Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

and

John F. Dannenhoffer, III

john@geocentrictech.com

Geocentric Technologies LLC

P Prerequisites for this Training

@ You are a C/C++ programmer

@ You are here with a laptop containing:

o C & C++ (and optionally FORTRAN) compilers

o ESP Rev 1.28 (or a recent 1.28 Beta)

e OpenCASCADE 7.8.1 (from HTTP://acdl.mit .edu/ESP or
a PreBuilt distribution)

o A functioning Python at 3.12.10 or higher
If from HTTP: //acdl.mit .edu/ESP — Run the install script
and make this the default Python in the shell/command-prompt
used for ESP development

@ ESP successfully built (and run) from source

@ A desire to write an ESP UDF/UFD and/or an AIM (and
hopefully in idea for one that you would like to work on!)

If any item above is not true — you do not belong here!

Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025 2/13

Bob Haimes
bob@geocentrictech.com or haimes @mit.edu

John E. Dannenhoffer, 111

john@geocentrictech.com or jfdannen@syr.edu

Nitin Bhagat
nbhagatl @udayton.edu

<ps ESP’s Software Guiding Principles

Ideally a software system should:

@ Work for user, not the user working for the system

@ Be based on a mental model that is easy for the user to grasp
@ Never lose anything they have done (backward compatibility)
@ Solve the user’s real problem, not their stated request

@ Be responsive to the changing needs of the users

@ Never surprise the user

@ Not be reverse-engineered

o Be tested thoroughly

This means that:

@ The programmer fakes a hit so that the user’s life is easier

We do not always succeed!

Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025 4/13

P ESP In Isolation

@ a parametric geometry creation and manipulation system
designed to fully support the analysis and design of aerospace
vehicles (aCAD+)

@ a stand-alone system for the development of geometric models

@ an API can be embedded into other software systems to support
their geometric and process needs (e.g., CAPS)

@ extensible so that users can add their own geometric features

o a full-featured mechanical computer-aided design (mCAD)
system

@ a system to be used for creating “drawings”

Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025 5/13

P CAPS which includes ESP

@ a software system that allows for building complex workflows

@ a system that supports multidisciplinary and multi-fidelity
analyses with direct access to geometry and its attribution

@ a system that simplifies inter-analysis communication

@ an API that provides access to sensitivities (supports
gradient-based optimization)

@ software designed for aircraft design settings

o extensible so that additional analyses can be supported

v

@ an MDO Framework (but can support them)

Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025 6/13

&P Extensible Software

Programmers can add functionality to ESP in the following ways:
@ User-Defined Primitives (UDPs)

o Create and returns an EGADS Body (usually a Solid) to be placed
on the CSM stack

@ User-Defined Functions (UDFs)

e Has access to other Bodies on the CSM stack
o Usually creates a new EGADS Body through some form of
manipulation and add back to the stack

@ Analysis Interface Modules (AIMs)

o Interface between the CAPS infrastructure and any Analysis &
Meshing codes

o Provides the ability to generate Analysis/Meshing inputs, perform
execution and then access the results

o AIM Mesh Writers are also handled in a similar manner

All are dynamically loaded at run-time

Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025 7/13

es <
SP ESP with CAPS
e 1
ES|P R N Geometry CoE
Subsystem|,_> Database
,.\ - N~
va OPENCSIME(- - - -+« v vemrrrriiiniiiiei e
Computa- EGADS :
pyCAPS || 5Py 4 N .
Aircraf Analysis
= b |:crtat ; J Interface Mesh
< o rotﬁ YPe | Module Writers
ynitneses N\ > (A|M)
User (CAPS) -
i API Problem
Database
N~ Q
MDO
Framework EGADSIite
rl:
MSTC Engr & Analysis A
OpenMDAO Analysis I/0 Files :
ModelCenter [****)| tools
ModeFRONTIER 7 R
Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025

Configuration
Database
*.csm

Defined
Components
(UDCs)

OpenCASCADE

July 2025 9/13

®p ESP Development Environment

Build from source

Use the same shell with the same environment as was used for building
the rest of the system

Build from within a PreBuilt distribution

Make sure you:

@ Have a C/C++ compiler and (N)Make available in your
shell/command-prompt

@ Set the environment by running:

o MAC/Linux: Double-click on the ESP 1.28 desktop icon
Use the opened window for your development
e Windows: Startup a command-prompt that supports Visual Studio

> cd $ESP_ROOT% (the location of EngSketchPad)
> ESPenv.bat

Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025 10/13

P How Plugins work

Built like a shared library
@ Windows — a dynamically loaded library (.DLL)

o LINUX - shared object (.s0)

@ MAC — a bundle — we use the extension .so

Loaded at run-time
@ Opened with LoadLibrary/dlopen

o Function pointers by name via GetProcAddress /dlsym
@ Can have multiple instances, each may require its own state data

@ Called by function pointer and instance via a dispatch table (i.e.,
name is only used to retrieve the pointer)

@ Shared object/DLL not closed so that valgrind can report symbols

Haimes & Dannenhoffer Programming ESP Plugins — Overview July 2025 11/13

Of prime importance — this is the first training of its kind.
We need feedback to improve future versions!

@ Opportunity to provide anonymous (or named) immediate
feedback for anything “not clear” (e.g. muddy)

@ Ask questions about presentation material, previous exercises,
point out errors, make suggestions, ...

@ Questions will be answered at next session
@ E-mail questions (post-training) to any member of the team

B TNy 2cnuing B Fllgins — Gverview

01
02
03
04
05
06
07
08
09
10
11
12
13

Plugin Overview (this session)

EGADS — Programmatic use of Geometry in the Plugins
OpenCSM UDP Basics

OpenCSM Full-featured UDP

OpenCSM Full-featured UDF

CAPS’ AIM Overview

AIM Software Structure

AIM Utility Functions & Tessellations

AIM Analysis Input, Execution and Output

AIM Sensitivities

AIMs and Units

AIM Bounds & the AIM Discretization Structure

AIM Mesh Writing

AIM Documentation, Distribution & Testing Discussion

B TNy 2cnaning B Fllgins — Gverview

