
Computational Aircraft Prototype Syntheses
AIM Programming – Overview

For ESP Rev 1.28

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

Geocentric Technologies LLC

Haimes AIM Programming – Overview July 2025 1 / 31

Stewardship

Geocentric Technologies, LLC will be taking over the stewardship of
EPS (and CAPS) from MIT

This is a reflection of software transitioning from an academic
research project to mature commercial products with support.

Note that the software will remain under an Open Source license and
hence continue to be freely available.

This entails (post ESP Rev 1.28) the following:

Change of hosting website to: http://geocentrictech.com/ESP

Opening up a portal so that external sources can contribute plugins

Moving most of the current AIMs to that portal, this will strongly effect how
CAPS is distributed

This transition is initially funded by an Air Force SBIR
Haimes AIM Programming – Overview July 2025 2 / 31

Stewardship

Requirements for contributed AIMs & Mesh Writers:
A directory with the top-level name of the contribution, for example:
nameAIM or nameWriter

The source, Makefile and NMakefile (as will be seen in the upcoming sessions)

A Windows def file

An optional example subdirectory – contains illuminating plugin executions
that are driven by CSM and Python scripts, as well as supporting files for the
execution

A test subdirectory
Unit and regression tests to support continuous integration and acceptance
Executed by issuing “make test” (or “nmake -f NMakefile test”) at the top-level

A docs subdirectory – the contents of which is still under discussion

There will be methods for users to grab plugins from the portal, but the details of this
have not been finalized.

Haimes AIM Programming – Overview July 2025 3 / 31

Stewardship – Software Testing
The CAPS API and AIMs

This is MUCH harder than most software testing because the full
execution depends on third-party software, which may change
and is out of our control
How do you test the results of surface and volume mesh
generation as well as (and in conjunction with) solver execution?

Mesh counts depend on the geometry and floating point predicates!
Solver integrated quantities can hide issues!
Is this the responsibility of CAPS?

AIMs will now require testing and will not be accepted without
This should be done in Python in one of two ways:

1 Use Python’s testing framework (see exercises/session06)
2 By Python script(s) that contain asserts (see
exercises/session07)

Note: both sessions use the same AIM.
Haimes AIM Programming – Overview July 2025 4 / 31

CAPS in Design
CAPS Execution
The Design workflow may require a long running and complex process
involving a mix of multi-fidelity and multidisciplinary analyses:

May need to manage the complexity
Get to some point and ask what if questions
Store away (checkpoint) the state of the Design at various times

CAPS Design execution breaks the process into phases
One phase is a “stepping stone” to the next
Allows for “branching” from a completed phase to multiple new
phases (like repositories — but with no merging)
Each phase is typically driven by a different CAPS app or
pyCAPS script
Can robustly get from phase to phase

Haimes AIM Programming – Overview July 2025 5 / 31

CAPS in Design
CAPS phases
In most cases:

The first phase builds the objects
The subsequent phases discover or use the existing objects

At all times the current object state is mirrored on disk:
Uses directory structure to mimic the object hierarchy
Writes objects when updated in binary (which are usually small)

In addition, CAPS API function’s output are journaled to disk
End result:

Execution can be paused, interrupted or encounter an error and
continue later
AIM post-Analysis is re-executed during continuation when last
invocation is reached to reestablish any internal storage

Haimes AIM Programming – Overview July 2025 6 / 31

CAPS in Design
CAPS Execution Modes
CAPS has 4 modes for starting a session:

Scratch – This is for development (and not production). It will remove
any existing data in the Scratch directory of the Problem’s path
Initial – This phase is started by a call to caps_open that points to a
nonexistent phase subdirectory. The initialization can either be from a
geometry file or an OpenCSM or EGADS Model.
Continuation* – This occurs when CAPS has not finished a phase either
do to an interruption or not reaching caps_close (that can mark the
phase complete). In this case the CAPS application or pyCAPS script
can be run from the beginning, but reading results from the journal is
used to quickly get to the position where the phase terminated.
Starting from a completed phase

* works best when most of the computation is controlled by CAPS
must be same ESP rev & architecture (due to the chaotic nature of meshing)

Haimes AIM Programming – Overview July 2025 7 / 31

CAPS in Design

CAPS Directory Structure
At the top specified directory level you will find phase subdirectories

