
Computational Aircraft Prototype Syntheses
AIM Programming

Bounds & The AIM Discretization Structure
For ESP Rev 1.28

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

Geocentric Technologies LLC

Haimes Bounds & The AIM Discretization Structure July 2025 1 / 35

CAPS Definitions

Bound Object
A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the “outer surface of the wing”). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body). This is
accomplished either through interpolation or through a scheme that provides
conservative transfers.

Internally the data to support transfers is held in the CAPS structure capsDiscr
(one per Analysis instance) – the VertexSet Object. This is manipulated by CAPS
proper and the AIM functions documented here.

Creating the detailed data associated with a Bound is the focus of this session.

Haimes Bounds & The AIM Discretization Structure July 2025 2 / 35

CAPS Definitions

VertexSet Object
A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
it’s data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object
A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

Haimes Bounds & The AIM Discretization Structure July 2025 3 / 35

CAPS Objects

Object SubTypes Parent Object
capsProblem Parametric, Static
capsValue GeometryIn, GeometryOut, capsProblem

Parameter, User
capsAnalysis capsProblem

capsValue AnalysisIn, AnalysisOut, capsAnalysis
AnalysisDynO

capsBound capsProblem
capsVertexSet Connected, Unconnected capsBound
capsDataSet FieldOut, FieldIn*, User, capsVertexSet

GeomSens, TessSens, Builtin

Body Objects are EGADS Objects (egos)
* A change in a FieldIn DataSet will dirty the Analysis Instance

Haimes Bounds & The AIM Discretization Structure July 2025 4 / 35

Bounds – Analysis Data

DataSet Naming Conventions
Multiple DataSets in a Bound can have the same Name
Allows for automatic data transfers
One source (from either FieldOut or User Methods)
Reserved Names:

DSet Name rank Meaning Comments
xyz 3 Geometry Positions
xyzd 3 Data Positions Not for vertex-based

discretizations
param 2 [u,v] data for Geometry

Positions
paramd 2 [u,v] for Data Positions Not for vertex-based

discretizations
GeomIn 3 Sensitivity for the Geometry can have [irow, icol] in

Input GeomIn name

Haimes Bounds & The AIM Discretization Structure July 2025 5 / 35

AIM – Registration/Initialization
Initialization Information for the AIM
icode = aimInitialize(int qFlag, const char *uSys, void *aimInfo,

void **instStore, int *major, int *minor,
int *nIn, int *nOut, int *nFields,
char ***fnames, int **franks, int **fInOut)

qFlag −1 indicates a query and not a new analysis instance (0 or greater)

uSys a pointer to a character string declaring the unit system – can be NULL

aimInfo the AIM context – NULL if qFlag == -1

instStore a returned pointer to a block of memory to be associated with this AIM instance
may be returned as NULL if no AIM state data is required

major the returned AIM major version number

minor the returned AIM minor version number

nIn the returned number of Inputs (minimum of 1)

nOut the returned number of possible Outputs

nFields the returned number of fields to responds to for DataSet filling

fnames a returned pointer to a list of character strings with the field/DataSet names †
franks a returned pointer to a list of ranks associated with each field †
fInOut a returned pointer to a list of field flags (FIELDIN - input, FIELDOUT - output) †

icode integer return code

Haimes Bounds & The AIM Discretization Structure July 2025 6 / 35

Conservative Data Transfers
Conservation is a statement of integration

Consistency with solvers is difficult (in general)
must hold onto the data required to do the integration
must be able to perform the integration in the same manner as the
solver integrates

How many different solver discretizations are there?
finite volume, finite element, ...
node-based or cell-based data storage
continuous or discontinuous formulations
AMR Cartesian
higher order FEM (e.g., continuous or discontinuous Galerkin)

Interdisciplinary Coupling
Traditionally custom pairwise codes are required.
CAPS goal: let CAPS provide the ability to transfer data
internally.

