
Computational Aircraft Prototype Syntheses
AIM Programming – Mesh Writing

For ESP Rev 1.28

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

Geocentric Technologies LLC

Haimes AIM Programming – Mesh Writing July 2025 1 / 18

Introduction

Mesh Writer AIM Plugins
Can always write out a mesh as part of aimCalcOutputs
Can use existing MeshWriters if the structures discussed below
are filled out
Can provide support for new mesh formats to the community
See $ESP_ROOT/src/CAPS/aim/meshWriter for a list of
supported formats

Haimes AIM Programming – Mesh Writing July 2025 2 / 18

AIM meshWriter
Structures and Functions

Structures filled by an AIM mesh generation
Functions for initializing and filling the structures
The library (libaimMesh.a/aimMesh.lib) must be included in the
AIM so/DLL build

Haimes AIM Programming – Mesh Writing July 2025 3 / 18

meshWriter Structures 1/5

Dynamically loading the mesh writer
The meshing AIM dynamically loads the appropriate so/DLL to output the mesh file
in its default location. If the mesh data is resident in memory during postAnalysis, it
needs be written to disk and freed. The mesh writer shared object/DLL needs to
contain just the entry points: meshExtension & meshWrite (see below).

aimMesh Structure
The complete representation of a mesh

typedef struct {
aimMeshData *meshData;
aimMeshRef *meshRef;

} aimMesh;

meshData represents the mesh coordinates and connectivity

meshRef mapping of the boundary mesh vertexes to the interior vertexes

A mesh generation AIM is responsible for filling the complete aimMesh Structure that is passed to a
meshWriter shared library, which is responsible for writing the data to disk. Only the meshRef
pointer is passed via a link to an analysis AIM.

Haimes AIM Programming – Mesh Writing July 2025 4 / 18

meshWriter Structures 2/5

aimMeshElemGroup Structure
Represents a group of elements of the same type
typedef struct {

char *groupName; /* name of group or NULL */
int ID; /* Group ID */
enum aimMeshElem elementTopo; /* Element topology */
int order; /* order of the element (1 - Linear) */
int nPoint; /* number of points defining an element */
int nElems; /* number of elements in the group */
int *elements; /* Element-to-vertex connectivity (1-based)

nElem*nPoint in length */
} aimMeshElemGroup;

groupName group identifier that may be non-unique
ID group identifier that may be non-unique

elementTopo is one of:
enum aimMeshElem {aimUnknownElem, aimLine, aimTri, aimQuad, aimTet,

aimPyramid, aimPrism, aimHex};

order polynomial degree of element
nPoint number of points in an element

nElems number of elements the group
elements Element-to-vertex (1-based) connectivity nElem*nPoint in length

Haimes AIM Programming – Mesh Writing July 2025 5 / 18

meshWriter Structures 3/5

aimMeshData Structure
Represents the Cartesian coordinates and element connectivity of the mesh

typedef double aimMeshCoords[3];
typedef int aimMeshIndices[2];
typedef struct {

int dim; /* Physical dimension: 2D or 3D */
int nVertex; /* total number of vertices in the mesh */
aimMeshCoords *verts; /* the xyz coordinates of the vertices

nVertex in length */
int nElemGroup; /* number of element groups */
aimMeshElemGroup *elemGroups; /* element groups -- nElemGroup in length */
int nTotalElems; /* total number of elements */
aimMeshIndices *elemMap; /* group,elem map in original element ordering

nTotalElems in length -- can be NULL */
} aimMeshData;

dim must be 2 or 3 to represent the number Physical dimensions used in verts.
nVertex number of coordinates

verts Coordaintes stored as verts[iv][d] for iv ∈ [0, nVertex) and d ∈ [0, dim).
nElemGroup number of element groups
elemGroups group of elements with all the same type (nElemGroups in length)
nTotalElems total number of elements in the mesh

elemMap The original element ordering (nTotalElems in length). elemMap[ie][0] is the 0-based
element group index into elemGroups, and elemMap[ie][1] is 0-based index of the
element in the group.

