
representations in terms of sheets or wires, ESP can support those too.

ESP’s models are parametric, meaning that they are defined in terms of a feature tree (which can be
thought of as the “recipe” for how to construct the configuration) and a set of user-defined design parameters
that can be modified to generate families of designs.

Like all feature-based systems, ESP models start with the generation of primitives, which can either be
one of the standard primitives (box, sphere, cone, cylinder, torus), or can be grown from a sketch as either
an extrusion, body of revolution, or a blend of a series of sketches. In addition, ESP allows users to create
their own primitives; for example, a series of airfoil generators are shipped with ESP. Primitives can be
modified via transformations (translate, rotate, scale, mirror) and can have features such as fillets, chamfers,
and hollows applied to them. Finally, bodies can be combined via boolean-like operators such as intersect,
subtract, and union.

ESP maintains a set of global and local attributes on a configuration that are persistent through rebuilds.
This association is essential in the support of multi-fidelity models (wherein the attributes can be used

∗Associate Professor, Mechanical and Aerospace Engineering, AIAA Associate Fellow.

1

D
ow

nl
oa

de
d 

by
 M

IT
 L

ib
ra

ri
es

 o
n 

Ja
nu

ar
y 

22
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
13

15
 

 AIAA SCITECH 2024 Forum 

 8-12 January 2024, Orlando, FL 

 10.2514/6.2024-1315 

 Copyright © 2024 by John F. Dannenhoffer, III. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA SciTech Forum 



to associate conceptually-similar parts in the various models) and multi-disciplinary models (wherein the
attributes can be used to associate surface groups which share common loads and displacements). User-
specified attributes are also used to mark faces and edges with information such as nominal grid spacings,
material properties, or boundary conditions.

A key difference from ESP and all other available modeling systems is the ESP allows a user to compute the
sensitivity of any part of a configuration with respect to any design parameter. Many of ESP’s commands
have been analytically “differentiated” or have used “operator overloading”, making the computation of
sensitivities efficient (since there is no need to re-generate the configuration) and accurate (since there is no
truncation error associated with “differencing”). A few feature types still require the use of finite-differenced
sensitivities, for which a mapping technique is used to ensure robustness.

As mentioned above, ESP is extensible, in that users can add their own user-defined primitives (UDPs) and
user-defined functions (UDFs), both of which are written in C, C++, or FORTRAN and are compiled, using
either a top-down or a bottom-up build process (or both). UDPs/UDFs are coupled into ESP dynamically
at run time, meaning that organizations can encode their own definitions into ESP, and the UDP will be
dynamically loaded at run time. Additionally, a user can write a user-defined component (UDC), which can
be thought of as a “macro”.

ESP models are defined in .csm files, which are human readable ASCII files that use a CAD-traditional
stack-like process, but which also allows for looping (via patterns), logical (if/then) constructs, and error
recovery via thrown/caught signals.

ESP’s back-end (server) runs on a wide variety of modern compute platforms, including Windows, Linux,
and MacOS. The server also allows for the addition of various tools, as described in the ESP extensions
section.

ESP’s user-interface (client) runs in most modern web browsers, including FireFox, Google Chrome, Safari,
and chromium Edge.

ESP is an open-source project (using the LGPL 2.1 license) that is distributed as source, and is available
from acdl.mit.edu/ESP.

ESP’s Architecture

ESP has been developed in a multi-layered way, with clear definitions of the application programming
interface (API) that is used to communicate with it. The layers are (starting at the bottom):

• OpenCASCADE4 — this layer, which was developed by the OpenCASCADE Consortium, provides
the geometric primitives and produces the Boundary representation (Brep);

• EGADS5 — this layer provides an easy-to-use interface to OpenCASCADE and adds two very im-
portant capabilities, namely a rich, persistent attribution scheme, and a watertight tessellation (which
can either be used to visualize the configuration or as the basis for solver-specific mesh generation).
There is an evaluation-only version of EGADS, called EGADSlite,6 which has a small memory footprint
and which can easily be distributed through a high-performance computing (HCP) system;

• OpenCSM7 — this layer adds the mechanisms necessary for feature-based parametric design, namely
user-definable design parameters and a feature tree (which could be thought of as the “build recipe”).
This layer also adds sensitivities to compute the change in any part of the configuration with respect to
any design parameter. Such sensitivities are essential in order to perform optimal design via adjoints.