Haimes Bounds & The AIM Discretization Structure July 2025 7 / 35

Universal View of Solver Spatial Discretizations
Technique Used

Gradient-based optimization that balances integrated quantities by
adjusting the equivalent of “interpolation coefficients”
Needs solver consistent interpolation, integration and their duals

Data required – take an FEM perspective
Element type – must support heterogeneous discretizations
Positions within an element are defined by the Barycentric
coordinates (s, t)

geometry positions define the geometry of the cell
data positions define where dependent variables are stored

needed for cell-based, discontinuous and/or non-isoparametric
discretizations
by default, the data is stored at the geometry locations

Data to associate back to the owning geometry (i.e., the Face and
parametric coordinates (u, v))

Haimes Bounds & The AIM Discretization Structure July 2025 8 / 35

Definition of Element Types

For the element examples that follow:
nRef is the number of polygonal positions (per element) that the
physical “corners” of the element are defined
nData is the number of positions used to define the data locations
in the element – 0 indicates that geometric ≡ data positions
Higher-order positions (must be nodal, not modal) – do not
contribute to the polygonal shape

the first positions must be those that define the polygon and should
be ordered (using a right-handed traversal)

All are indices into lists of points
Note: discontinuous discretizations do not share indices at bounds

Haimes Bounds & The AIM Discretization Structure July 2025 9 / 35

Definition of Element Types

Simple continuous linear triangle

nRef = 3, nData = 0

�
�
�
�
�
�
�
�
�
�
��

A
A
A

A
A
A

A
A
A

A
AA

��@@h

h

h

2

0 1u

u

u

Barycentric Coordinates
geom&data s t

0 0 0
1 1 0
2 0 1

Haimes Bounds & The AIM Discretization Structure July 2025 10 / 35

Definition of Element Types

Hanging vertex (AMR) quadrilateral

nRef = 5, nData = 0

h

h
h
h

h
3 2

0 1

4

u

u
u
u

u Barycentric Coordinates
geom&data s t

0 0 0
1 1 0
2 1 1
3 0 1
4 1 1/2

Haimes Bounds & The AIM Discretization Structure July 2025 11 / 35

Definition of Element Types

Second order continuous triangle

nRef = 6, nData = 0

�
�
�
�
�
�
�
�
�
�
��

A
A
A

A
A
A

A
A
A

A
AA

��@@h

h

hf
ff

2

0 13

45

u

u

ur
rr

Barycentric Coordinates
geom&data s t

0 0 0
1 1 0
2 0 1
3 1/2 0
4 1/2 1/2
5 1/2 0

Haimes Bounds & The AIM Discretization Structure July 2025 12 / 35

Definition of Element Types

Discontinuous triangle (q=2, p=3)

nRef = 6, nData = 9

�
�
�
�
�
�
�
�
�
�
��

A
A

A
A
A

A
A
A

A
A
AA

�
�

@
@f

f

fd
dd s

ss ss

ss
ss

ss
ss

ss ssss

ss ssss ss ssss0 1 2 3

4

5

6

7

8 9

2

0 13

45

Barycentric Coordinates
geom s t

0 0 0
1 1 0
2 0 1
3 1/2 0
4 1/2 1/2
5 1/2 0

data s t data s t
0 0 0 5 1/3 2/3
1 1/3 0 6 0 1
2 2/3 0 7 0 2/3
3 1 0 8 0 1/3
4 2/3 1/3 9 1/3 1/3

Haimes Bounds & The AIM Discretization Structure July 2025 13 / 35

Spatial Discretizations

Additionally needed:
Optional positions that support matching during the optimization.
Required for discontinuous discretizations so that the resultant
data at the reference positions are not the same.

nMat is the number of match positions
0 indicates that reference ≡ match positions

Cutting up the element into triangles which facilitates finding a
particular element given a target quilt (u, v)

nTris is the number of triangles that best represent the element in a
linear sense