Haimes AIM Programming – Mesh Writing July 2025 6 / 18

meshWriter Structures 4/5

aimMeshTessMap Structure
Represents the a boundary mesh and it’s mapping to the interior
typedef struct {

ego tess; /* the EGADS Tessellation Objects (contains Body) */
int *map; /* the mapping between Tessellation vertices and

mesh vertices -- tess verts in length */
} aimMeshTessMap;

tess an EGADS tessellation of the boundary
map mapping from global tessellation vertices to the interior mesh verticies. Use

EG_statusTessBody to get the length.

aimMeshBnd Structure
Represents the a boundary group information
typedef struct {

char *groupName; /* name of group or NULL */
int ID; /* Group ID */

} aimMeshBnd;

groupName a name associated with a boundary group
ID an identifier associated with the group

Haimes AIM Programming – Mesh Writing July 2025 7 / 18

meshWriter Structures 5/5

aimMeshRef Structure
Represents the boundary of a mesh and a reference to the full mesh
typedef struct {

enum aimMeshType type; /* type of mesh referenced */
int nmap; /* number of EGADS Tessellation Objects */
aimMeshTessMap *maps; /* the EGADS Tess Object and map to mesh verts */
int nbnd; /* number of boundary groups */
aimMeshBnd *bnds; /* boundary group info */
char *fileName; /* full path name (no extension) for grids */
int _delTess; /* internal use only, whether tess/body ego are deleted */

} aimMeshRef;

type is one of:
enum aimMeshType {aimUnknownMeshType, aimAreaMesh,

aimSurfaceMesh, aimVolumeMesh};

nmap number of mappings from the boundary to the interior
maps boundary to the interior mapping
nbnd number of boundary groups
bnds bounary group information

fileName absolute path to the full mesh file name without the extension
_delTess Internal usage that should not be modified

Haimes AIM Programming – Mesh Writing July 2025 8 / 18

AIM Mesh Writer Interface

Mesh writer entry points
The following two functions are required for each dynamically loaded mesh writer.
They allow the AIM mesh writer interface the ability to complete the filenames and
to output the meshes. This is dynamically loadable so that new (or custom) mesh
writer can be easily attached to a CAPS session.

const char *extension = meshExtension()

extension the file extension used for this writer

icode = meshWrite(void *aimInfo, aimMesh *mesh)

aimInfo the AIM context

mesh the mesh data structure that will be written

icode integer return code

Haimes AIM Programming – Mesh Writing July 2025 9 / 18

AIM Mesh Library – Mesh Generator

Delete previous meshes
icode = aim_deleteMeshes(void *aimInfo, aimMeshRef *meshRef)

aimInfo the AIM context

meshRef the pointer to the Mesh Reference Structure

icode integer return code

This should be called during the mesh writing preAnalysis to cleanup mesh files from previous invocations
of the AIM instance. This is required because if the mesh file already exists, it is not (re)written in
aim_writeMeshes.

Query mesh existance
icode = aim_queryMeshes(void *aimInfo, int index, aimMeshRef *meshRef)

aimInfo the AIM context

index the AnalysisOut Value index to query

meshRef the pointer to the Mesh Reference Structure

icode integer return code

This call returns CAPS_SUCCESS if the mesh file already exists and no others are needed, if positive then
this is the number of file types that need to be written via calling aim_writeMeshes.

Haimes AIM Programming – Mesh Writing July 2025 10 / 18

AIM Mesh Library – Mesh Generator

Write meshes
icode = aim_writeMeshes(void *aimInfo, int index,

enum capssType stype, aimMesh *mesh)

aimInfo the AIM context

index the AnalysisOut Value index to write

stype ANALYSISIN or ANALYSISOUT

mesh the pointer to the Mesh Structure

icode integer return code

If meshes need to be output (see aim_queryMeshes), the mesh data must be populated and then
written out by calling this function.

For stype = ANALYSISIN:
This calls writeMesh for each name sepcified by the list of strings in the analysis value. The suffix
“Writer” is appended to each name.

For stype = ANALYSISOUT:
This calls writeMesh for each linked solver Analysis Input (as specified in the linkage).

After this call the memory allocated to fill mesh should be freed.