• serveESP — this layer is the system driver, responsible for translating user actions into calls to either
OpenCSM or EGADS. In addition, this layer generates the graphical objects that can be displayed to the
user.

• ESP — this layer controls the browser through which the user interacts. It also contains a sketcher,
which allows users to interactively generate constrained sketches.
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The bottom four layers (OpenCASCADE, EGADS, OpenCSM, and serveESP) run on a server, which can be
either on Windows, Linux, or MacOS. Most of this is software is written in the C language, although there
are a few parts of the program that are written in C++ or FORTRAN.

The top layer (ESP) runs on any modern web-browser (Google Chrome, Firefox, Safari, or chromium
Edge) and is written largely in Javascript.

The interaction between the server and browser is handled via messaging, which includes both commands
as well as the graphical representations.

Creating Geometry in ESP

Like all CAD systems, ESP can generate the BOX, SPHERE, CYLINDER, CONE, and TORUS standard
primitives. In addition, ESP allows uses to create a cross-section (which is typically planar, but need not
be) and then creates a solid body by EXTRUDE-ing, REVOLVE-ing (around an arbitrary axis), or RULE-
ing/BLENDing a series of cross-sections. The difference between RULE and BLEND is that RULE does
linear interpolations between the cross-sections, whereas BLEND creates a cubic spline. BLEND’s cubic
spline is by definition curvature-continuous (C2), although the user can make it only slope-continuous (C1)
or value-continuous (C0) by repeating cross-sections. In addition, BLEND has the ability of creating rounded
noses and/or tails (which are useful for fuselages) and can round-over wing tips.8

For aerospace applications, one has other shapes that are frequently used, such a airfoil shapes and
super-ellipses. To accommodate these, ESP has the concept of a user-defined primitive (UDP), which is a
user-supplied piece of code (in C, C++, or FORTRAN) that get dynamically loaded into the system at run
time. The ESP distribution is shipped with over 60 UDPs.

Users can also extend ESP by writing macro-like code, called user-defined components (UDCs) (in the
.csm language). These UDCs can either be include-type, in which case the UDC shares variables with its
parent, or function-type, in which case the UDCs receives input values via arguments, returns output values,
and has its own private variables; the writer of the UDC chooses its type. ESP ships with over 20 UDCs.
(Note that the Example Configurations section below heavily uses UDCs of both type.)

Overview of the .csm Files

A .csm file is a ASCII file that contains definitions of the design and configuration parameters and the
recipe needed to build the configuration. The .csm script used to create the bolt in Fig. 1 is:

1: # bolt example

2:

3: # design parameters

4: CFGPMTR Nside 6 # number of sides

5:

6: DESPMTR Thead 1.00 # thickness of head

7: DESPMTR Whead 3.00 # width of head

8: DESPMTR Fhead 0.50 # fraction of head that is flat

9:

10: DESPMTR Dslot 0.75 # depth of slot

11: DESPMTR Wslot 0.25 # width of slot

12:

13: DESPMTR Lshaft 4.00 # length of shaft

14: DESPMTR Dshaft 1.00 # diameter of shaft

15:

16: DESPMTR sfact 0.50 # overall scale factor

17:

18: # make sure the number of side is even
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19: IFTHEN mod(Nside,2) NE 0

20: MESSAGE the_number_of_sodes_must_be_even

21: THROW -999

22: ENDIF

23:

24: # head

25: BOX 0 -Whead/2 -Whead Thead Whead 2*Whead

26: PATBEG iside Nside/2-1

27: BOX 0 -Whead/2 -Whead Thead Whead 2*Whead

28: ROTATEX 360*iside/Nside

29: INTERSECT

30: PATEND

31:

32: SET Rhead (Whead^2/4+(1-Fhead)^2*Thead^2)/(2*Thead*(1-Fhead))

33:

34: SPHERE 0 0 0 Rhead

35: TRANSLATE Thead-Rhead 0 0

36: INTERSECT

37:

38: # slot

39: IFTHEN Dslot GT 0 AND Wslot GT 0

40: BOX Thead-Dslot -Wslot/2 -Whead 2*Thead Wslot 2*Whead

41: ATTRIBUTE _color $blue

42: SUBTRACT

43: ENDIF

44:

45: # shaft

46: CYLINDER -Lshaft 0 0 0 0 0 Dshaft/2

47: ATTRIBUTE _color $magenta

48: UNION

49:

50: SCALE sfact

51:

52: END

Note the the line numbers are not in the script, but have been added here for explanatory purposes. The
statements in a script are executed sequentially. The hash symbol (#) introduces a comment.

