John F. Dannenhoffer, III
john@geocentrictech.com
Geocentric Technologies LLC

e Differences between UDPs and UDFs

e How UDP/UDFs are used in ESP

@ Anatomy of directory udpTemplate

@ Steps for generating UDP/UDFs

@ Line-by-line description of template.c

@ Exercisel

@ Users can add their own user-defined primitives (UDPs)

creates a single* Body

do not consume any Bodys from the Stack

are written in C, C++, or FORTRAN and are compiled

can be written either top-down or bottom-up or both

have access to the entire suite of methods provided by EGADS
are coupled into ESP dynamically at run time

@ Users can add their own user-defined functions (UDFs)

are the same as UDPs, except they consume one or more Bodys
from the Stack

@ Creating UDPs and UDFs involve (almost) the same process

o UDP/UDFs are called with a UDPRIM statement

UDPRIM Sprimtype S$argNamel argValuel \
SargName2 argValue2 \
SargName3 argValue3 \
SargName4 argValued

@ Sprimtype must start with a letter

@ At most 4 name-value pairs can be specified on the UDPRIM
statement

@ More name-value pairs can be specified in any number of
UDPARG statements that precede the UDPRIM statement

UDPARG Sprimtype S$argNamel argValuel \
SargName2 argValue2 \
SargName3 argValue3 \
$argNamed argValue4
@ name-value pairs are processed in order (with possible
over-writing)

@ For UDP/UDFs that read an external file, one can use << to tell
ESP to create a file from the following lines, up to a line that
starts with >>

@ For example:

UDPRIM editAttr filename << verbose 1
NODE ADJ2FACE tagType=spar taglndex=1
AND ADJ2FACE tagType=lower
AND ADJ2EDGE tagType=root

SET capsConstraint=pointConstraintl
>>

SET A 10
has two Branches (UDPRIM and SET)

@ The following generate identical Boxes
UDPRIM box dx 1 dy 2 dz 3

@ and

UDPARG box

UDPRIM box
e and

UDPARG box

UDPRIM box
@ and

UDPARG box
UDPARG box
UDPARG box
UDPRIM box

dx
dy

dx
dx

dx
dy
dz

1
2 dz 3

11 dy 22 dz 33
1 dy 2 dz 3

N

@ Some UDP/UDFs return values to the calling script

@ The returned values have names that are prepended by two
at-signs (for example: volume in the UDP/UDF is available as
@@volume after the UDPRIM executes)

@ These values stay in effect until overwritten by another UDP (or a
UDF or a UDC)

@ ESP ships with a directory named
SESP_HOME/contributions/UdpUdf, which contains
UDP/UDFs that are contributed by users

@ Udpudf is pre-populated with several UDP/UDFs
e udpTemplate — a template from which most UDP/UDF
development should start
o the description that follows starts here
e udpTrainl - a full-featured UDP that contains:
o bottom-up and top-down builds
e makes a SolidBody, SheetBody, or WireBody
e has output arguments
e implements analytic sensitivities
e udfTrain2 — a full-featured UDF that contains:
e inputs from a file
e manipulation of attributes

@ template.hlp — file containing the text that will be included
in the documentation in ESP’s help facility

@ template_1.csm— file containing the first test case

@ template_1.png— screen dump when running
template_1.csm (for help system)

@ Makefile — file for compiling and linking the . c file into the
shared library (LINUX and MACOS)

@ NMakefile — file for compiling and linking the . c file into the
shared library (Windows)

@ template.c — file containing the implementation of the
UDP/UDF

e verify_7.8.1— adirectory (folder) that contains data that is
to be used during routine testing

Soxuousw—

——
AU B W —

UDPRIM template -

purpose:
serve as a template for creation of new UDPs

as an example, it creates a sphere centered at the origin

input Bodys:

—none-—

input arguments (specified as name/value pairs):
radius radius of sphere

output arguments:
-none-

usage notes:
the radius must be positive

analytic sensitivities are not supported
contributed by:
John Dannenhoffer john@geocentrictech.com

