Bob Haimes
bob@geocentrictech.com or haimes@mit.edu
Geocentric Technologies LLC

Mesh Writer AIM Plugins

@ Can always write out a mesh as part of aimCalcOutputs

@ Can use existing MeshWriters if the structures discussed below
are filled out

@ Can provide support for new mesh formats to the community
See SESP_ ROOT/src/CAPS/aim/meshWriter for a list of
supported formats

B T PO i = Walig

AIM meshWriter
Structures and Functions

@ Structures filled by an AIM mesh generation
o Functions for initializing and filling the structures

@ The library (libaimMesh.a/aimMesh.lib) must be included in the
AIM so/DLL build

Haimes AIM Programming — Mesh Writing July 2025 3/18

<@ps meshWriter Structures 1/5

Dynamically loading the mesh writer

The meshing AIM dynamically loads the appropriate so/DLL to output the mesh file
in its default location. If the mesh data is resident in memory during postAnalysis, it
needs be written to disk and freed. The mesh writer shared object/DLL needs to
contain just the entry points: meshExtension & meshWrite (see below).

aimMesh Structure

The complete representation of a mesh

typedef struct ({
aimMeshData *meshData;
aimMeshRef +meshRef;
} aimMesh;

meshData represents the mesh coordinates and connectivity
meshRef mapping of the boundary mesh vertexes to the interior vertexes

A mesh generation AIM is responsible for filling the complete aimMesh Structure that is passed to a
meshWriter shared library, which is responsible for writing the data to disk. Only the meshRe £
pointer is passed via a link to an analysis AIM.

Haimes AIM Programming — Mesh Writing July 2025 4/18

aimMeshElemGroup Structur

Represents a group of elements of the same type

typedef struct {

char *groupName; /* name of group or NULL */

int ID; /* Group ID */

enum aimMeshElem elementTopo; /* Element topology */

int order; /+ order of the element (1 - Linear) =/
int nPoint; /+ number of points defining an element =/
int nElems; /* number of elements in the group =*/

int *elements; /+ Element-to-vertex connectivity (l-based)

nElem*nPoint in length */

aimMeshElemGroup;

groupName group identifier that may be non-unique
ID group identifier that may be non-unique
elementTopo is one of:
enum aimMeshElem {aimUnknownElem, aimLine, aimTri, aimQuad,
aimPyramid, aimPrism, aimHex};
order polynomial degree of element
nPoint number of points in an element
nElems number of elements the group
elements Element-to-vertex (1-based) connectivity nElem*nPoint in length

aimTet,

B T PO i = Walig

5/18

shData Structure

Represents the Cartesian coordinates and element connectivity of the mesh

typedef double aimMeshCoords[3];
typedef int aimMeshIndices([2];

typedef struct {
int dim; /* Physical dimension: 2D or 3D x/
int nVertex; /* total number of vertices in the mesh */
aimMeshCoords *verts; /* the xyz coordinates of the vertices
nVertex in length */
int nElemGroup; /* number of element groups */
aimMeshElemGroup *elemGroups; /* element groups —-- nElemGroup in length =%/
int nTotalElems; /* total number of elements */
aimMeshIndices +*elemMap; /* group,elem map in original element ordering
nTotalElems in length -- can be NULL x/
} aimMeshData;

dim must be 2 or 3 to represent the number Physical dimensions used in verts.
nVertex number of coordinates
verts Coordaintes stored as verts[iv][d] for iv € [0, nVertex) and d € [0, dim).

nElemGroup number of element groups

elemGroups group of elements with all the same type (nElemGroups in length)

nTotalElems total number of elements in the mesh

elemMap The original element ordering (n7otalElems in length). e lemMap[ie][0] is the 0-based

element group index into elemGroups, and elemMaplie][1] is O-based index of the
element in the group.

v

Represents the a boundary mesh and it’s mapping to the interior
typedef struct {

ego tess; /* the EGADS Tessellation Objects (contains Body) =*/
int +map; /* the mapping between Tessellation vertices and
mesh vertices -- tess verts in length */
} aimMeshTessMap;

tess an EGADS tessellation of the boundary
map mapping from global tessellation vertices to the interior mesh verticies. Use
EG_statusTessBody to get the length.