Line 4 defines a configuration parameter (CFGPMTR) and lines 6 through 16 define design parameters
(DESPMTRs), which a user can set at run time, or which can be driven by an outside process, such as an
optimizer. The difference between CFGPMTRs and DESPMTRs is that sensitivities can be computed with
respect to DESPMTRs.

Lines 19 through 22 show an example of logic embedded in the script. These lines will send a MESSAGE
to the user and THROW an error if Nside is not even.

Line 25 is the first statement that generates geometry: a BOX whose origin is at (0, -Whead/2, -Whead)

and whose size is Thead× Whead×2*Whead. After this statement executes, this BOX is placed on the top of
the “stack”.

Line 26 contains an example of a loop (which in the CAD-world is called a pattern). The statements
between lines 27 and 29 will be executed Nside/2-1 times. Line 27 generates another BOX, which is placed
on the top of the stack. The line 28 take the top BOX off the top of the stack and rotates it 60*iside/Nside
degrees about the X-axis, and places the rotated BOX on top of the stack. Line 29 INTERSECTs the two
bodies on the top of the stack (the BOX created in line 25 and the rotated BOX produced in line 28, placing
the results of the INTERSECTion on the stack. At the end of this loop (pattern), an n-sided body is all the
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Figure 1. Bolt example

remains on the stack.
Line 32 is an example of setting a local variable (Rhead) to the results of the given expression. The

syntax here is consistent with the expression rules in most modern computer languages. This is then used
to define the SPHERE in line 34, which is TRANSLATEd, and INTERSECTed with the body that was left
on the stack at the end of line 36.

In line 39, the script checks that both Dslot and Wslot are positive, and if they are it creates a blue
BOX that is SUBTRACTed from the head (thereby making the slot).

Finally a shaft is created in line 46, colored magenta in line 47, and UNIONed with the head in line 48.
The whole bolt is then SCALEd in line 50.

While some users struggle to get used to the concept of the stack, it is really no different that the way
commercial CAD programs function, although the CAD systems do not call it a stack but instead rely on
feature ordering. If you change the order of the features in a CAD program, you are essentially modifying
their implied stack.

Example Configurations

Over the years, ESP has been applied to a wide variety of configurations,9,10 such as those shown in Figs. 2
to 4. Each of these models is built from an ESP script that contained between 799 and 9615 commands. It
has been observed that working with such large models can be very difficult, and this prone to errors. As a
result, a rigorous process has been developed,11 which organizes the whole script into three parts:

• a few header files that identify the various components (such as wing, fuselage, and nacelle) and various
“views” (such a a vortex-lattice view, a CFD view, and a built-up-element view of the structure) that
are available;

• a series of include-type user-defined components (UDCs) that build the basic parts of the various
components (such as the outer mold line of the fuselage); and

• a series of include-type UDCs that the define the“views”, which pull together the various components
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needed for a specific analysis program.

In addition to breaking the overall script into pieces, the best-practice process described in the reference11

discusses the importance of unit tests. This best practice clearly identifies the interactions between the
various components (or disciplines), making the model easier to modify and extend.

Figure 2. espRacer configuration generated with an ESP script containing 799 statements

Geometric and Tessellation Sensitivities

Unlike any commercially-available geometry-creating system, ESP can provide sensitives12 with respect
to the design parameters (DESPMTRs). The sensitivities come in two types:

• geometric sensitivities — these describe the motion normal to a surface (Face), perpendicular to
an curve (Edge), or of a Node when the design parameter is changed; and

• tessellation sensitivities — these describe the motion that a grid point on a surface might have
taken when the design parameter is changed.

The differences between these are described below.
The sensitivities in ESP are generally computed analytically, either by hand-differentiating the algorithms

used to produce the geometry or via operator overloading in C++. In the few instances where the algorithm
used (in OpenCASCADE) is unknowable (such as for a FILLET), finite differences are used. Obviously
analytical derivative are preferable, both because they do not require that a perturbed configuration be
created and because there is no need to pick a finite-difference step size. (Picking the finite-difference step
size is difficult since picking one too large produces large truncation errors, whereas picking it too small
makes it susceptible to round-off errors.)

