
The Use of Geometry from within the
Engineering Sketch Pad – Rev 1.28

The EGADS API

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

Geocentric Technologies LLC

Haimes ESP Session on the EGADS API July 2025 1 / 55

ESP with CAPS

ESP
UI

pyCAPS

User

——–

MDO
Framework

MSTC Engr

OpenMDAO

ModelCenter

ModeFRONTIER

Analysis
tools

Computa-
tional

Aircraft
Prototype
Syntheses

(CAPS)
API Problem

Database

Geometry
Subsystem

—
OpenCSM

EGADS

EGADSlite

Analysis
I/O Files

Analysis
Interface
Module
(AIM)

Mesh
Writers

Geometry
Database

Haimes ESP Session on the EGADS API July 2025 2 / 55

ESP’s Geometry Subsystem Architecture

Engineering
Sketch Pad

(ESP)
UI

serveESP

OpenCSM

EGADS OpenCASCADE

User
Defined

Primitives &
Functions
(UDPs &
UDFs)

Configuration
Database

*.csm

User
Defined

Components
(UDCs)

Haimes ESP Session on the EGADS API July 2025 3 / 55

EGADS Overview

The Engineering Geometry Aircraft Design System (EGADS) is an
open-source geometry interface to OpenCASCADE

reduces OpenCASCADE’s 17,000 methods to about 100 calls
supports programming in C, C++, FORTRAN, Python and Julia
allow bottom-up construction via geometric and topological
primitives
allows top-down construction via solid creation and Boolean
operations
provides persistent user-defined attributes on topological entities
adjustable tessellator (vs a surface mesher) with support for
finite-differencing in the calculation of parametric sensitivities

Haimes ESP Session on the EGADS API July 2025 4 / 55

EGADS Overview
EGADSlite – for HPC Environments

No construction supported
Same API and Object model as EGADS

Can use EGADS to prototype/build EGADSlite code

Suitable for an MPI setup:
Data export from EGADS via a stream
Data import to EGADSlite from the stream
Stream setup to Broadcast (or write to disk)

ANSI C – No OpenCASCADE
Tiny memory footprint
Thread safe and scalable

EGADS’ OpenCASCADE evaluation functions replaced with
those written for EGADSlite

See $ESP ROOT/externApps/Pagoda/EGADSserver for an MPI
example

Haimes ESP Session on the EGADS API July 2025 5 / 55

EGADS Overview

System Support
MacOS (Intel or Mx) with clang, ifort/ifx and/or gfortran
LINUX with gcc, ifort/ifx and/or gfortran
Windows with Microsoft Visual Studio C++ and ifort/ifx
No globals (but not entirely thread-safe due to OpenCASCADE)
Various levels of output (0-none, through 3-debug)
Written in C and C++
pyEGADS only requires a current version of Python

EGADS Objects (egos)
Pointer to a C structure – allows for an Object-based API
Treated as “blind” pointers (i.e., not meant to be dereferenced)
egos are INTEGER*8 variables in FORTRAN

Haimes ESP Session on the EGADS API July 2025 6 / 55

EGADS Objects – egos

Context – Holds the globals
Transform
Tessellation
Nil (allocated but not assigned) – internal
Empty – internal
Reference – internal
Geometry

pcurve, curve, surface

Topology
Node, Edge, Loop, Face, Shell, Body, Model

See $ESP ROOT/doc/EGADS/egads.pdf for a detailed description of all of the functions.
See $ESP ROOT/include/egadsTypes.h for a list of defines and structures.
See $ESP ROOT/include/egadsErrors.h for a list of the return code defines.

Haimes ESP Session on the EGADS API July 2025 7 / 55

EGADS Objects
C structure definition - an ego

typedef struct egObject {
int magicnumber; /* must be properly set to validate

the object */
short oclass; /* object class */
short mtype; /* object member type */
void *attrs; /* attributes or reference */
void *blind; /* blind pointer to OpenCASCADE or

EGADS data */
struct egObject *topObj; /* top of the hierarchy or

context (if top) */
struct egObject *ref; /* threaded list of references */
struct egObject *prev; /* back pointer */
struct egObject *next; /* forward pointer */

} egObject;

#define ego egObject*;

Context Object
Start of dual threaded-list of active egos
Pool of deleted objects

Haimes ESP Session on the EGADS API July 2025 8 / 55

EGADS Objects – Ownership

Deleting Objects
Use the function EG deleteObject to delete Objects
The Object must be reference free – i.e. not used by another

Delete in the opposite order of creation
If in a Body, delete the Body instead (unless the Body is in a
Model)