[default 1]

N e Y N N

template_1
written by John Dannenhoffer

DESPMTR RAD 2.0
UDPRIM template radius RAD

END

@ Make a new directory
o for example, create udpExercisel
@ Copy all the files in udpTemplate into your new folder

@ Rename all files to your new UDP/UDF name
o for example

@ rename template_1l.csmtoexercisel_1.csm
@ rename template.ctoexercisel.c
@ rename template.hlptoexercisel.hlp

e Edit Makefile by changing all occurances of template to the
name of your new UDP/UDF

o Edit NMakefile by changing all occurances of template to
the name of your new UDP/UDF

@ Remove the files from verify_7.8.1
o these will be automatically created below

@ Modify the file that will provide help to the user
o for example, modify exercisel.hlp

@ Modify the . csm file(s) that will be used to verify that the
UDP/UDF works as intended

o for example, modify exercisel_1.csm
o add other test files, naming them exercisel_2.csm,...

@ Modify the . c file to implement your new UDP/UDF

o for example, modify exercisel.c

@ Test that your UDP/UDF works as intended
o for example:

@ run serveESP exercisel_1 to verify that you get intended
results

@ run sensCSM -geom exercisel_1 to verify that you get
correct geometric sensitivities (which are returned as 1. 0e-20 if
finite-difference sensitivities are used)

@ run sensCSM -tess exercisel_1 to verify that you get
correct tessellation sensitivities (which are returned as 1. 0e-20 if
finite-difference sensitivities are used)

@ Build the verification data (to be used for automatic testing)
o for example:

@ run serveESP -addVerify exercisel_1
@ run sensCSM -geom —-addVerify exercisel_1
@ run sensCSM -tess —-addVerify exercisel_1

o this adds files to verify_7.8.1

1 /*

2 ke ok ok kK ke ok K ok ok K ok ok K ok ok K ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok K ok Kk ok Kk ok K ok ok ok ok ok ok ok kK ok Kk ok K ok ok ok ok ok ok ok ok ok
3 * *
4 + udpTemplate -- template UDP *
5 * *
6 * this makes a sphere centered at the origin *
7 * *
8 * Written by John Dannenhoffer @ Geocentric Technologies *
9 * *
10 ok ok ok ok ok ok KKk ko K ko ok o Kok ok ok Kok ok K Kk ok ok Kk k ok ok ok ok ok K Kk ok o K kR ok ok Kk k ok ok kR kK kR K Kk ko Kk
11 */

12

13 /*

14 * Copyright (C) 2025 John F. Dannenhoffer, III (Geocentric Technologies))
15 *

16 + This library is free software; you can redistribute it and/or

17 * modify it under the terms of the GNU Lesser General Public

18 * License as published by the Free Software Foundation; either

19 * version 2.1 of the License, or (at your option) any later version.
20 *

21 + This library is distributed in the hope that it will be useful,

22 * but WITHOUT ANY WARRANTY; without even the implied warranty of

23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 * Lesser General Public License for more details.

25 *

26 * You should have received a copy of the GNU Lesser General Public

27 * License along with this library; if not, write to the Free Software
28 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

29 * MA 02110-1301 USA

30 */

31

July 2025 15/35

@ General notes:

o the header files udpUtilities.hand udpUtilities.c
contain lots of code to hide the complexities of UDP/UDFs from
the developer

o the order of the statements is generally important

e macros defined in these files are written in UPPERCASE

@ Lines 1-11: identifying comment

@ Lines 13-30: copyright comment

k73
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
sl
52
53
54
55

/* uncomment the following to get DEBUG printouts =*/
//#define DEBUG 1

/* the number of "input" Bodys

this only needs to be specified if this is a UDF (user-defined
function) that consumes Bodys from OpenCSM’s stack. (the default
value is 0).