For the Boolean operations (such as INTERSECTion or SUBTRACTion), ESP has a unique algorithm for
finding the Edge sensitivities based solely upon the sensitivities of the adjoining Faces.12 The consequence
of this is that the expensive Boolean operations do not need to be re-executed when computing sensitivities,
thus making the sensitivity process very rapid.
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Figure 3. sugar configuration generated with an ESP script containing 9615 statements

(a) conceptual view (b) vortex-lattice view

(c) CFD view (d) built-up-element view

Figure 4. model of transport generated with an ESP script containing 2320 statements
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To understand the differences between geometric and tessellation sensitivities, consider the case of a
cylinder, whose design parameters are radius and length. The geometric sensitivities on the rounded Faces
with respect to the radius are 1.0 (i.e, the Faces grow outward) and the geometric sensitivities on the flat
ends are zero, since there is no motion normal to the Face. Alternatively, the geometric sensitivities of the
rounded Faces with respect to the length are zero (since there is no motion normal to the Face), whereas
the faces on the ends have a geometric sensitivity of 1.0. Note that in both cases, there is a discontinuity
in the geometric sensitivities at the Edges that separate the rounded Faces from the ends. The geometric
sensitivities are exact.

Now consider tessellation sensitivities for the same cylinder. Imagine that there was a tessellation (mesh)
drawn on the surfaces of the cylinder. The tessellation sensitivities tell what the motion of the tessellation
might be with respect to design parameter changes. The mesh points on all Faces of the cylinder move
whenever the radius or length are changed. That is, if the length changes, the points on the rounded
faces are dragged along the surface as the cylinder grows. The tessellation sensitivities do not exhibit
discontinuity at the Edges.

The reason the word might is used above is because ESP does not know the mechanism that the tessellator
uses when putting points on the surface, and thus in general does not exactly match the motion that would
be obtained by regenerating the configuration with a perturbed parameter. To see this more clearly, if the
tessellator spaces points evenly along the axial direction of the cylinder, then if the cylinder get longer, the
movement of every point depends on its distance from the end. But if the tessellator prescribed the spacings
near the ends of the cylinder and used a power-law stretching in the interior, then the points would move
along the surface in a different way.

A study of the effect of this ambiguity in a design setting was conducted,13 and it was found that as
long as the tessellation gave the correct shape of the Face, there was no effect on either the final optimized
solution or in the number of optimization iterations needed to get the result.

Using ESP for Geographically-dispersed Teams

In the post-Covid world, organizations are employing more geographically-dispersed teams than ever
before. This can be burdensome when team member are working together to create a large model. While
collaboration is possible via file sharing or screen sharing, none of the traditional design environments
facilitate real-time collaboration. A similar problem in software development (programming) has been fixed
with the introduction of pair-programming, wherein two programmers sit side by side, and work together.
Pair programming has been shown to greatly improve the software development process, while only incurring
a small cost penalty.

Other contemporary model-building systems claim to support collaboration, but do it in one of two ways:

• Cloud-based applications, wherein team member A creates a model and then publishes it in the cloud;
team member B then gets the model from the cloud, add value to it, and publishes an updated model
to the cloud; etc. In this way, multiple members can work on the same model, but can only so do
sequentially; and

• Screen-sharing applications (like Zoom) allow one person to control and other to view the interactions
with the modeling software. While better than nothing, these systems do not allow the collaborators
to seamlessly change “who is in control”; therefore, there is really one user who can actively contribute.

ESP’s use of a web browser for the user interaction makes it ideally suited for a collaboration environ-
ment.14 In particular, ESP has been architected such that more than one user can connect to a single session
(which is running in the server). Therefore, multiple users in multiple locations can easily collaborate in
real time. One user “has the ball”, and controls changes to the model; other users can see what the user
with the ball is doing and have the option of either synchronizing their display with the user with the ball,
or exploring the model independently. Unlike the screen-sharing approaches, the user with the ball can
pass it to any other team member, at any time, therefore allowing every team member to contribute at the
appropriate time.
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During the summer of 2021, two Syracuse University students worked together for the summer to build
models of balsa-wood aircraft models (Fig. 5). The students, who knew each other before the summer but
had no experience, were located in different states. Their assessment of collaborating via ESP include the
following advantages:

• the .csm scripts were stored in a common workspace (on the shared machine), and thus were accessible
to both students at all times;

• since the ESP server was on the shared machine, the only software that they needed on their own
computers were the browser-base code (.html and .js files). As a result, the fact that they had
relatively slow personal computers was not a hinderance;

• the driver (user with the ball) could make any required changes and the results of the changes would
be seen by both students almost immediately;

• this kept both users actively engaged in the process;

• the navigator tended to focus on big-picture (strategic) issues while the driver focused on typing
appropriate commands, or tactical issues; and

• overall they felt that having two brains working on the same problem was beneficial.