EG deleteObject on a Context does not delete the Context
Deletes all Objects in the Context that are not in a Body
Use EG close to delete all objects in a Context (and the Context)

Another Rule
A Body can only be in one Model

Copy the Body of interest, then include the copy in the new Model

Haimes ESP Session on the EGADS API July 2025 9 / 55

EGADS Geometry Objects
surface

3D surfaces in the space of 2 parameters: [u, v]
Types: Plane, Spherical, Cylindrical, Revolution, Toriodal, Trimmed, Bezier, BSpline, Offset,

Conical, Extrusion

All types abstracted to [x, y, z] = f (u, v)

pcurve – Parameter Space Curves
2D curves in the Parametric space [u, v] of a surface
Types: Line, Circle, Ellipse, Parabola, Hyperbola, Trimmed, Bezier, BSpline, Offset

All types abstracted to [u, v] = h(t)

curve
3D curve in the space of 1 running parameter: t
Types: Line, Circle, Ellipse, Parabola, Hyperbola, Trimmed, Bezier, BSpline, Offset

All types abstracted to [x, y, z] = g(t)

Haimes ESP Session on the EGADS API July 2025 10 / 55

The EGADS API

All EGADS C/C++ Functions begin with “EG ”
There is an attempt to have a descriptive function name
Inputs are usually at the beginning of the argument list
Outputs are usually at the end
Return Values (icode):

(Almost) all EGADS function have an icode return value
A value of 0 (EGADS SUCCESS) indicates success
A negative value indicates an error

see $ESP ROOT/include/egadsErrors.h for a list of the
return code defines.

Some functions have a positive return code to indicate partial
success or provide other information to the caller

Haimes ESP Session on the EGADS API July 2025 11 / 55

EGADS API – Geometry

Create a Geometry Object
icode = EG makeGeometry(ego context, int oclass, int mtype, ego rGeom,

const int *ints, const double *reals,
ego *nGeom);

context the Context Object

oclass the Object Class: PCURVE, CURVE or SURFACE

mtype the Member Type (depends on oclass)

rGeom the reference Geometry Object (if none use NULL)

ints the integer information (if none use NULL)

reals the real data used to construct the geometry

nGeom the returned pointer to the new Geometry Object

icode the integer return code

Notes:
1 ints is required for either mtype = BEZIER or BSPLINE
2 See pages 16-29 of $ESP ROOT/doc/EGADS/egads.pdf for oclass/mtype data requirements

Haimes ESP Session on the EGADS API July 2025 12 / 55

EGADS API – Geometry

Evaluating the Object
icode = EG evaluate(ego object, double *params, double *result);

object the input Object

params NODE – ignored (can be NULL)
PCURVE, CURVE, EDGE – the t value
SURFACE, FACE – u then v

result the filled returned position, 1st and 2nd derivatives:

Edge Face
length ⇒ Node – 3 PCurve – 6 Curve – 9 Surface – 18
Position [x, y, z] [u, v] [x, y, z] [x, y, z]
1st – [du, dv] [dx, dy, dz] [dxu, dyu, dzu]

[dxv, dyv, dzv]

2nd – [du2, dv2] [dx2, dy2, dz2] [dx2
u, dy2

u, dz2
u]

[dxuv, dyuv, dzuv]

[dx2
v , dy2

v , dz2
v]

icode the integer return code

Note: You cannot evaluate a DEGENERATE Edge.

Haimes ESP Session on the EGADS API July 2025 13 / 55

EGADS API – Geometry

Inverse evaluation on the Object
icode = EG invEvaluate(ego object, double *pos, double *params,

double *result);

object the input Object

pos is [u, v] for a PCURVE and [x, y, z] for all others

params the returned parameter(s) found for the nearest position on the Object:
for PCURVE, CURVE or EDGE the one value is t
for SURFACE or FACE the 2 values are u then v

result the closest position found is returned:
[u, v] for a PCURVE (len = 2)
[x, y, z] for all others (len = 3)

icode the integer return code

Note: When using this with a Face the timing is significantly slower than making the call with the
Face’s reference surface (due to the clipping). If you don’t need this limiting call EG invEvaluate
with the underlying Surface Object.