if NUMUDPINPUTBODYS>0 then exactly NUMUDPINPUTBODYS are in emodel
if NUMUDPINPUTBODYS<0 then up to -NUMUDPINPUTBODYS are in emodel
*/
#define NUMUDPINPUTBODYS 0

/* the number of arguments (specified below) «*/
#define NUMUDPARGS 1

/* set up the necessary structures (uses NUMUDPARGS) */
#include "udpUtilities.h"

/* shorthand macros for accessing argument values and velocities x/
#define RADIUS (IUDP) ((double x) (udps[IUDP].arg[0].val)) [0]
#define RADIUS_SIZ (IUDP) udps [IUDP] .arg[0] .size

Line 33: uncomment the define to print DEBUG information

Line 44: define the number of input Bodys
o set to O for a user-defined primitive (UDP)

Line 47: number of input and output arguments

Line 50: this include file sets up transfers to and from ESP
o this line MUST be in your UDP/UDF at this location
@ Lines 53-54: define macros to access input and output arguments

o these lines should be duplicated for every input/output argument
o the index in arg should be incremented for each additional
input/output argument

56 /+ data about possible arguments

57 argNames: argument name (must be all lower case)

58 argTypes: argument type: +ATTRINT integer input

59 ~ATTRINT integer output

60 +ATTRREAL double input (no sensitivities)
61 —-ATTRREAL double output (no sensitivities)
62 +ATTRREALSEN double input (with sensitivities)
63 ~ATTRREALSEN double output (with sensitivities)
64 +ATTRSTRING string input

65 —ATTRSTRING *%% cannot be used xx*

66 +ATTRFILE input file

67 ~ATTRFILE %% cannot be used xx*

68 +ATTRREBUILD forces rebuild if any variable in
69 semi-colon-separated list has been changed
70 —ATTRREBUILD *+* cannot be used **x

71 +ATTRRECYCLE forces rebuild (always) by blocking recyjcling
72 —ATTRRECYCLE *%* cannot be used *x

73 argldefs: default value for ATTRINT

74 argDdefs: default value for ATTRREAL or ATTRREALSEN */

75 static char +argNames[NUMUDPARGS] = {"radius", };

76 static int argTypes [NUMUDPARGS] = {ATTRREAL, };

77 static int argIdefs [NUMUDPARGS] = {0, }i

78 static double argDdefs [NUMUDPARGS] = {1., };

79

80 /* get utility routines: udpErrorStr, udpInitialize, udpReset, udpSet,

81 udpGet, udpVel, udpClean, udpMesh =/

82 #include "udpUtilities.c"

B T PR S iy 3035 9755

@ Line 75: this lists the name of all input/output arguments
e only lowercase characters and digits can be used
@ Line 76: the type of each argument

o see lines 58-72 for available types
e in general, positive values used for input and negative values used
for output

@ Line 77: the default values for all integer arguments
o Line 78: the default values for all real (double) arguments

@ Line 82: definitions of the routines needed to interact with ESP
o this line MUST be in your UDP/UDF at this location

83 /*

84 ek kK kK kK kK kK kK kK ok ko kK kK Kk
85 * *
86 * udpExecute - execute the primitive *
87 * *
88 ok ok kK K K ok ok kK K ok ok kK K ok ok ok ok K K ok ok kK K o ok ok kK o ok ok kK ok ok ok ok K K K ok ok kK K ok ok kK K ok ok ok kK K ok kK Kk ok kK K K
89 */

90

91 int

92 udpExecute (ego context, /% (in) EGADS context »*/

93 ego *ebody, /% (out) Body (or model) pointer =*/
94 int *nMesh, /% (out) number of associated meshes */
95 char *stringl[]) /% (out) error message x/

96 {

97 int status = EGADS_SUCCESS;

98

99 double datal[l8];

100 char *message=NULL;

101 udp_T +udps = *Udps;