Haimes AIM Programming – Mesh Writing July 2025 11 / 18

AIM Mesh Library – Mesh Generator

Write a single mesh
icode = aim_writeMesh(void *aimInfo, const char *writerName,

const char *units, aimMesh *mesh)

aimInfo the AIM context

writerName the string for a mesh writer (including the suffix “Writer” at the end)

units length units for the output mesh (may be NULL)

mesh the pointer to the Mesh Structure

icode integer return code

Haimes AIM Programming – Mesh Writing July 2025 12 / 18

AIM Mesh Library – Mesh Generator

Initialize aimMeshRef
icode = aim_initMeshRef(aimMeshRef *meshRef, enum aimMeshType type)

meshRef the aimMeshRef instance for member data initialization

type the AIM mesh type (aimUnknownMeshType, aimAreaMesh,
aimSurfaceMesh or aimVolumeMesh)

icode integer return code

Free aimMeshRef
icode = aim_freeMeshRef(aimMeshRef *meshRef)

meshRef the aimMeshRef instance to free member data

icode integer return code

Initialize aimMeshBnd
icode = aim_initMeshBnd(aimMeshBnd *meshBnd)

meshBnd the aimMeshBnd instance for member data initialization

icode integer return code

Haimes AIM Programming – Mesh Writing July 2025 13 / 18

AIM Mesh Library – Mesh Generator

Initialize aimMeshData
icode = aim_initMeshData(aimMeshData *meshData)

meshData the aimMeshData instance for member data initialization

icode integer return code

Free aimMeshData
icode = aim_freeMeshData(aimMeshData *meshData)

meshData the aimMeshData instance to free member data

icode integer return code

Element topological dimension
dim = aim_elemTopoDim(enum aimMeshElem topo)

topo the aimMeshElem element type

dim topological dimension of the element type: 1, 2 or 3

Haimes AIM Programming – Mesh Writing July 2025 14 / 18

AIM Mesh Library – Mesh Generator

Add element group to aimMeshData
icode = aim_addMeshElemGroup(void *aimInfo, const char *groupName,

int ID, enum aimMeshElem elementTopo,
int order, int nPoint,
aimMeshData *meshData)

aimInfo the AIM context
groupName the name of the group (may be NULL)

ID an integer group ID
order the degree of the polynomial for the elements

nPoint number of points in the element
meshData the aimMeshData where the element group is added

icode integer return code

Add elements to aimMeshElemGroup
icode = aim_addMeshElem(void *aimInfo, int nElems,

aimMeshElemGroup *elemGroup)

aimInfo the AIM context
nElems number of elements to add to the element group

elemGroup the aimMeshElemGroup where the elements are added
icode integer return code

Haimes AIM Programming – Mesh Writing July 2025 15 / 18

AIM Mesh Library – Mesh Morphing

Write meshRef to disk
icode = aim_storeMeshRef(void *aimInfo, const aimMeshRef *meshRef,

const char *meshextension)

aimInfo the AIM context
meshRef the aimMeshRef instance written to disk

meshextension the mesh extension used by the analysis AIM
icode integer return code

Note: This function should be called by an analysis AIM during preAnalysis to store a meshRef instance
for mesh morphing.

Load aimMeshRef from disk
icode = aim_loadMeshRef(void *aimInfo, aimMeshRef *meshRef)

aimInfo the AIM context
meshRef the aimMeshRef instance fill from disk

icode integer return code

Note: This function should be called by an analysis AIM during preAnalysis to load a meshRef instance
for mesh morphing.

Haimes AIM Programming – Mesh Writing July 2025 16 / 18

AIM Mesh Library – Mesh Morphing

Morph a meshRef
icode = aim_morphMeshUpdate(void *aimInfo, aimMeshRef *meshRef,

int numBody, ego *bodies)

aimInfo the AIM context
meshRef the aimMeshRef instance to be updated

numBody number of bodies
bodies ego list of new bodies (numBody in length)
icode integer return code

Note: The tessellation objects in meshRef are mapped to bodies and the boundary to interior mapping is
updated.

Create a meshRef to a local file
icode = aim_localMeshRef(void *aimInfo, const aimMeshRef *meshRefIn,

aimMeshRef *meshRefLocal)

aimInfo the AIM context
meshRefIn the input aimMeshRef instance

meshRefLocal the output aimMeshRef instance with an AIM local file
icode integer return code

Note: All pointers are shallow copied to meshRefLocal

Haimes AIM Programming – Mesh Writing July 2025 17 / 18

Exercises

Mesh Writing
In exercises/session13:

Run session13.py and view the resultant binary STL file:
myExample/Scratch/cfd/myMeshFile.bstl
You can use ParaView, but may need to rename with the file with
the extension .stl
Run 2bodySTL.py and note the difference.

Haimes AIM Programming – Mesh Writing July 2025 18 / 18