Haimes ESP Session on the EGADS API July 2025 14 / 55

EGADS Topology

Boundary Representation – BRep
Top

Downyx
Bottom
Up

Topology Geometric Entity Function
Model
Body Solid, Sheet, Face, Wire
Shell
Face surface (x, y, z) = f(u, v)
Loop pcurve (non-planar)
Edge curve (x, y, z) = g(t)
Node point

Nodes that bound Edges may not be exactly on the underlying
curves
Edges in the Loops that trim the Face may not exactly sit on the
surface, hence the use of pcurves

Haimes ESP Session on the EGADS API July 2025 15 / 55

EGADS Topology Objects
Node

Contains [x, y, z]
Types: none

Edge
Has a 3D curve (if not Degenerate)
Has a t range (tmin to tmax, where tmin < tmax)
Note: The positive orientation is going from tmin to tmax

Has a Node for tmin and for tmax – can be the same Node
Types:

OneNode – periodic
TwoNode – normal
Degenerate – single Node, t range used for the associated pcurve

t = tmin t = tmax

N1 N2

Haimes ESP Session on the EGADS API July 2025 16 / 55

EGADS Topology Objects

Loop – without a reference surface
1 Free standing connected Edges that can be used in a non-manifold

setting (for example in WireBodies)
2 A list of connected Edges associated with a Plane (which does not

require pcurves)
An ordered collection of Edge objects with associated senses
Edges must not be Degenerate
Types:

Open: +E1 +E2 -E3

N1 N2

N3N4

E1

E2

E3

+

+

−

Closed: +E1 +E2 -E3 -E4

N1 N2

N3N4

E1

E2

E3

E4

+

+

−

−

Haimes ESP Session on the EGADS API July 2025 17 / 55

EGADS Topology Objects

Loop – with a reference surface
1 Collections of Edges followed by a corresponding collection of

pcurves that define the [u, v] trimming on the surface

An ordered collection of Edge objects with associated senses
Degenerate Edges are required when the [u, v] mapping collapses
like at the apex of a cone (note that the pcurve is needed to be
fully defined using the Edge’s t range)
Trims the surface by maintaining material to the left of the
running Loop
An Edge may be found in a Loop twice (with opposite senses)
and with different pcurves.
Types: Open or Closed (comes back on itself)

Haimes ESP Session on the EGADS API July 2025 18 / 55

EGADS Topology Objects

Face
A surface bounded by one or more Loops with associated senses
Only one outer Loop (sense = 1) and any number of inner Loops
(sense = -1). Note that under very rare conditions a Loop may be
found in more than 1 Face – in this case the one marked with
sense = +/- 2 must be used in a reverse manner.
All Loops must be Closed
Loop(s) must not contain reference geometry for Planar surfaces
If the surface is not a Plane then the Loop’s reference Object must
match that of the Face
Type is the orientation of the Face based on surface’s U⃗ × V⃗:

SFORWARD or SREVERSE when the orientations are opposed
Note that this is coupled with the Loop’s orientation (i.e. an outer Loop traverses the Face in a
right-handed manner defining the outward direction)

Haimes ESP Session on the EGADS API July 2025 19 / 55

EGADS Topology Objects – Face Examples

N1 N2

N3N4

E1

E2

E3

E4 N5
N6

E5

E6

+

+

−

−

−

−

Outer Loop – right handed/counterclockwise: +E1 +E2 -E3 -E4

Inner Loop – left handed/clockwise: -E5 -E6

Haimes ESP Session on the EGADS API July 2025 20 / 55

EGADS Topology Objects – Face Examples

N1

N2

E2

N1 N1

N2N2

E1

E2

E3

E2

PC1

PC2

PC3

PC4

u = 0 u = 2π

v = vmin

v = vmax

Unrolled periodic cylinder Face
Single Outer Loop – right handed/counterclockwise:

+E1 +E2 -E3 -E2

Haimes ESP Session on the EGADS API July 2025 21 / 55

EGADS Topology Objects – Face Examples

N1

N2

E2

N1 N1

N2N2

E1

E2

E3 − Degenerate

E2

PC1

PC2

PC3

PC4

u = 0 u = 2π

Unrolled Cone

Haimes ESP Session on the EGADS API July 2025 22 / 55

EGADS Topology Objects – Face Examples

N1 N2

N3N4

E1

E2

E3

E4 N7N6
N5

E5

E6

E7

E8

+

+

−

−

−

−

+

+

Outer Loop – right handed/counterclockwise: +E1 +E2 -E3 -E4

Inner Loop #1 – left handed/clockwise: -E5 -E6

Inner Loop #2 – left handed/clockwise: +E7 +E8

Haimes ESP Session on the EGADS API July 2025 23 / 55

EGADS Topology Objects – Face Examples

N1 N2
N4

N5N6

E1 E4

E5

E6

E7

E2

E3E3

N3

+ +

+

−

−

+

+

−

Single Outer Loop – right handed/counterclockwise:
+E1 +E2 +E3 -E2 +E4 +E5 -E6 -E7