102

103 ROUTINE (udpExecute) ;

104

105 /% x/
106

107 #ifdef DEBUG

108 /* debug printing of the input arguments */

109 printf ("udpExecute (context=%11x)\n", (long long)context);

110 printf ("radius (0) = %f\n", RADIUS(0));

111 #endif

@ Line 91: required so that ESP can load this UDP/UDF

@ Line 92: required name of the function that ESP will call to
execute this UDP/UDF

o if a UDP, the first argument (context) is needed for many of the
EGADS routines

o if a UDF, the first argument will be emodel, which is a EGADS
MODEL that contains the input Bodys

@ Line 93: a pointer to the Body (or MODEL) that is returned from
this UDP/UDF to ESP

@ Line 94: nMesh is currently not used

@ Line 95: the error message returned from this UDP/UDF (might
be blank)

P Explanation of template. c (4b)

@ Line 97: the default return status
@ Line 99: data that is specific to this UDP/UDF
e in general, there will be many more variables defined here

@ Line 100: the declaration character string into which message will
be written

e see below for macros used to allocate and free this
@ Line 101: a required line to have the UDP/UDF properly interact
with ESP
@ Line 103: a required macro definition for reporting errors
o this should specify the name of the current function

@ Line 107-111: prints (if DEBUG was defined in line 33) the input
arguments that were automatically set up

o the argument O refers to the current call

Dannenhoffer UDP/UDF Programming — Basics July 2025 23/35

112 /* default return values x/

113 *ebody = NULL;

114 *nMesh = 0;

115 *string = NULL;

116

117 /* the place where messages to the user are placed */
118 MALLOC (message, char, 100);

119 message[0] = "\0’;

120

121 /* check arguments =/

122 if (RADIUS_SIZ(0) > 1) |

123 snprintf (message, 100, "\"radius\" should be a scalar");
124 status = OCSM_ILLEGAL_VALUE;

125 goto cleanup;

126

127 } else if (RADIUS(0) <= 0) {

128 snprintf (message, 100, "\"radius\" should be a positive");
129 status = OCSM_ILLEGAL_VALUE;

130 goto cleanup;

131

132 }

133

134 /* cache copy of arguments for future use */

135 status = cacheUdp (NULL) ;

136 CHECK_STATUS (cacheUdp) ;

137

138 #ifdef DEBUG

139 /* debug printing of cached input arguments =*/

140 printf ("radius[%d] = %f\n", numUdp, RADIUS (numUdp)) ;
141 #endif

@ Lines 113-115: default return values (if something goes wrong
below)
@ Line 118: invocation of the MALLOC macro to allocate memory
(in this case 100 characters)
o ensure that on line 100 the pointer was initialized to NULL

@ Line 119: initialize message to a zero-length string
@ Lines 122-132: check the validity of the various input arguments

@ error messages are written in message
e status is set to an appropriate error number (which should be
negative)
@ egadsErrors.h defines standard error numbers for EGADS
@ OpenCSM. h defined standard error numbers for OpenCSM

e control is transfered to cleanup so that memory and other
cleanup functions are executed

@ donotuse return

e Line 135: this call is required to cache the inputs so that the
sensitvity routine can be applied correctly
@ Line 136: a macro to check the return status
e if status is negative, the error is reported and necessary
cleanups are performed
@ Lines 138-141: more debug prints to show that the input
arguments were cached properly

e an argument of O refers to the instance being created
e positive arguments indicate the instance number

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

/+ make SolidBody */
datal[0] = 0;
datal[l] = 0;
datal[2] = 0;
data[3] = RADIUS(0);

status = EG_makeSolidBody (context,
CHECK_STATUS (EG_makeSolidBody) ;

SPLINT_CHECK_FOR_NULL (xebody) ;
/+ set the output value(s) =*/

/* remember this model (Body) */
udps [numUdp] .ebody = *ebody;

SPHERE,

data,

ebody) ;