The disadvantages that they noted included:

• users cannot simultaneously edit a script;

• there was only one version of the .csm script, so if a hard-to-find error was injected into the script,
there was not a readily available backup.

Using Python to Automate Tasks

ESP includes an integrated Python interpreter that can be used to drive parameters and execution of a
model. Over 70 OpenCSM commands are exposed to Python.

Using a Python script is best illustrated via an example: modify the fuselage of an aircraft so that the
airplane’s cross-sectional areas follow a prescribed area ruling. The python script to do it is:

###################################################################

# #

# areaRule.py -- adjust fuse:radius to satisfy Sears-Haack #

# #

# can be executed in either of two ways: #

# serveESP filename (such as areaRule1.csm) #

# Tool->Pyscript areaRule.py #

# or #

# python areaRule.py #

# filename (such as areaRule1.csm) #

# #

# Written by John Dannenhoffer @ Syracuse University #

# #

###################################################################

from pyEGADS import egads

from pyOCSM import ocsm

from pyOCSM import esp
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(a) Piper Vagabond 3-view (b) Aeronca Defender 3-view

(c) Piper Vagabond ESP model (d) Aeronca Defender ESP model

Figure 5. Models used by students in collaboration study.

import math

import os

#------------------------------------------------------------------------------#

# callback function

def pyMesgCB(text):

print(" ")

print("======= in pyMesgCB =======")

print(" ", text.decode())

print("===========================")

return

# make a semi-colon-separated string from a list

def makeString(array):

out = ""

for i in array:

out += str(i) + ";"
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return out

#------------------------------------------------------------------------------#

# run quietly

ocsm.SetOutLevel(0)

# if we are running via serveESP, link to that MODL

try:

modl = ocsm.Ocsm(esp.GetModl(esp.GetEsp("pyscript")))

modl.RegMesgCB(pyMesgCB)

print("==> getting MODL from ESP")

# an error means that we are probably running from the python prompt,

# so get the filename from the user to create a new MODL

except ocsm.OcsmError:

filename = ""

while (".csm" not in filename):

filename = input("Enter name of .csm file: ")

if (not os.path.exists(filename)):

print("\""+filename+"\" does not exist")

filename = ""

modl = ocsm.Ocsm(filename)

print("==> making new MODL from \""+filename+"\"")

# check and build original MODL

modl.Check()

modl.Build(0, 0)

# get the pmtr indicies

ixloc = modl.FindPmtr("fuse:xsect", 0, 0, 0)

iradius = modl.FindPmtr("fuse:radius", 0, 0, 0)

iarea = modl.FindPmtr("aircraft:area", 0, 0, 0)

# get values from the MODL

nsect = int(modl.GetValu(modl.FindPmtr("fuse:nsect", 0, 0, 0), 1, 1)[0])

length = modl.GetValu(modl.FindPmtr("fuse:length", 0, 0, 0), 1, 1)[0]

xloc = []

radius = []

radius_lbnd = []

area = []

for i in range(nsect):

xloc.append( modl.GetValu(ixloc, i+1, 0)[0])

radius.append( modl.GetValu(iradius, i+1, 0)[0])

radius_lbnd.append(modl.GetBnds(iradius, i+1, 0)[0])

area.append( modl.GetValu(iarea, i+1, 0)[0])

# find the maximum cross-sectional area

area_max = 0

for i in range(nsect):
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if (area[i] > area_max):

area_max = area[i]

# compute the sears-haack distribution

sears = []

for i in range(nsect):

sears.append(area_max * math.pow(4 * xloc[i]/length * (1 - xloc[i]/length), 1.5))

# big iteration loop

niter = 10

for iter in range(niter+1):

# show the current configuration

if (iter > 0):

esp.TimLoad("viewer", esp.GetEsp("pyscript"), "")

esp.TimMesg("viewer", "MODL")

esp.TimQuit("viewer")

area = []

for i in range(nsect):

area.append(modl.GetValu(iarea, i+1, 0)[0])