Note: PCurve the same for both sides of E2

Haimes ESP Session on the EGADS API July 2025 24 / 55

EGADS Topology Objects
Shell

A collection of one or more connected Faces, that if Closed
segregates regions of 3-Space
All Faces must be properly oriented
Non-manifold Shells can have more than 2 Faces sharing an Edge
Types: Open (including non-manifold) or Closed

N1 N2

N3N4

N5

N6

E1

E2

E3

E4

E5

E6

E7

F1

F2

+

+

−

− −
+

+

−

Face #1 Loop: +E1 +E2 -E3 -E4
Face #2 Loop: +E5 +E6 -E7 -E2

Haimes ESP Session on the EGADS API July 2025 25 / 55

EGADS Topology Objects
SolidBody

Manifold collection of one or more Closed Shells
One outer Shell (sense = 1); any number of inner (sense = -1)
Edges (except Degenerate) are found exactly twice (sense = ±1)

N1

N2

N3

N4

N5

N6

N7

N7

E1

E2

E3

E4

E5E6

E7

E8

E9

E10

E11
E12

F1

F2

F3

F4

F5F6

Simple SolidBody: 8 Nodes, 12 Edges, 6 Loops and 6 Faces

Haimes ESP Session on the EGADS API July 2025 26 / 55

EGADS Topology Objects

Manifold vs. Nonmanifold

nonmanifold manifold manifold
figure stolen from “An introduction to Geometrical Modelling and Mesh Generation: The Gmsh Companion” by Christophe Geuzaine, Emilie
Marchandise & Jean-François Remacle – used without permission!

Can the geometry be manufactured?

Haimes ESP Session on the EGADS API July 2025 27 / 55

EGADS Topology Objects
Body – including SolidBody

Container used to aggregate Topology
Connected to support non-manifold collections at the Model level
Owns all the Objects contained within it
Types:

A WireBody contains a single Loop
A FaceBody contains a single Face – IGES import
A SheetBody contains a single Shell which can be either
non-manifold or manifold (though usually a manifold Body of this
type is promoted to a SolidBody)

Model
A collection of Bodies – becomes the Owner of contained Objects
Returned by SBO & Sew Functions
Read and Written by EGADS

Haimes ESP Session on the EGADS API July 2025 28 / 55

EGADS API – Topology

Create a simple Solid Body
icode = EG makeSolidBody(ego context, int stype, const double *data,

ego *body);

context the Context Object

stype one of: BOX, SPHERE, CONE, CYLINDER, TORUS

data length and fill depends on stype:
BOX 6 [x, y, z] then [dx, dy, dz] for the size of box
SPHERE 4 [x, y, z] of center then the radius
CONE 7 apex [x, y, z], base center [x, y, z], then the radius
CYLINDER 7 2 axis points and the radius
TORUS 8 [x, y, z] of center, direction of rotation, then the

major radius and minor radius

body the resultant Solid Body Object

icode the integer return code

Haimes ESP Session on the EGADS API July 2025 29 / 55

EGADS API – Topology

Create a Topology Object
icode = EG makeTopology(ego context, ego geom, int oclass, int mtype,

double *reals, int nchild, ego *children,
int *senses, ego *topo);

context the Context Object

geom the reference Geometry Object (if none use NULL)

oclass the Object Class: NODE, EDGE, LOOP, FACE, SHELL, BODY or MODEL

mtype the Member Type (depends on oclass)

reals the real data: may be NULL except for NODE that contains the [x, y, z] location and
EDGE where the tmin and tmax (the parametric bounds) are specified

nchild number of children (lesser) Topological Objects

children vector of children objects (nchild in length)
if a LOOP with a reference SURFACE, then 2*nchild in length (PCurves follow)

senses a vector of children integer senses: SFORWARD/SREVERSE for LOOP, and
SOUTER/SINNER for FACE nchild > 1 (may be NULL for FACE nchild = 1)

topo the returned pointer to the new Topology Object

icode the integer return code

Haimes ESP Session on the EGADS API July 2025 30 / 55

EGADS API – Topology

Query a Topology Object
icode = EG getTopology(ego topo, ego *geom, int *oclass, int *mtype,

double *reals, int *nchild, ego **children,
int **senses);

topo the Topology or Effective Topology Object to query

geom the returned reference Geometry Object (can be NULL)

oclass the returned Topology Object Class

mtype the returned Member Type (depends on oclass)

reals the real data (at most 4 doubles are filled): NODE – contains the [x, y, z] location,
EDGE where the tmin and tmax (the parametric bounds) are returned and
FACE where the [u, v] box is filled → the limits first for u then for v (4 in length)