In each phase subdirectory you may see:
capsRestart.cpc – a CSM saved state file – or –
capsRestart.egads – an EGADS file (for nonparametric runs)
capsRestart – subdirectory that contains the CAPS restart data
capsClosed – the phase has been closed (caps_close has been called to mark completion)
capsLock – an indication that another application is executing in this subdirectory
AIMnames – subdirectories each related to an AIM instance in the running CAPS Problem/Phase

Notes:
Scratch phase (no name specified) is not as protected as the others
CAPS Problem directory or individual phase subdirectories can be copied and used elsewhere

Problem Directory

Phases

AIM1 AIM2 ... capsRestart

Haimes AIM Programming – Overview July 2025 8 / 31

CAPS Infrastructure in ESP

ESP
UI

pyCAPS

User

——–

MDO
Framework

MSTC Engr

OpenMDAO

ModelCenter

ModeFRONTIER

Analysis
tools

Computa-
tional

Aircraft
Prototype
Syntheses

(CAPS)
API Problem

Database

Geometry
Subsystem

—
OpenCSM

EGADS

EGADSlite

Analysis
I/O Files

Analysis
Interface
Module
(AIM)

Mesh
Writers

Geometry
Database

Haimes AIM Programming – Overview July 2025 9 / 31

CAPS Objects

Object-based Not Object Orientated
Like egos in EGADS
Pointer to a C structure – allows for a function-based API
Treated as blind pointers (i.e., not meant to be dereferenced)
Header info is used to determine how to dereference the pointer
API C Functions

Returns an int error code or CAPS_SUCCESS
Usually have one (or more) input Objects
Can have an output Object (usually at the end of the argument list)

Can interface with multiple compiled languages
pyCAPS sits on-top of the C API

See $ESP_ROOT/doc/CAPSapi.pdf

Haimes AIM Programming – Overview July 2025 10 / 31

CAPS Objects

/*
* defines the owning information

*/
typedef struct {
int index; /* intent phrase index -- -1 no intent */
char *pname; /* the process name -- NULL from Problem */
char *pID; /* the process ID -- NULL from Problem */
char *user; /* the user name -- NULL from Problem */
short datetime[6]; /* the date/time stamp */
CAPSLONG sNum; /* the CAPS sequence number */

} capsOwn;

Haimes AIM Programming – Overview July 2025 11 / 31

CAPS Objects
/*
* defines the CAPS object

*/
typedef struct capsObject {
int magicnumber; /* must be set to validate the object */
int type; /* object type */
int subtype; /* object subtype */
int delMark; /* delete mark */
char *name; /* object name */
egAttrs *attrs; /* object attributes */
void *blind; /* blind pointer to object data */
void *flist; /* freeable list */
int nHistory; /* number of history entries */
capsOwn *history; /* the object’s history */
capsOwn last; /* last to modify the object */
struct capsObject *parent;

} capsObject;

typedef struct capsObject* capsObj;

Note: this is only for reference. AIM programming is outside of the CAPS Object
handling. blind is a pointer to a CAPS data structure where AIM programming
does have access.

Haimes AIM Programming – Overview July 2025 12 / 31

CAPS Objects

Problem Object
The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data
associated with the run(s), which can be both multi-fidelity and multidisciplinary.
There can be multiple Problems in a single execution of CAPS and each Problem is
designed to be thread safe allowing for multi-threading of CAPS at the highest level.

Value Object
A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both.
Also Value Objects can refer to mission parameters that are stored at the top-level of
the CAPS database. The values contained in any input alue Object can be linked to
another Value (or DataSet) Object of the same shape. Attributes are also cast to
temporary (User) Value Objects.

Haimes AIM Programming – Overview July 2025 13 / 31

CAPS Objects

Analysis Object
The Analysis Object refers to an instance of running an analysis code. It holds the
input and output Value Objects for the instance and a directory path in which to
execute the code (though no explicit execution is initiated). Multiple various
analyses can be utilized and multiple instances of the same analysis can be handled
under the same Problem.

Bound Object
A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the “outer surface of the wing”). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body).