# compute the rms error between the area and sears-haack

rms = 0

for i in range(nsect):

rms += (area[i] - sears[i]) * (area[i] - sears[i])

rms = round(math.sqrt(rms / nsect), 4)

txt = "--> Iteration "+str(iter)+" rms="+str(rms)

print(txt)

# show the area distribution

esp.TimLoad("plotter", esp.GetEsp("pyscript"), "")

esp.TimMesg("plotter", "new|"+txt+"|xloc|area|")

esp.TimMesg("plotter", "add|"+makeString(xloc)+"|"+makeString(area)+"|k-+|")

esp.TimMesg("plotter", "add|"+makeString(xloc)+"|"+makeString(sears)+"|g:|")

esp.TimMesg("plotter", "show")

esp.TimQuit("plotter")

# check convergence

if (rms < 0.01):

print("--> converged")

break

elif (iter >= niter):

print("--> out of iterations")

break

# compute new fuselage radii

for i in range(nsect):

radius[i] *= math.sqrt(sears[i] / area[i])

if (radius[i] < radius_lbnd[i]):

radius[i] = radius_lbnd[i]

12

D
ow

nl
oa

de
d 

by
 M

IT
 L

ib
ra

ri
es

 o
n 

Ja
nu

ar
y 

22
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
13

15
 



modl.SetValuD(iradius, i+1, 0, radius[i])

# rebuild with the new radii

modl.Build(0, 0)

print("==> saving final DESPMTRs in \"./areaRule.despmtrs\"")

modl.SaveDespmtrs("./areaRule.despmtrs")

The results of this Python script is shown in Fig. 6. Part (a) of the figure is the original aircraft and part
(b) is a plot of the airplane’s cross-sectional area as a function of axial location, as well as the target Sears-
Haack distribution. As this Python script executes, it stops after every iteration and shows the updated
aircraft shape and area distributions. After only 8 iteration, the results shown in parts (c) and (d) were
obtained. This demonstration also shows another of ESP’s strengths: the ability to generate line plots as
part of the process.

(a) original aircraft (with constant cross-
section fuselage)

(b) original area distribution (solid black
line) and target distribution (dotted green
line)

(c) final aircraft (with optimize cross-
section fuselage)

(d) final area distribution (solid black line)
and target distribution (dotted green line)

Figure 6. Results of optimizing the area-rule for an aircraft.

ESP Extensions

There are several “tools” includes in ESP that provide a variety of additional capabilities:

13

D
ow

nl
oa

de
d 

by
 M

IT
 L

ib
ra

ri
es

 o
n 

Ja
nu

ar
y 

22
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
13

15
 



• Sketch15 — allows a user to make a constrained sketch in two dimensions. These sketches frequently
serve a shapes that are EXTRUDEd, REVOLVEd, RULEd, or BLENDed;

• Caps16 — allow a user access to the CAPS system, which offers coupling to a variety of mesh generators,
flow solvers, and structural analyses;

• ErepEd — allows a user to logically combine Faces into a quilt (called an EFace - or Effective Face).
This can the be used to make a single mesh over several faces;

• Plugs17 — modifies the design parameters in a user-supplied model such that it fits the model, in a
least-squares sense, to a cloud of points;

• Plotter — allows a user to display multiple line plots, with control over line and symbol types and
colors;

• Slugs18 — allows a user to build up a configuration by least-square fitting Faces (and Edges) to a
cloud of points. Note that the resulting model is not parameterized;

• Pyscript — the Python interpreter (described previously); and

• VspSetup — allows a user to import an OpenVSP model into ESP. (This will be described in an
upcoming publication.)

Availability and Training

ESP is an open-source project (using the LGPL 2.1 license) that is distributed as source, and is available
from https://acdl.mit.edu/ESP.

That website contains:

• the latest released software, compiled for Windows, Linux, MacOS (both Intel and ARM);

• the full source for the latest release;

• a list of most of the ESP-related publications;

• copies of the slides and examples for the latest training, as well as recordings of the training; and

• an archive all previous versions (source only) as well as a beta release of the latest stable snapshot of
the repository.

The full releases are made several times a year and are thoroughly tested and the documentation is
updated. The beta release (in the archive section of the website) is tested, but the documentation may not
be up to date.

The training sessions are available to everyone and are held roughly once a year. Send a note to
jfdannen@syr.edu to get on the mailing list for the next training class.
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