Haimes Bounds & The AIM Discretization Structure July 2025 14 / 35

Extended Definition of Element Types

Second order continuous triangle

nTris = 4, nRef = 6
nData = 0, nMat = 0

�
�
�
�
�
�
�
�
�
�
��

A
A

A
A
A

A
A
A

A
A
AA

��@@ �
�
�
�
�

A
A

A
A
A

h

h

hf
ff

2

0 1
3

45

u

u

ur
rr

×

×

××

××

Barycentric Coordinates
geom&data s t

0 0 0
1 1 0
2 0 1
3 1/2 0
4 1/2 1/2
5 1/2 0

Triangle Indices
0 3 5
3 1 4
5 4 2
3 4 5

Haimes Bounds & The AIM Discretization Structure July 2025 15 / 35

Extended Definition of Element Types

Cell-centered or discontinuous constant triangle

nTris = 1, nRef = 3
nData = 1, nMat = 1

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A

A
A
A

A
A
A

AA

��@@h

h

h

2

0 1

u0×
0

Barycentric Coordinates
geom s t

0 0 0
1 1 0
2 0 1

data
0 1/3 1/3

match
0 1/3 1/3

Triangle Indices
0 1 2

Haimes Bounds & The AIM Discretization Structure July 2025 16 / 35

Extended Definition of Element Types

Discontinuous bilinear quadrilateral

nTris = 2, nRef = 4
nData = 4, nMat = 4

�
�

�
�
�
�
�
�
��

g

g

g

g3 2

0 1

ssss ssss

ssssssss

×

×

×

×3 2

0 1

Barycentric Coordinates
geom data s t

0 0 0 0
1 1 1 0
2 2 1 1
3 3 0 1

match
0 1/4 1/4
1 3/4 1/4
2 3/4 3/4
3 1/4 3/4

Triangle Indices
0 1 2
0 2 3

Haimes Bounds & The AIM Discretization Structure July 2025 17 / 35

AIM – Discrete Structure 1/6

Discrete Structure – Used to define a VertexSet
The CAPS Discrete data structure holds the spatial discretization information for a
Bound. It defines reference positions for the location of the vertices that support the
geometry and optionally the positions for the data locations (if these differ). This
structure can contain a homogeneous or heterogeneous collection of element types
and optionally specifies match positions for conservative data transfers.

Contains enough information so that the Bound data may be visualized.

EGADS Tessellation Object
Used to specify the discretization of the entire Body
Requires triangles
Can be constructed from an external mesh generator

Look at EG_initTessBody, EG_setTessEdge,
EG_setTessFace & EG_statusTessBody
Set in CAPS by invoking aim_newTess

Haimes Bounds & The AIM Discretization Structure July 2025 18 / 35

AIM – Discrete Structure 2/6

Structure capsEleType
typedef struct {

int nref; /* number of geometry reference points */
int ndata; /* number of data ref points -- 0 data at ref */
int nmat; /* number of match points (0 -- match at

geometry reference points) */
int ntri; /* number of triangles to represent the elem */
double *gst; /* [s,t] geom reference coordinates in the

element -- 2*nref in length */
double *dst; /* [s,t] data reference coordinates in the

element -- 2*ndata in length */
double *matst; /* [s,t] positions for match points - NULL

when using reference points (2*nmat long) */
int *tris; /* the triangles defined by geom reference indices

(bias 1) -- 3*ntri in length */
int nseg; /* number of element segments (sides) */
int *segs; /* the element segments by reference indices

(bias 1) -- 2*nsegs in length */
} capsEleType;

You will usually have only a small number of element types

See AIAApaper2014-0294.pdf on the website in Publications for a
complete write-up

Haimes Bounds & The AIM Discretization Structure July 2025 19 / 35

AIM – Discrete Structure 3/6

Structure capsElement – a single element
typedef struct {

int tIndex; /* the element type index (bias 1) */
int eIndex; /* element owning index -- dim 1 Edge, 2 Face */
int *gIndices; /* local indices (bias 1) geom ref positions,

tess index -- 2*nref in length */
int *dIndices; /* the vertex indices (bias 1) for data ref

positions -- ndata in length or NULL */
union {

int tq[2]; /* tri or quad (bias 1) for ntri <= 2 */
int *poly; /* the multiple indices (bias 1) for ntri > 2 */

} eTris; /* triangle indices that make up the element */
} capsElement;

tIndex – index into the collected capsEleTypes of capsDiscr

eIndex – index into the owning ego in the Body

gIndices – index in capsBodyDiscr member gIndices – [2*nref in length]
index in capsDiscr member tessGlobal

dIndices – index in capsBodyDiscr member dIndices – [ndata in length or NULL]

eTris – triangle index/indices from the ego of the Body tessellation
poly must be allocated in capsBodyDiscr – this is a pointer into that memory block

Haimes Bounds & The AIM Discretization Structure July 2025 20 / 35

AIM – Discrete Structure 4/6

Structure capsBodyDiscr
/*
* defines a discretized collection of Elements for a body

*
* specifies the connectivity based on a collection of Element Types and the

* elements referencing the types.