Lines 143—146: set up the array needed for
EG_makeSolidBody

e see EGADS.pdf (page 94) for a description of what there data are
Line 148: make the SPHERE SolidBody
Line 149: same as line 136

Line 151: the invocation of a macro to ensure that
EG_makeSolidBody actually returned a Body

@ Line 154: this UDP/UDF does not return any values

@ Line 156: a required line to remember the Body that was made
(so that the sensitivity routines work properly)

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

cleanup:
#ifdef DEBUG

printf ("udpExecute -> numUdp=%d, *ebody=%11x\n", numUdp,

#endif

if (strlen(message) > 0) {
*string = message;
printf ("$s\n", message);
} else if (status != EGADS_SUCCESS) {
FREE (message) ;
*string = udpErrorStr (status);
} else {
FREE (message) ;
}

return status;

(long long) (*ebody));

@ Line 159: the cleanup label is REQUIRED for the macros to
work properly

o this is where execution continues if an error is encountered
@ Lines 160-162: more DEBUG printing

@ Lines 164-172: required code to properly return error messages
to ESP

o lines 168 and 171 show the FREE macro, which has been set up to
work with the MALLOC macro

@ Line 174: the ONLY return statement from this function, which
returns the error status back to ESP

176 /*

177 ok kK ek Kk Kk Kk Kk k kK kK Kk Kk k Kk Kk ok k k Kk Kk ok kK kK kR Kk k ok k Kk k kK kK Kk Kk ok Kk kK ok k kK

178 * *

179 * udpSensitivity - return sensitivity derivatives for the "real" argument =
180 * *

181 ok ko ko ko Kk Kk ok ko kR Kk o ko Kk K ok ko ko ok ok Kk ko Kk ko ko ko ko ko Kk Kk Kk Kk ko ok

182 */

183

184 int

185 udpSensitivity (ego ebody, /% (in) Body pointer =/

186 int npnt, /% (in) number of points x/

187 int entType, /% (in) OCSM entity type */

188 int entIndex, /% (in) OCSM entity index (bias-1) */
189 double uvs|[], /% (in) parametric coordinates for evaluation */
190 double vels([]) /% (out) velocities =/

191 {

192 int status = EGADS_SUCCESS;

193

194 int iudp, Jjudp;

195

196 ROUTINE (udpSensitivity);

197

198 I %/

199

200 #ifdef DEBUG

201 if (uvs != NULL) {

202 printf ("udpSensitivity (ebody=%11x, npnt=%d, entType=%d, entIndex=%d, uvs=%f %f)\n",
203 (long long)ebody, npnt, entType, entIndex, uvs[0], uvs[l]);

@ For now, leave this code exactly as itis in template.c

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

} else {

printf ("udpSensitivity (ebody=%11x, npnt=%d, entType=%d, entIndex=%d,

(long long)ebody, npnt, entType, entlIndex);
}
#endif

/+ check that ebody matches one of the ebodys */
iudp = 0;
for (judp = 1; judp <= numUdp; judp++) {
if (ebody == udps[judp].ebody) {
iudp = judp;
break;
}
}
if (iudp <= 0) {
status = EGADS_NOTMODEL;
goto cleanup;

}

/+ the following line should be included if sensitivities
are not computed analytically =/
status = EGADS_NOLOAD;

cleanup:
#ifdef DEBUG
printf ("udpSensitivity -> vels=%f %f %f\n", vels[0], vels[l],
#endif
return status;
}

vels[2]);

uvs=NULL{

)\n",

@ For now, leave this code exactly as itis in template.c

@ Make a new UDP (exercisel) in the directory (folder)
udpExercisel
o the purpose is to make a cylinder that is centered at the origin
o the input parameters are:

@ length - the length of the cylinder

@ diam - the diameter of the cylinder

e dirn - a string containing the (single) character “x”, “X”, “y”,
“y”, “z”, or “Z” to indicate that the cylinder’s axis should be along
the x—, y—, or z— axis

@ Make sure that your UDP does appropriate error checking