aimMeshBnd Structure

Represents the a boundary group information

typedef struct {

char *groupName; /* name of group or NULL =/
int ID; /* Group ID x/
} aimMeshBnd;

groupName a name associated with a boundary group
ID an identifier associated with the group

Haimes AIM Programming — Mesh Writing July 2025 7/18

shRef Structure

Represents the boundary of a mesh and a reference to the full mesh

typedef struct {

enum aimMeshType type; /* type of mesh referenced */

int nmap; /+ number of EGADS Tessellation Objects =*/

aimMeshTessMap *maps; /* the EGADS Tess Object and map to mesh verts x/

int nbnd; /* number of boundary groups */

aimMeshBnd *bnds; /* boundary group info */

char xfileName; /+ full path name (no extension) for grids =/

int _delTess; /* internal use only, whether tess/body ego are deleted x/
} aimMeshRef;

type is one of:
enum aimMeshType {aimUnknownMeshType, aimAreaMesh,
aimSurfaceMesh, aimVolumeMesh};

nmap number of mappings from the boundary to the interior

maps boundary to the interior mapping

nbnd number of boundary groups

bnds bounary group information
fileName absolute path to the full mesh file name without the extension
_delTess Internal usage that should not be modified

B T PO i = Walig

Mesh writer entry points

The following two functions are required for each dynamically loaded mesh writer.
They allow the AIM mesh writer interface the ability to complete the filenames and
to output the meshes. This is dynamically loadable so that new (or custom) mesh
writer can be easily attached to a CAPS session.

const char *extension = meshExtension ()

extension the file extension used for this writer

icode = meshWrite (void *aimInfo, aimMesh xmesh)
aimInfo the AIM context
mesh the mesh data structure that will be written

icode integer return code

<ps ~ AIM Mesh Library — Mesh Generator

Delete previous meshes

icode = aim_deleteMeshes (void xaimInfo, aimMeshRef smeshRef)

aimInfo the AIM context
meshRef the pointer to the Mesh Reference Structure
icode integer return code

This should be called during the mesh writing preAnalysis to cleanup mesh files from previous invocations
of the AIM instance. This is required because if the mesh file already exists, it is not (re)written in
aim_writeMeshes.

N\

Query mesh existance

icode = aim_gueryMeshes (void xaimInfo, int index, aimMeshRef xmeshRef)

aimInfo the AIM context
index the AnalysisOut Value index to query
meshRef the pointer to the Mesh Reference Structure
icode integer return code

This call returns CAPS__SUCCESS if the mesh file already exists and no others are needed, if positive then
this is the number of file types that need to be written via calling aim_writeMeshes.

.

Haimes AIM Programming — Mesh Writing July 2025 10/18

<ps AIM Mesh Library — Mesh Generator

icode = aim_writeMeshes (void xaimInfo, int index,

aimInfo
index
stype
mesh

icode

enum capssType stype, aimMesh xmesh)
the AIM context
the AnalysisOut Value index to write
ANALYSISIN or ANALYSISOUT
the pointer to the Mesh Structure

integer return code

If meshes need to be output (see aim_queryMeshes), the mesh data must be populated and then
written out by calling this function.

For stype = ANALYSISIN:
This calls writeMesh for each name sepcified by the list of strings in the analysis value. The suffix
“Writer” is appended to each name.

For stype = ANALYSISOUT:
This calls writeMesh for each linked solver Analysis Input (as specified in the linkage).

After this call the memory allocated to fill mesh should be freed.

Haimes

AIM Programming — Mesh Writing July 2025

11718

ite a single mesh

icode = aim _writeMesh (void *aimInfo, const char xwriterName,
const char xunits, aimMesh *mesh)

the AIM context

aimInfo
writerName
units

mesh

icode

the string for a mesh writer (including the suffix “Writer” at the end)
length units for the output mesh (may be NULL)
the pointer to the Mesh Structure

integer return code

B T PO i = Walig

12/18

<ps AIM Mesh Library — Mesh Generator

Initialize aimMeshRef

icode = aim_initMeshRef (aimMeshRef xmeshRef, enum aimMeshType type)