Dimensionally:
1D – Collection of Edges
2D – Collection of Faces

Haimes AIM Programming – Overview July 2025 14 / 31

CAPS Objects

VertexSet Object
A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
it’s data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object
A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

Haimes AIM Programming – Overview July 2025 15 / 31

CAPS Objects

Object SubTypes Parent Object
capsProblem Parametric, Static
capsValue GeometryIn, GeometryOut, capsProblem,

Parameter, User capsValue
capsAnalysis capsProblem

capsValue AnalysisIn, AnalysisOut, capsAnalysis
AnalysisDynO

capsBound capsProblem
capsVertexSet Connected, Unconnected capsBound
capsDataSet FieldOut, FieldIn, User, capsVertexSet

GeomSens, TessSens, Builtin

Body Objects are EGADS Objects (egos)
See $ESP_ROOT/include/capsTypes.h for the complete defines

Haimes AIM Programming – Overview July 2025 16 / 31

CAPS Body Filtering

Filtering the active CSM Bodies occurs at two different stages: once in
the CAPS framework, and once in the AIMs. The filtering in the CAPS
framework creates sub-groups of Bodies from the CSM stack that are
passed to the specified AIM. Each AIM instance is then responsible for
selecting the appropriate Bodies from the list it has received.

The filtering is performed by using two Body attributes:
“capsAIM” and “capsIntent”.

Haimes AIM Programming – Overview July 2025 17 / 31

CAPS Body Filtering
CSM AIM targeting: “capsAIM”
The CSM script generates Bodies which are designed to be used by specific AIMs.
The AIMs that the Body is designed for is communicated to the CAPS framework via
the “capsAIM” string attribute. This is a semicolon-separated string with the list of
AIM names. Thus, the CSM author can give a clear indication to which AIMs should
use the Body. For example, a body designed for a CFD calculation could have:

ATTRIBUTE capsAIM $su2AIM;fun3dAIM;cart3dAIM

CAPS AIM Instantiation: “capsIntent”
The “capsIntent” Body attribute is used when an AIM uses different Body types for
different analyses. The attribute “capsIntent” is a semicolon-separated list of
keywords. An argument to caps_makeAnalysis accepts a semicolon-separated
list of keywords when an AIM is instantiated in CAPS/pyCAPS. Bodies from the
“capsAIM” selection with a matching string attribute “capsIntent” are passed to the
AIM instance. If the string to caps_makeAnalysis is NULL, all Bodies with a
“capsAIM” attribute that matches the AIM name are given to the AIM instance.

Haimes AIM Programming – Overview July 2025 18 / 31

Analysis Interface Module – Intro 1/4

Hides all of the individual Analysis details (and peculiarities)
Individual plugin functions translate from the Analysis’
perspective back and forth to CAPS
Provides a direct connection to BRep geometry and attribution
through EGADS

Outside the CAPS Object infrastructure
Use of C structures
AIM Utility library (with the context embedded in aimInfo)

Notes due to changes at Rev 1.19:
1 When an AIM function is invoked it is in the correct directory (as part of the Problem file

structure).

2 There is no longer an explicit AIM parent/child relationship. This is accomplished via linking
AnalysisOut Values of the parent to AnalysisIn Values of the child.

3 During restart only “Post” is executed at the last use of the AIM instance.

4 AIM specific storage is no longer indexed by the instance and is held internally.

Haimes AIM Programming – Overview July 2025 19 / 31

Analysis Interface Module – Intro 2/4

Large Mesh IO
The meshing AIMs used to hold onto the grid information in memory and pass a
pointer on to the CFD AIMs that write out a mesh file during solver preAnalysis.

In order to have the meshing AIM know what kind of file the downstream solver
AIM requires, there needs to be information “passed” from the solver AIM to the
meshing AIM. This is accomplished through the linkage itself. An AIM utility
function has been added that returns the info for linked (solver) AIMs to aid in
knowing what files to write in aimPostAnalysis. After the files have been written
from PostAnalysis, the mesh memory needs to be freed up.

The mesh writer is specified by using the Value structure member: meshWriter.
This is filled in the link target (solver) AnalysisIn Value Object, which will allow for
the upstream (meshing) AIM to have knowledge about how the mesh is to be written.
The string contains the name of the so/DLL to be loaded for the writing. The
meshing AIM accesses this information via the AIM utility function
aim_writeMeshes. See Session13.