nchild the returned number of children (lesser) Topological Objects

children the returned pointer to a vector of children objects (nchild in length)
if a LOOP with a reference SURFACE, then 2*nchild in length (PCurves follow)
if a MODEL – nchild is the number of Body Objects, mtype the total ego count

senses a vector of senses for the children (LOOPs) or inner/outer for (FACEs & SHELLs)

icode the integer return code

Haimes ESP Session on the EGADS API July 2025 31 / 55

EGADS API – Topology

Queries the Objects in a Body
icode = EG getBodyTopos(const ego body, ego ref, int oclass,

int *ntopo, ego **topos);

body the Body Object

ref reference Topology Object or NULL. Sets the context for the returned Objects
(i.e., all objects of the class oclass in the tree looking towards that class from ref)
NULL starts from the body (for example all Nodes in the Body)

oclass is NODE, EDGE, LOOP, FACE or SHELL – must not be the same class as ref
for EBODY can be EEDGE, ELOOPX, EFACE, ESHELL or the above

ntopo the returned number of Topology Objects

topos is a returned pointer to the vector of Objects, it is possible that an individual Object
may be NULL (freeable)
Note: the argument can be NULL so the Objects are not filled

icode the integer return code

This allows for the traversal of the Topology tree by jumping levels and/or looking up the hierarchy.

Haimes ESP Session on the EGADS API July 2025 32 / 55

EGADS API – Topology

Get the index of the Object in a Body
index = EG indexBodyTopo(const ego body, const ego obj);

body the Body Object

obj is the Topology Object in the Body

index the index (bias 1) or the integer return code (negative)

Get the Object in a Body by index
icode = EG objectBodyTopo(const ego body, int oclass, int index,

ego *obj);

body the Body Object

oclass the Topology Object class

index the index (bias 1) of the entity requested

obj is the returned Topology Object from the Body

icode the integer return code

Haimes ESP Session on the EGADS API July 2025 33 / 55

EGADS API – Topology

Return the Bounding Box info
icode = EG getBoundingBox(const ego object, double *bbox);

object any topological object

bbox 6 doubles filled reflecting [x, y, z]min and [x, y, z]max

icode the integer return code

Computes the smallest Cartesian bounding box surrounding the object.

Returns the Mass Properties
icode = EG getMassProperties(const ego object, double *props);

object can be EDGE, LOOP, FACE, SHELL, BODY or Effective Topology counterpart

props 14 doubles filled reflecting Volume, Area (or Length), Center of Gravity (3) and the
inertia matrix at CG (9)

icode the integer return code

Computes and returns the physical and inertial properties of a Topology Object.

Haimes ESP Session on the EGADS API July 2025 34 / 55

EGADS API – Utility & IO Functions

Memory Functions
These functions need to be used instead of the C/C++ variants for persistent memory
due to the need to allocate/free from the same DLL under Windows.

EG free(void *ptr);

void *ptr = EG alloc(size t nbytes);

void *ptr = EG calloc(size t nele, size t size);

void *ptr = EG reall(void *pointer, size t nbytes);

char *str = EG strdup(const char *string);

Haimes ESP Session on the EGADS API July 2025 35 / 55

EGADS API – Utility & IO Functions

Get revision
EG revision(int *imajor, int *iminor, const char **OCCrev);

imajor the returned major revision

iminor the returned minor revision number

OCCrev the returned revision of OpenCASCADE in use

Returns the version information for both EGADS and OpenCASCADE.

Open
icode = EG open(ego *context);

context the returned Context Object

icode the integer return code

Opens and returns a Context object. This is required for the use of all EGADS (except for the above).

Haimes ESP Session on the EGADS API July 2025 36 / 55

EGADS API – Utility & IO Functions

Close a Context
icode = EG close(ego context);

context the Context Object to close

icode the integer return code

Cleans up and closes the Context.

Delete Object
icode = EG deleteObject(ego object);

object the Object to delete

icode the integer return code

Deletes an Object (if possible). A positive return indicates that the Object is still referenced by this number
of other Objects and has not been removed from the Context. If the Object is the Context then all
Geometry/Topology Objects in the Context are deleted except those attached to Body or Model Objects.