meshRef the aimMeshRef instance for member data initialization

type the AIM mesh type (aimUnknownMeshType, aimAreaMesh,
aimSurfaceMesh or aimVolumeMesh)

icode integer return code

Free aimMeshRef

icode = aim_freeMeshRef (aimMeshRef *meshRef)

meshRef the aimMeshRef instance to free member data

icode integer return code

Initialize aimMeshBnd

icode = aim_initMeshBnd (aimMeshBnd *meshBnd)

meshBnd the aimMeshBnd instance for member data initialization

icode integer return code

Haimes AIM Programming — Mesh Writing July 2025 13/18

<ps AIM Mesh Library — Mesh Generator

Initialize aimMeshData

icode = aim_initMeshData (aimMeshData xmeshData)

meshData the aimMeshData instance for member data initialization

icode integer return code

Free aimMeshData

icode = aim_freeMeshData (aimMeshData *meshData)

meshData the aimMeshData instance to free member data

icode integer return code

Element topological dimension

dim = aim_elemTopoDim(enum aimMeshElem topo)

topo the aimMeshElem element type

dim topological dimension of the element type: 1,2 or 3

A\

Haimes AIM Programming — Mesh Writing July 2025 14/18

<ps ~ AIM Mesh Library — Mesh Generator

Add element group to aimMeshData

icode = aim_addMeshElemGroup (void xaimInfo, const char xgroupName,

aimInfo
groupName
D

order
nPoint
meshData
icode

int ID, enum aimMeshElem elementTopo,
int order, int nPoint,
aimMeshData *meshData)

the AIM context

the name of the group (may be NULL)

an integer group ID

the degree of the polynomial for the elements
number of points in the element

the aimMeshData where the element group is added
integer return code

Add elements to aimMeshElemGroup

icode = aim_addMeshElem(void xaimInfo, int nElems,
aimMeshElemGroup *elemGroup)

the AIM context

number of elements to add to the element group

the aimMeshElemGroup where the elements are added
integer return code

aimInfo
nElems
elemGroup
icode

Haimes

AIM Programming — Mesh Writing July 2025

15718

<ps AIM Mesh Library — Mesh Morphing

Write meshRef to disk

icode = aim_storeMeshRef (void *xaimInfo, const aimMeshRef xmeshRef,
const char *meshextension)

aimInfo the AIM context
meshRef the aimMeshRef instance written to disk
meshextension the mesh extension used by the analysis AIM
icode integer return code

Note: This function should be called by an analysis AIM during preAnalysis to store a meshRef instance
for mesh morphing.

N\

Load aimMeshRef from disk

icode = aim_loadMeshRef (void xaimInfo, aimMeshRef smeshRef)

aimInfo the AIM context
meshRef the aimMeshRef instance fill from disk
icode integer return code

Note: This function should be called by an analysis AIM during preAnalysis to load a meshRef instance
for mesh morphing.

Haimes AIM Programming — Mesh Writing July 2025 16/18

<ps AIM Mesh Library — Mesh Morphing
Morph a meshRef

icode = aim_morphMeshUpdate (void x*aimInfo, aimMeshRef *meshRef,
int numBody, ego xbodies)

aimInfo the AIM context
meshRef the aimMeshRef instance to be updated
numBody number of bodies
bodies ego list of new bodies (numBody in length)
icode integer return code

Note: The tessellation objects in meshRef are mapped to bodies and the boundary to interior mapping is
updated.

Create a meshRef to a local file

icode = aim_localMeshRef (void xaimInfo, const aimMeshRef *meshRefln,
aimMeshRef xmeshReflocal)

| \

aimInfo the AIM context
meshRefln the input aimMeshRef instance
meshRefLocal the output aimMeshRef instance with an AIM local file
icode integer return code

Note: All pointers are shallow copied to meshRefLocal

.

Haimes AIM Programming — Mesh Writing July 2025 17/18

Mesh Writing

In exercises/sessionl3:

@ Run sessionl3.py and view the resultant binary STL file:
myExample/Scratch/cfd/myMeshFile.bstl
You can use ParaView, but may need to rename with the file with
the extension . st 1

@ Run 2bodySTL. py and note the difference.

B T PO i = Walig