Haimes AIM Programming – Overview July 2025 20 / 31

Analysis Interface Module – Intro 3/4

Analysis Dynamic Value Objects
There are circumstances where you may not know a priori all of the AnalysisOut
values of interest. In this case an AIM can generate outputs that have not been
registered at initialization – AnalysisDynO Values.

These are transient Objects and cannot be used in linking

After successful AIM preAnalysis invocation, all existing Analysis Dynamic
Output Objects that are stored in the instance are deleted (and those associated
mirrored restart files)

AIM postAnalysis is the only place where Analysis Dynamic Output Objects
can be created (see aim_makeDynamicOutput)

They should not be created (i.e., they will already exist) if the restart flag is set

After successful postAnalysis (and not at restart), the created Dynamic Output
Objects are given the serial number of postAnalysis (and are written for restart)

If postAnalysis errors, any created Dynamic Output Objects are deleted

Haimes AIM Programming – Overview July 2025 21 / 31

Analysis Interface Module – Intro 4/4
An AIM plugin is required for each Analysis code at:

a specific intent
a specific mode (i.e., where the inputs may be different)

AIMs can “talk” to each other
AIM outputs of one AIM instance can be linked to inputs of
another AIM instance
Communication can be accomplished via pointers

Dynamically loaded at runtime – extendibility and extensibility
Windows Dynamically Loaded Libraries (name.dll)

LINUX Shared Objects (name.so)
MAC Bundles, CAPS uses the so file extension

Plugin names must be unique – loaded by the name

† indicates memory handled by CAPS in the AIM descriptions
i.e., CAPS will free these memory blocks when necessary

Haimes AIM Programming – Overview July 2025 22 / 31

AIM Entry Points
Registration (Session07):

aimInitialize

aimInputs

aimOutputs

aimCleanup

Analysis Execution (Session07):

aimUpdateState

aimPreAnalysis

aimExecute – optional

aimPostAnalysis

aimCalcOutput

Data Transfers – all optional (Session12):

aimDiscr

aimFreeDiscrPtr

aimLocateElement

aimTransfer

aimInterpolation & aimInterpolateBar

aimIntegration & aimIntegrateBar

Haimes AIM Programming – Overview July 2025 23 / 31

AIM Function Sequencing

Analysis Execution Calling Sequences
AIM function execution happen automatically and are driven by what is requested
and the clean/dirty state of the associated CAPS Objects

aimUpdateState is always called before aimDiscr, aimPreAnalysis
or aimPostAnalysis

aimDiscr may be called before or after aimPreAnalysis or
aimPostAnalysis

aimPreAnalysis is always called before aimExecute or
aimPostAnalysis (unless doing a restart/continuation)

aimPostAnalysis is called right after aimUpdateState when CAPS is
restarting (the restart argument is set), or if aimPostAnalysis is the first
live function with continuation. See note on next page.

Only aimPreAnalysis and/or aimPostAnalysis (not at restart) should write
to the Analysis directory.

Haimes AIM Programming – Overview July 2025 24 / 31

AIM Function Sequencing

A Note on Continuation and Journalling
The internal state for each AIM instance must be able to be
recovered by the AIM
This means that the structure pointed by instStore (described
in the next session) needs to be refilled during the invocation of
aimPostAnalysis with the restart flag
This may require the AIM to write this data every time it is
modified. This file should reside in the AIM’s path and given a
unique filename
On restart this file should be read either in aimUpdateState
or aimPostAnalysis

Haimes AIM Programming – Overview July 2025 25 / 31

AIM Makefile – MAC/Linux
#
ifndef ESP_ROOT
$(error ESP_ROOT must be set -- Please fix the environment...)
endif
ifndef ESP_ARCH
$(error ESP_ARCH must be set -- Please fix the environment...)
endif
#
IDIR = $(ESP_ROOT)/include
include $(IDIR)/$(ESP_ARCH)
LDIR = $(ESP_ROOT)/lib

$(LDIR)/myAIM.so: myAIM.o $(LDIR)/libaimUtil.a
$(CC) $(SOFLGS) -o $(LDIR)/myAIM.so myAIM.o \

