Bob Haimes
bob@geocentrictech.com or haimes@mit.edu
Geocentric Technologies LLC

Any CAPS Value Object can be assigned Units

o It is best to give any AnalysisIn, AnalysisOut or AnalysisDynO
the appropriate units that the analysis expects. This makes dealing
with the analysis much simpler.

@ Any AnalysisIn Value will have already gone through a units
conversion when exposed to the AIM.

o Examine the Body’s capsLength attribute to determine the
geometry’s units.

@ The AIM should either be unit-less as with all previous exercises
or with all appropriate units defined.

e, T T o Tt

pyCAPS uses the CAPS unit manipulation functions (from udunits) to be
consistent with internal use of units in CAPS. Similar to the Pint! Python package,
this defines the following two classes:

@ pyCAPS.Unit

@ pyCAPS.Quantity
where pyCAPS.Unit defines a unit which can be manipulated with standard operator,
and pyCAPS.Quantity represents a value with units. This is designed to work with

these classes as the C API uses the optional units string of the Value Structure. The
best way to extract a value from a pyCAPS.Quantity is to divide it out by its units.

Value from Quantity

m = pyCAPS.Unit ("m")
ft = pyCAPS.Unit ("ft")

kg = pyCAPS.Unit ("kg")
m = CAPS.Unit ("m") 3
s _ EiCAPS.Unit("s") g =10 * m # Make a Quantity
_ assert (10 == g/m)
e g/ -2 assert (10 == g.value())
assert (g.convert (ft) .value () == gq/ft)

1 https://pint.readthedocs.io

<@ps Qther uses for Units in the Value Structure

Path strings

If the Value type is String and units member of the Value Structure is
set to “PATH” then any slashes are converted automatically based on
the OS type currently in use.

Pointer types and linkages

For Value types of either Pointer or PointerMesh the units member of
the Value Structure can be used to insure that there is an appropriate
match when linking Values. That is; the unit strings must also match.

Note: using pointer linkages between AIMs should only be done
cautiously because the data pointed to always needs to be structurally
identical across the AIMs.

Haimes AIMs and Units July 2025 4/11

AIM Helper Functions

Units Handling

e provides useful functions for the AIM programmer
@ gives access to CAPS Object data
@ note that all function names begin with aim_

e if any of these functions are used, then the library must be
included (libaimUtil.a/aimUltil.lib) in the AIM so/DLL build

Haimes AIMs and Units July 2025 5/11

<ps AIM Utility Library — Units

Unit conversion

icode = aim_convert (void xaimInfo, const int count
const char *inUnits, double +inValue,
const char *outUnits, double xoutValue)
aimInfo the AIM context
count length of inValue and outValue
inUnits the pointer to the string declaring the source units
inValue array of values to be converted
outUnits the pointer to the string declaring the desired units
outValue array of returned converted value (may be same pointer as invValue)
icode integer return code

icode = aim_unitInvert (void xaimInfo, const char xinUnits,
char x*outUnits)
aimInfo the AIM context
inUnits the pointer to the string declaring units
outUnits the returned string units = 1/inUnits (freeable)
icode integer return code

Haimes AIMs and Units July 2025

6/11

<ps AIM Utility Library — Units

Unit multiplication

icode = aim_unitMultiply(void xaimInfo, const char xinUnitsl,

aimInfo
inUnits1
inUnits2
outUnits

icode

const char xinUnits2, char xxoutUnits)
the AIM context
the pointer to the string declaring left units
the pointer to the string declaring right units
the returned string units = inUnits1*inUnits2 (freeable)

integer return code

.

icode = aim _unitDivision (void xaimInfo, const char *inUnitsl,
const char xinUnits2, char **outUnits)
aimInfo the AIM context
inUnits] the pointer to the string declaring numerator units

\

inUnits2 the pointer to the string declaring denominator units
outUnits the returned string units = inUnits1/inUnits2 (freeable)
icode integer return code
Haimes

AIMs and Units July 2025

7711

Unit raise to a power

icode = aim_unitRaise(void *aimInfo, const char *inUnits,
const int power, char **outUnits)

aimInfo the AIM context
inUnits the pointer to the string declaring units
power power to raise inUnits
outUnits the returned string units = inUnits » power (freeable)

icode integer return code

Unit raise to root

icode = aim_unitRoot (void *aimInfo, const char xinUnits,
const int root, char =**outUnits)

aimInfo the AIM context
inUnits the pointer to the string declaring units
root root to raise inUnits
outUnits the returned string units = inUnits » 1/root (freeable)

icode integer return code

Haimes AIMs and Units July 2025

8/11

Unit Offset

icode = aim _unitOffset (void xaimInfo, const char *inUnits,
const double offset, char **xoutUnits)

aimInfo the AIM context
inUnits the pointer to the string declaring units
offset offset to add to inUnits
outUnits the returned string units = inUnits @ offset (freeable)

icode integer return code

N\,

Check if two unit strings are convertible
icode = aim_unitConvertible (void xaimInfo, const char *unitl,
const char xunit2)
aimInfo the AIM context
unitl string pointer declaring units
unit2 string pointer declaring units

icode integer return code

Haimes AIMs and Units July 2025

9/11

Retrieve capsLength length unit attribute from bodies

icode = aim_capsLength(void xaimInfo, const char *xlengthUnit)

aimInfo the AIM context

lengthUnit the returned string length unit of the bodies

icode integer return code

Get Unit System
icode = aim_unitSys(void *aimInfo, char x*unitSys)

aimInfo the AIM context

unitSys a returned pointer to a character string declaring the unit system — can be NULL
icode integer return code

Note: This is a string set at Problem initialization and was supposed to set the unit system in use (i.e., SI,
US or the like) for the problem at-hand. This standardization never took hold, but this string got used for
other unit information (so it could not be easily removed). Best to ignore!

Haimes AIMs and Units July 2025 10/11

In exercises/sessionl] modify theaIM. c to work with sessionll.py:

@ Mass should be in kg and length should be in m

@ Add another input (wallThickness — in m), so that all densities
can be in kg/m3

@ Add unit definitions for the variables set by aimInputs and
aimOutputs

@ Allow for the scaling of the geometry (when the triangulation is
written)

@ Once functioning, explore changing units in the Python script