*
*/

typedef struct {
ego tess; /* tessellation object associated with the

discretization */
int nElems; /* number of Elements */
capsElement *elems; /* the Elements (nElems in length) */
int *gIndices; /* memory storage for elemental gIndices */
int *dIndices; /* memory storage for elemental dIndices */
int *poly; /* memory storage for elemental poly */
int globalOffset; /* tessellation global index offset across bodies */

} capsBodyDiscr;

gIndices – allocated memory block for the collection of reference positions [length –
∑

2*nref]

dIndices – allocated memory block for data indices [
∑

ndata in length or NULL]

poly – allocated memory block for polygon indices [
∑

ntri in length or NULL]

globalOffset – an offset into tessGlobal that produces a unique index across multiple bodies

Haimes Bounds & The AIM Discretization Structure July 2025 21 / 35

AIM – Discrete Structure 5/6
/*
* defines a discretized collection of Bodies

*
* nPoints refers to the number of indices referenced by the geometric positions

* in the element which may be different from nVerts which is the number of

* positions used for the data representation in the element. For simple nodal

* or isoparametric discretizations, nVerts is zero and verts is set to NULL.

*/
typedef struct {

int dim; /* dimensionality [1-3] */
void *instStore; /* analysis instance storage */
void *aInfo; /* AIM info */

/* below handled by the AIMs: */
int nVerts; /* number data ref positions or unconnected */
double *verts; /* data ref positions -- NULL if same as geom */
int *celem; /* 2*nVerts (body, element) containing vert or NULL */
int nDtris; /* number of triangles to plot data */
int *dtris; /* NULL for NULL verts -- indices into verts */
int nDsegs; /* number of segs (sides) to plot data mesh */
int *dsegs; /* NULL for NULL verts -- indices into verts */
int nPoints; /* number of entries in the geom positions */
int nTypes; /* number of Element Types */
capsEleType *types; /* the Element Types (nTypes in length) */
int nBodys; /* number of Body discretizations */
capsBodyDiscr *bodys; /* the Body discretizations (nBodys in length) */
int *tessGlobal; /* tessellation indices to this local space

2*nPoints in len (bodys index, global tess index) */
void *ptrm; /* pointer for optional AIM use */

} capsDiscr;

See $ESP_ROOT/doc/capsDiscr.pdf for a complete description
Haimes Bounds & The AIM Discretization Structure July 2025 22 / 35

AIM – Discrete Structure 6/6
The first members (dim, instance and ainfo) are filled by CAPS before calling aimDiscr.
All physical positions (except for those in verts) are found in the associated Tessellation Object,
which may be created in the AIM and set in CAPS by invoking aim_setTess.
The number of geometric reference points (nPoints) is the total number of vertices that support
the discretization.
The number of elements types is set by the member nTypes and the types themselves are defined
by a pointer to the allocated block of memory types which contains nTypes of capsEleType.
The number of vertices used for the data positions is defined by nVerts. If nVerts is nonzero:

nVerts entries must be allocated for the member verts and this must be filled with the
XYZ positions associated with the appropriate data reference positions defined as part of
the elements. The member celem refers to the index of the element containing the position
and must be allocated consistent with verts.
The number of triangles used for plotting data reference information is set by the member
nDtris. The actual triangles are defined in dtris, which should be 3 times nDtris in
length. The values stored are the indices into the verts member (bias 1). The number of
segments (nDsegs) is associated with plotting the data mesh information, which is defined
in dsegs (should be 2 times nDsegs in length), which contains pairs of indices into the
verts member (bias 1).

The association between geometric reference points and the Tessellation Object is done by the
tessGlobal member. The first of the pair of integers in an index (bias 1) into the bodys
member. The second is the global index (bias 1) in the Tessellation Object.
Note: the tessGlobal memory block is allocated and populated automatically within CAPS.
The member ptrm is set aside for the plugin author and can be used to hold on to any data needed
to communicate with and between the AIM routines.