-L$(LDIR) -laimUtil -locsm -legads -ludunits2 -ldl -lm

myAIM.o: myAIM.c $(IDIR)/aimUtil.h $(IDIR)/capsTypes.h
$(CC) -c $(COPTS) $(DEFINE) -I$(IDIR) myAIM.c

run: $(LDIR)/myAIM.so
python session01.py

clean:
-rm myAIM.o

cleanall: clean
-rm $(LDIR)/myAIM.so

% make -or-
% make run

Haimes AIM Programming – Overview July 2025 26 / 31

AIM NMakefile – Windows
#
!IFNDEF ESP_ROOT
!ERROR ESP_ROOT must be set -- Please fix the environment...
!ENDIF
#
IDIR = $(ESP_ROOT)\include
!include $(IDIR)\$(ESP_ARCH).$(MSVC)
LDIR = $(ESP_ROOT)\lib

$(LDIR)\myAIM.dll: myAIM.def myAIM.obj
-del $(LDIR)\myAIM.dll $(LDIR)\myAIM.lib $(LDIR)\myAIM.exp
link /out:$(LDIR)\myAIM.dll /dll /def:myAIM.def myAIM.obj \

/LIBPATH:$(LDIR) aimUtil.lib ocsm.lib egads.lib udunits2.lib
$(MCOMP) /manifest $(LDIR)\myAIM.dll.manifest \

/outputresource:$(LDIR)\myAIM.dll;2

myAIM.obj: myAIM.c $(IDIR)\aimUtil.h $(IDIR)\capsTypes.h
cl /c $(COPTS) $(DEFINE) /I$(IDIR) myAIM.c

run: $(LDIR)\myAIM.dll
python session01.py

clean:
-del myAIM.obj

cleanall: clean
-del $(LDIR)\myAIM.dll $(LDIR)\myAIM.lib $(LDIR)\myAIM.exp

> nmake -f NMakefile -or-
> nmake -f NMakefile run

Haimes AIM Programming – Overview July 2025 27 / 31

The upcoming AIM development sessions

We will be incrementally building up functionality in two simple
AIMs: myAIM.c & theAIM.c

Most all of the AIMs in the ESP distribution can be used as
examples/templates, but note:

Many of these have a dependency on a library of utility functions
that has not been documented
Even if documented, the number of functions is overwhelming and
would be difficult to include here
Also the desire is now to have isolated AIMs that can stand-alone
and have few dependancies

Nearly all sessions have one or more exercises that (hopefully)
illuminate the additions to the AIM from the last session, and do
some development
It would be great is you are considering building an AIM and can
find some of the exercise time to work on that!

Haimes AIM Programming – Overview July 2025 28 / 31

Notes on myAIM.c

The goal is to provide a template for AIM development, but this AIM
is/will be self-contained and does not actually execute anything.

aimPreAnalysis examines the inputs available but does not
open and write an analysis input file.
aimExecute does nothing (except indicate that the non-existent
analysis has run).
aimPostAnalysis also does not open and read an analysis
output file, parse it, and fill in the AnalysisOut and AnalysisDynO
outputs.
Python scripts, which differ in each session, attempt to display the
results of the added functionality.
Because the same AIM name is used for most of these sessions, it
is a good idea to end/start the session with make cleanall
(or nmake -f nmakefile cleanall)

Haimes AIM Programming – Overview July 2025 29 / 31

Notes on theAIM.c

This AIM is also a template but actually runs a simple analysis.
aimPreAnalysis examines the inputs available and writes an
analysis input file.
aimExecute sets up a command-line that gets passed to a shell
to execute the analysis.
aimPostAnalysis reads the analysis output file and stores
away the results to make them available through calls to
aimCalcOutput.
Because the same AIM name is used for most of these sessions, it
is a good idea to end/start the session with make cleanall
(or nmake -f nmakefile cleanall)

Haimes AIM Programming – Overview July 2025 30 / 31

Exercises
In exercises/session06:

Load case.csm into serveESP
Examine the geometry we will be using in these sessions
Note the attributes placed on Faces

Examine the Python test script session06.py
Build the AIM (in this case myAIM)
Execute the script

make run – or –
python session06.py – or –
serveESP session06.py

Note the test directory and execute the tests via make test
For C++ programmers:

Examine the difference between myAIM.c and myAIM.cpp
Build with: make -f cpp.make –or– nmake -f cpp.mak

Use variants of these Makefiles for your exercises
Haimes AIM Programming – Overview July 2025 31 / 31