Haimes ESP Session on the EGADS API July 2025 37 / 55

EGADS API – Utility & IO Functions

Read Geometric data from a File
icode = EG loadModel(ego context, int bitFlag, const char *name,

ego *model);

context the Context Object to receive the geometry

bitFlag Options (additive):
1 Don’t split closed and periodic entities
2 Split to maintain at least C1 in BSPLINEs
4 Don’t maintain Units on STEP/IGES read (always millimeters)
8 Try to merge Edges and Faces (with same geometry)

16 Load unattached Edges as WireBodies (stp/step & igs/iges)

name path of file to load (with extension – case insensitive):
igs/iges IGES file
stp/step STEP file

brep native OpenCASCADE file
egads native file format with persistent Attributes (splits ignored)

model the returned Model Object that was read

icode the integer return code

Loads and returns a Model Object from disk and puts it in the Context.

Haimes ESP Session on the EGADS API July 2025 38 / 55

EGADS API – Utility & IO Functions

Writes the Model to a File
icode = EG saveModel(const ego object, const char *name);

object the Model Object to write

name path of file to write, type based on extension (case insensitive):
igs/iges IGES file
stp/step STEP file

brep a native OpenCASCADE file
egads a native file format with persistent Attributes and the ability to write

EBody and Tessellation data

icode the integer return code

Writes the BReps (with optional Tessellation and EBody Objects) contained in the Model to disk. Only
writes BRep data for anything but EGADS output.

Note: object can be a single Body for convenience

Haimes ESP Session on the EGADS API July 2025 39 / 55

EGADS API – Utility & IO Functions
Copy and optionally Transform an Object
icode = EG copyObject(const ego object, void *other, ego *newObj);

object the Object to copy
other Transformation Object, Body Object, NULL for a strict copy, or a vector of doubles

newObj The resultant new Object
icode the integer return code

Creates a new EGADS Object by copying and optionally transforming the input object. A Tessellation or
PCurve Object cannot be transformed. For a Tessellation Object, other can be a vector of displacements
that is 3 times the number of vertices of doubles in length to morph the tessellation. Also, if object is a
Tessellation Object or an EBody Object and other is a Body Object, the existing Object is copied but
associated with the Body specified (not the original referenced object). Note that other is not checked if it
is compatible with the original referenced Body.

If other is a Context, then object is copied to this target Context. This is useful in multithreaded settings.

Get the Context
icode = EG getContext(ego object, ego *context);

object the queried Object
context the returned owning Context

icode the integer return code

Haimes ESP Session on the EGADS API July 2025 40 / 55

EGADS Objects – Attribution

Attributes – metadata consisting of name/value pairs
Unique name – no spaces
A single type: Integer, Real, String, CSys, Pointer (not persistent)
A length (for Integers & Reals)

Objects
Any (non-internal) Object can have multiple Attributes
Only Attributes on Topological Objects are copied and are
persistent (saved)

SBO & Intersection Functions
Unmodified Topological Objects maintain their Attributes
Face Attributes are carried through to the resultant fragments
All other Attributes may be lost

CSys Attributes are modified through Transformations

Haimes ESP Session on the EGADS API July 2025 41 / 55

EGADS API – Attribution

Add an Attribute to an Object
icode = EG attributeAdd(ego object, const char *name, int type,

int len, const int *ints, const double *reals,
const char *string);

object the Object to attribute

name the name of the attribute

type the attribute type:
ATTRINT, ATTRREAL, ATTRSTRING, ATTRCSYS or ATTRPTR

len the number of integers or reals (ignored for strings and pointers)

ints the integers for ATTRINT

reals the floating-point data for ATTRREAL or ATTRCSYS

string the character string pointer for ATTRSTRING or ATTRPTR types

icode the integer return code

Notes:
1 Only the one appropriate attribute value (of ints, reals or string) is required.
2 If the name already exists the type and value(s) are overwritten.

Haimes ESP Session on the EGADS API July 2025 42 / 55

EGADS API – Attribution

Delete an Attribute from an Object
icode = EG attributeDel(ego object, const char *name);

object the Object

name the name of the attribute to delete

icode the integer return code

Deletes an attribute from the Object. If the name is NULL then all attributes are removed from this Object.

The number of Object Attributes
icode = EG attributeNum(ego object, int *nAttr);

object the Object

nAttr the returned number of attributes attached to the Object

icode the integer return code

Returns the number of attributes found with this object.

Haimes ESP Session on the EGADS API July 2025 43 / 55

EGADS API – Attribution

Return an Attribute on an Object
icode = EG attributeRet(ego object, const char *name, int *type,

int *len, const int **ints,
const double **reals, const char **string);

object the Object to query

name the name to query

type the type: ATTRINT, ATTRREAL, ATTRSTRING, ATTRCSYS or ATTRPTR

len the returned number of integers or reals

ints the returned pointer to integers for ATTRINT

reals the returned pointer to floating-point data for ATTRREAL or ATTRCSYS

string the returned pointer to a character string for ATTRSTRING or ATTRPTR types

icode the integer return code

Notes:
1 Only the appropriate attribute value (of ints, reals or string) is returned.
2 The CSys (12 reals) is returned in reals after the len values.

