
A Programmer’s Training for
ESP UDPs, UDFs and CAPS’ AIMs

The Engineering Sketch Pad – Rev 1.28

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

and

John F. Dannenhoffer, III
john@geocentrictech.com

Geocentric Technologies LLC

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 1 / 13



Prerequisites for this Training

You are a C/C++ programmer
You are here with a laptop containing:

C & C++ (and optionally FORTRAN) compilers
ESP Rev 1.28 (or a recent 1.28 Beta)
OpenCASCADE 7.8.1 (from HTTP://acdl.mit.edu/ESP or
a PreBuilt distribution)
A functioning Python at 3.12.10 or higher
If from HTTP://acdl.mit.edu/ESP – Run the install script
and make this the default Python in the shell/command-prompt
used for ESP development

ESP successfully built (and run) from source

A desire to write an ESP UDF/UFD and/or an AIM (and
hopefully in idea for one that you would like to work on!)

If any item above is not true – you do not belong here!
Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 2 / 13



ESP/CAPS Plugin Training Team

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

John F. Dannenhoffer, III
john@geocentrictech.com or jfdannen@syr.edu

Nitin Bhagat
nbhagat1@udayton.edu

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 3 / 13



ESP’s Software Guiding Principles

Ideally a software system should:
Work for user, not the user working for the system
Be based on a mental model that is easy for the user to grasp
Never lose anything they have done (backward compatibility)
Solve the user’s real problem, not their stated request
Be responsive to the changing needs of the users
Never surprise the user
Not be reverse-engineered
Be tested thoroughly

This means that:
The programmer takes a hit so that the user’s life is easier

We do not always succeed!
Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 4 / 13



ESP In Isolation

ESP is:
a parametric geometry creation and manipulation system
designed to fully support the analysis and design of aerospace
vehicles (aCAD+)
a stand-alone system for the development of geometric models
an API can be embedded into other software systems to support
their geometric and process needs (e.g., CAPS)
extensible so that users can add their own geometric features

ESP is not:
a full-featured mechanical computer-aided design (mCAD)
system
a system to be used for creating “drawings”

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 5 / 13



CAPS which includes ESP

CAPS is:
a software system that allows for building complex workflows
a system that supports multidisciplinary and multi-fidelity
analyses with direct access to geometry and its attribution
a system that simplifies inter-analysis communication
an API that provides access to sensitivities (supports
gradient-based optimization)
software designed for aircraft design settings
extensible so that additional analyses can be supported

CAPS is not:
an MDO Framework (but can support them)

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 6 / 13



Extensible Software
Programmers can add functionality to ESP in the following ways:

User-Defined Primitives (UDPs)
Create and returns an EGADS Body (usually a Solid) to be placed
on the CSM stack

User-Defined Functions (UDFs)
Has access to other Bodies on the CSM stack
Usually creates a new EGADS Body through some form of
manipulation and add back to the stack

Analysis Interface Modules (AIMs)
Interface between the CAPS infrastructure and any Analysis &
Meshing codes
Provides the ability to generate Analysis/Meshing inputs, perform
execution and then access the results
AIM Mesh Writers are also handled in a similar manner

All are dynamically loaded at run-time
Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 7 / 13



ESP with CAPS

ESP
UI

pyCAPS

User

——–

MDO
Framework

MSTC Engr

OpenMDAO

ModelCenter

ModeFRONTIER

Analysis
tools

Computa-
tional

Aircraft
Prototype
Syntheses

(CAPS)
API Problem

Database

Geometry
Subsystem

—
OpenCSM

EGADS

EGADSlite

Analysis
I/O Files

Analysis
Interface
Module
(AIM)

Mesh
Writers

Geometry
Database

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 8 / 13



ESP’s Geometry Subsystem Architecture

Engineering
Sketch Pad

(ESP)
UI

serveESP

OpenCSM

EGADS OpenCASCADE

User
Defined

Primitives &
Functions
(UDPs &
UDFs)

Configuration
Database

*.csm

User
Defined

Components
(UDCs)

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 9 / 13



ESP Development Environment

Build from source
Use the same shell with the same environment as was used for building
the rest of the system

Build from within a PreBuilt distribution
Make sure you:

Have a C/C++ compiler and (N)Make available in your
shell/command-prompt
Set the environment by running:

MAC/Linux: Double-click on the ESP 1.28 desktop icon
Use the opened window for your development
Windows: Startup a command-prompt that supports Visual Studio
> cd %ESP ROOT% (the location of EngSketchPad)
> ESPenv.bat

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 10 / 13



How Plugins work

Built like a shared library
Windows – a dynamically loaded library (.DLL)
LINUX – shared object (.so)
MAC – a bundle – we use the extension .so

Loaded at run-time
Opened with LoadLibrary / dlopen
Function pointers by name via GetProcAddress / dlsym
Can have multiple instances, each may require its own state data
Called by function pointer and instance via a dispatch table (i.e.,
name is only used to retrieve the pointer)
Shared object/DLL not closed so that valgrind can report symbols

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 11 / 13



Muddy Cards

Of prime importance – this is the first training of its kind.
We need feedback to improve future versions!

Opportunity to provide anonymous (or named) immediate
feedback for anything “not clear” (e.g. muddy)
Ask questions about presentation material, previous exercises,
point out errors, make suggestions, . . .
Questions will be answered at next session
E-mail questions (post-training) to any member of the team

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 12 / 13



Plugin Training Sessions

01 Plugin Overview (this session)
02 EGADS – Programmatic use of Geometry in the Plugins
03 OpenCSM UDP Basics
04 OpenCSM Full-featured UDP
05 OpenCSM Full-featured UDF
06 CAPS’ AIM Overview
07 AIM Software Structure
08 AIM Utility Functions & Tessellations
09 AIM Analysis Input, Execution and Output
10 AIM Sensitivities
11 AIMs and Units
12 AIM Bounds & the AIM Discretization Structure
13 AIM Mesh Writing
– AIM Documentation, Distribution & Testing Discussion

Haimes & Dannenhoffer Programming ESP Plugins – Overview July 2025 13 / 13