Haimes Bounds & The AIM Discretization Structure July 2025 23 / 35

AIM – Discrete Support

Fill-in the Discrete data for a Bound Object – Optional
icode = aimDiscr(char *bname, capsDiscr *discr)

bname the Bound name
Note: all of the BRep entities are examined for the attribute capsBound. Any that
match bname must be included when filling this capsDiscr.

discr the Discrete structure to fill
Note: the AIM instance, AIM info pointer and the dimensionality have been filled in
before this function is invoked.

icode integer return code

Frees up pointer in the Discrete Structure – Optional
void aimFreeDiscrPtr(void *ptrm)

ptrm the optional pointer in the Discrete Structure that needs to be freed
will not be called if the pointer is already NULL

Haimes Bounds & The AIM Discretization Structure July 2025 24 / 35

AIM – Discrete Support

Return Element in the Mesh – Optional
icode = aimLocateElement(capsDiscr *discr, double *params,

double *param, int *bIndex, int *eIndex,
double *bary)

discr the input Discrete Structure

params the input global parametric space (at all of the geometry support positions)
rank is the dimensionality (t for 1D, [u, v] for 2D and [x, y, z] for 3D)

param the input requested parametric position in params (dimensionality in length)

bIndex the returned body index in discr where the position was found (1 bias)

eIndex the returned element index in discr where the position was found (1 bias)

bary the resultant Barycentric/reference position in the element eIndex

icode integer return code

Haimes Bounds & The AIM Discretization Structure July 2025 25 / 35

AIM – Data Transfers

Data Associated with the Discrete Structure – Optional
icode = aimTransfer(capsDiscr *discr, const char *fname, int npts,

int rank, double *data, char **units)

discr the input Discrete Structure

fname the field name to that corresponds to the fill

npts the number of points to be filled

rank the rank of the data

data a pointer associated with the data to be filled (rank*npts in length)

units the returned pointer to the string declaring the units †
return NULL to indicate unitless values

icode integer return code

Fills in the DataSet Object

Haimes Bounds & The AIM Discretization Structure July 2025 26 / 35

AIM – Data Transfers
Interpolation on the Bound – Optional
icode = aimInterpolation(capsDiscr *discr, const char *name,

int bIndex, int eIndex, double *bary,
int rank, double *data, double *result)

icode = aimInterpolateBar(capsDiscr *discr, const char *name,
int bIndex, int eIndex, double *bary,
int rank, double *r_bar, double *d_bar)

discr the input Discrete Structure
name a pointer to the input DataSet name string

bIndex the input target body index (1 bias) in the Discrete Structure
eIndex the input target element index (1 bias) in the Discrete Structure

bary the input Barycentric/reference position in the element eIndex
rank the input rank of the data

data values at the data (or geometry) positions
result the filled in results (rank in length)

r_bar input d(objective)/d(result)
d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
Haimes Bounds & The AIM Discretization Structure July 2025 27 / 35

AIM – Data Transfers

Element Integration on the Bound – Optional
icode = aimIntegration(capsDiscr *discr, const char *name,

int bIndex, int eIndex, int rank,
double *data, double *result)

icode = aimIntegrateBar(capsDiscr *discr, const char *name,
int bIndex, int eIndex, int rank,
double *r_bar, double *d_bar)

discr the input Discrete Structure
name a pointer to the input DataSet name string

bIndex the input target body index (1 bias) in discr
eIndex the input target element index (1 bias) in discr

rank the input rank of the data

data values at the data (or geometry) positions – NULL length/area/volume of element
result the filled in results (rank in length)

r_bar input d(objective)/d(result)
d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
Haimes Bounds & The AIM Discretization Structure July 2025 28 / 35

AIM Helper Functions
Discretization Structure

provides useful functions for the AIM programmer
gives access to CAPS Object data
note that all function names begin with aim_
if any of these functions are used, then the library must be
included (libaimUtil.a/aimUtil.lib) in the AIM so/DLL build