Haimes ESP Session on the EGADS API July 2025 44 / 55

EGADS API – Attribution

Get an Attribute on an Object
icode = EG attributeGet(ego object, int index, const char **name,

int *type, int *len, const int **ints,
const double **reals, const char **string);

object the Object to query

index the index (1 to nAttr from EG attributeNum)

name the returned name

type the type: ATTRINT, ATTRREAL, ATTRSTRING, ATTRCSYS or ATTRPTR

len the returned number of integers or reals

ints the returned pointer to integers for ATTRINT

reals the returned pointer to floating-point data for ATTRREAL or ATTRCSYS

string the returned pointer to a character string for ATTRSTRING or ATTRPTR types

icode the integer return code

Notes:
1 Only the appropriate attribute value (of ints, reals or string) is returned.
2 The CSys (12 reals) is returned in reals after the len values.

Haimes ESP Session on the EGADS API July 2025 45 / 55

EGADS API – Attribution

Copy the Attributes from an Object to another
icode = EG attributeDup(ego src, ego dst);

src the source Object

dst the Object to receive src’s attributes

icode the integer return code

Deletes an attribute from the destination Object and then copies the source’s attributes to the destination.
ATTRPTR attributes copy the pointer, other types allocate new data and copy the contents of the source.

Haimes ESP Session on the EGADS API July 2025 46 / 55

EGADS Tessellation Objects
Geometry

Unconnected discretization of a range of the Object
Polyline for curves at constant t increments
Regular grid for surfaces at constant increments (isoclines)

Body Topology
Connected and trimmed tessellation including:

Polyline for Edges
Triangulation for Faces
Optional Quadrilateral Patching for Faces

Ownership and Geometric Parameters for Vertices
Adjustable parameters for side length and curvature (x2)
Watertight
Exposed per Face/Edge or Global indexing

Haimes ESP Session on the EGADS API July 2025 47 / 55

EGADS Tessellation Objects

from $ESP ROOT/bin/vGeom from $ESP ROOT/bin/vTess

Haimes ESP Session on the EGADS API July 2025 48 / 55

EGADS API – Tessellation

Creates a Discrete Object from a Body
icode = EG makeTessBody(ego body, double *parms, ego *tess);

body the input Body or closed EBody Object, may be any Body type

parms a set of 3 parameters that drive the Edge discretization and the Face triangulation:
params[0] – the maximum length of an Edge segment or triangle side (in physical
space); a zero is no limit, and a negative value only tessellates Edges.
params[1] – a curvature-based value that looks locally at the deviation between the
centroid of the discrete object and the underlying geometry. Any deviation larger than
the input value will cause the tessellation to be enhanced in those regions.
params[2] – the maximum interior dihedral angle (in degrees) between triangle facets
(or Edge segment tangents for a WIREBODY tessellation), note that a zero ignores
this phase.

tess the returned resultant Tessellation of body

icode the integer return code

See the next page for attribute-based tessellation control.

Haimes ESP Session on the EGADS API July 2025 49 / 55

EGADS API – Tessellation

Tessellation control at the Topological level
.tParams this attribute can be placed on the Body, individual Faces or Edges which overrides

parms locally (the minimums are used). This attribute must be ATTRREAL and have 3
values (as described in EG makeTessBody).

.tParam like the attribute .tParams, this attribute completely overrides parms locally (without
using the minimum).

.tPos this ATTRREAL attribute on an Edge directly sets the ts for interior Edge positions.

.rPos this ATTRREAL attribute sets the relative spacing (in arc-length) for interior Edge
positions.

.nPos this ATTRINT attribute sets the number of interior vertices (length is 1). The spacing
is set equal in arc-length.

.inserts this ATTRREAL attribute (on a Face) specifies that these vertex [u, v] positions will be
inserted into the tessellation. The length must be 2 times the number of inserts.

.insert! like the attribute .inserts, this specifies the [u, v] positions to be inserted, but after these
inserts the Face tessellation terminates (i.e., no additional insertions are performed by
the normal algorithm).

Note:
An ATTRINT attribute .tPos or .rPos of length 1 and containing a zero indicates no interior points.

Haimes ESP Session on the EGADS API July 2025 50 / 55

EGADS API – Tessellation

Gets the Edge discretization data
icode = EG getTessEdge(const ego tess, int eIndex, int *len,

const double **xyzs, const double **ts);

tess the input Body Tessellation Object

eIndex the Edge index (1 bias). The Edge Objects and number of Edges can be retrieved via
EG getBodyTopos and/or EG indexBodyTopo . A minus index refers to the use
of a mapped (+) Edge index from applying the functions EG mapBody and
EG mapTessBody.

len the returned number of vertices in the Edge discretization

xyzs the returned pointer to the set of coordinate data – 3*len in length

ts the returned pointer to the parameter values associated with each vertex – len in length

icode the integer return code

Note: DEGENERATE Edges return 2 vertices (both the same coordinates of the single Node) and the t
range in ts. This Edge will not be referenced in the associated Face tessellation.

Haimes ESP Session on the EGADS API July 2025 51 / 55

EGADS API – Tessellation

Gets the Face triangulation data
icode = EG getTessFace(const ego tess, int fIndex, int *len,

const double **xyz, const double **uv,
const int **ptype, const int **pindx, int *ntri,
const int **tris, const int **tric);

tess the input Body Tessellation Object

fIndex the Face index (1 bias) – Minus index refers to a mapped (+) Face index (if it exists).

len the returned number of vertices in the Face triangulation

xyz the returned pointer to the set of coordinate data – 3*len in length

uv the returned pointer to the parameters for each vertex – 2*len in length

ptype returned pointer to the vertex type (-1 - internal, 0 - Node, > 0 Edge) – len in length

pindx returned pointer to vertex index (-1 internal) – len in length

ntri returned number of triangles

tris returned pointer to triangle indices, 3 per triangle (1 bias) – 3*ntri in length
orientation consistent with the Face’s mtype

tric returned pointer to neighbor information, 3 per triangle looking at opposing side:
triangle (1-ntri), negative is Edge index for an external side – 3*ntri in length

icode the integer return code

Haimes ESP Session on the EGADS API July 2025 52 / 55

EGADS API – Tessellation

Status of a Tessellation Object
icode = EG statusTessBody(ego tess, ego *body, int *stat, int *npts);

tess the Tessellation Object to query

body the returned associated Body Object

stat the returned state of the tessellation: -1 – closed but warned, 0 – open, 1 – OK,
2 – displaced

npts the returned number of global points in the tessellation (0 – open)

icode the integer return code: EGADS SUCCESS – complete, EGADS OUTSIDE – still
open

Note: Placing the attribute “.mixed” on tess before invoking this function allows for tri/quad (2 tris)
tessellations. The type must be ATTRINT and the length is the number of Faces, where the values are
the number of quads (triangle pairs) per Face. Single triangles are followed by triangle pairs for a Face
with both triangle and quads.

Given quad 1 2 3 4 ==>
trias 1 2 3 and 1 3 4

4---3
| / |
1---2

Haimes ESP Session on the EGADS API July 2025 53 / 55

EGADS API – Tessellation

Global Lookup
icode = EG localToGlobal(const ego tess, int ind, int locl, int *gbl);

tess the closed Tessellation Object

ind the topological index (1 bias) – 0 Node, (-) Edge, (+) Face

locl the local (or Node) index

gbl the returned global vertex index

icode the integer return code

Gets the vertex type and index
icode = EG getGlobal(const ego tess, int global, int *pytpe,

int *pindex, double *xyz);

tess the closed Tessellation Object

global the global index (1 bias)

ptype the point type (-) Face local index, (0) Node, (+) Edge local index

pindex the point topological index (1 bias)

xyz the filled (3 in length) coordinates at this global index (can be NULL)

icode the integer return code

Haimes ESP Session on the EGADS API July 2025 54 / 55

Exercises
In the exercise/session02 directory:

Examine the Makefile (or NMakefile on Windows). Notice
the library(s) included.
Build the executable and run it. The output should look like:
Using EGADS 1.28 Interim Release with OpenCASCADE 7.8.1

Number of Bodies = 2

Body 0: Name = capsLength String = cm
Tessellation 0 npts = 1306 (Solid)
Volumes = 7.280172e+00 7.296560e+00

Body 1: Name = capsLength String = cm
Tessellation 0 npts = 2263 (Solid)
Volumes = 3.454432e+01 3.464152e+01

EGADS Info: 0 Objects, 0 Reference in Use (of 247) at Close!

Modify myExample.c to print all attributes using
EG getBodyTopos for all of the FACEs, EDGEs and NODEs
in each Body. Note that you must free the vectors of Objects.
Modify myExample.c to traverse the BRep Topology from
Model to Nodes using EG getTopology and output all
attributes attached to each Topological entity.

Haimes ESP Session on the EGADS API July 2025 55 / 55