Haimes Bounds & The AIM Discretization Structure July 2025 29 / 35

AIM Utility Library
Get Discretization Structure
icode = aim_getDiscr(void *aimInfo, const char *bname, capsDiscr **discr)

aimInfo the AIM context
bname the Bound name

discr pointer to the returned Discrete structure
icode integer return code

Get Data from Existing DataSet
icode = aim_getDataSet(capsDiscr *discr, const char *dname,

enum capsdMethod *method, int *npts,
int *rank, double **data, char **units)

discr the input Discrete Structure
dname the requested DataSet name

method the returned method used for data transfers
npts the returned number of points in the DataSet
rank the returned rank of the DataSet
data a returned pointer to the data within the DataSet

units the unit string associated with the data within the DataSet
icode integer return code

Note: may only be called from aimPreAnalysis

Haimes Bounds & The AIM Discretization Structure July 2025 30 / 35

AIM Utility Library – Data Transfers

Initialize capsBodyDiscr Pointer
void aim_initBodyDiscr(capsBodyDiscr *discBody)

discBody pointer to initialize

Linear Triangle/Quad Element Type with Nodal Data
icode = aim_nodalTriangleType(capsEleType *eletype)
icode = aim_nodalQuadType(capsEleType *eletype)

eletype element type pointer to fill

icode integer return code

Linear Triangle/Quad Element Type with Cell Data
icode = aim_cellTriangleType(capsEleType *eletype)
icode = aim_cellQuadType(capsEleType *eletype)

eletype element type pointer to fill

icode integer return code

Haimes Bounds & The AIM Discretization Structure July 2025 31 / 35

AIM Utility Library – Data Transfers

Return Element in a Linear Mesh
icode = aim_locateElement(capsDiscr *discr, double *params,

double *param, int *eIndex, int *bIndex,
double *bary)

discr the input Discrete Structure

params the input global parametric space (at all of the geometry support positions)
rank is the dimensionality (t for 1D, [u, v] for 2D and [x, y, z] for 3D)

param the input requested parametric position in params (dimensionality in length)

bIndex the returned body index in discr where the position was found (1 bias)

eIndex the returned element index in discr where the position was found (1 bias)

bary the resultant Barycentric/reference position in the element eIndex

icode integer return code

Haimes Bounds & The AIM Discretization Structure July 2025 32 / 35

AIM Utility Library – Data Transfers
Interpolation on the Bound in a Linear Mesh
icode = aim_interpolation(capsDiscr *discr, const char *name,

int bIndex, int eIndex, double *bary,
int rank, double *data, double *result)

icode = aim_interpolateBar(capsDiscr *discr, const char *name,
int bIndex, int eIndex, double *bary,
int rank, double *r_bar, double *d_bar)

discr the input Discrete Structure for a Linear Mesh

name a pointer to the input DataSet name string
bIndex the input target body index (1 bias) in the Discrete Structure
eIndex the input target element index (1 bias) in the Discrete Structure

bary the input Barycentric/reference position in the element eIndex
rank the input rank of the data

data values at the data (or geometry) positions
result the filled in results (rank in length)

r_bar input d(objective)/d(result)
d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
Haimes Bounds & The AIM Discretization Structure July 2025 33 / 35

AIM Utility Library – Data Transfers

Element Integration on the Bound in a Linear Mesh
icode = aim_integration(capsDiscr *discr, const char *name,

int bIndex, int eIndex, int rank,
double *data, double *result)

icode = aim_integrateBar(capsDiscr *discr, const char *name,
int bIndex, int eIndex, int rank,
double *r_bar, double *d_bar)

discr the input Discrete Structure for a Linear Mesh

name a pointer to the input DataSet name string
bIndex the input target body index (1 bias) in discr
eIndex the input target element index (1 bias) in discr

rank the input rank of the data

data values at the data (or geometry) positions – NULL length/area/volume of element
result the filled in results (rank in length)

r_bar input d(objective)/d(result)
d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
Haimes Bounds & The AIM Discretization Structure July 2025 34 / 35

Exercises

In exercises/session12:
Examine the differences between session08.py and
session12.py in the functions common to both
Examine, build and execute session12.py as well as
crossXfer.py
Why the differences? Why turn off autoExec for one of the
instances?
Review the differences between myAIM.c from session08 and
the source in exercises/session12.

Run sensitivity.py which uses Bounds to store (and in this
case view) geometric sensitivities.
Examine other CSM DESPMTR sensitivities.

Haimes Bounds & The AIM Discretization Structure July 2025 35 / 35

