Bob Haimes
bob@geocentrictech.com or haimes@mit.edu
Geocentric Technologies LLC

&P

ESP with CAPS

©

<
o
>
o)
(7]
K

MDO
Framework

MSTC Engr
OpenMDAO

ModelCenter [****

ModeFRONTIER

Haimes

e 1
Y Geometry Geometry
Subsystem|,_> Database
= N~
OPENCSIMEI(- - - -« v vemmreriiiiiiieiiaaaes .
Computa- % EGADS KK :
i At!onalf Analysis
Prcl):grt%e ; J Interface Mesh
N I Modul i
Syntheses N/\ (XII\L/JI)G Writers
CAPS
(API) Problem 1+
Database
N~ Q
EGADSIite
'.I:
& Analysis A
N Ana|ysi3 1/0O Files :
tools
!’_ --
ESP Session on the EGADS API July 2025

2/55

Configuration
Database
*.csm

Defined
Components
(UDCs)

OpenCASCADE

July 2025 3/55

&P

EGADS Overview

The Engineering Geometry Aircraft Design System (EGADS) is an
open-source geometry interface to OpenCASCADE

reduces OpenCASCADE’s 17,000 methods to about 100 calls
supports programming in C, C++, FORTRAN, Python and Julia
allow bottom-up construction via geometric and topological
primitives

allows fop-down construction via solid creation and Boolean
operations

provides persistent user-defined attributes on topological entities

adjustable tessellator (vs a surface mesher) with support for
finite-differencing in the calculation of parametric sensitivities

Haimes ESP Session on the EGADS API July 2025 4/55

&P EGADS Overview

EGADS1ite — for HPC Environments

@ No construction supported
@ Same API and Object model as EGADS

o Can use EGADS to prototype/build EGADS1ite code
@ Suitable for an MPI setup:

o Data export from EGADS via a stream

e Data import to EGADS11te from the stream

o Stream setup to Broadcast (or write to disk)

ANSI C — No OpenCASCADE
Tiny memory footprint
Thread safe and scalable

o EGADS’ OpenCASCADE evaluation functions replaced with
those written for EGADS1ite

@ See SESP_ROOT/externApps/Pagoda/EGADSserver for an MPI
example

® 6 ¢

Haimes ESP Session on the EGADS API July 2025 5/55

&P EGADS Overview

System Support
@ MacOS (Intel or Mx) with clang, ifort/ifx and/or gfortran
o LINUX with gec, ifort/ifx and/or gfortran
@ Windows with Microsoft Visual Studio C++ and ifort/ifx
@ No globals (but not entirely thread-safe due to OpenCASCADE)
@ Various levels of output (0-none, through 3-debug)
@ Written in C and C++
@ pyEGADS only requires a current version of Python

EGADS Objects (egos)
@ Pointer to a C structure — allows for an Object-based AP

@ Treated as “blind” pointers (i.e., not meant to be dereferenced)
o egos are INTEGER*8 variables in FORTRAN

Haimes ESP Session on the EGADS API July 2025 6/55

Context — Holds the globals
Transform

Tessellation
Nil (allocated but not assigned) — internal
Empty — internal

Reference — internal

Geometry
e pcurve, curve, surface

Topology
o Node, Edge, Loop, Face, Shell, Body, Model

See SESP_ROOT/doc/EGADS/egads . pdf for a detailed description of all of the functions.
See SESP_ROOT/include/egadsTypes.h for alist of defines and structures.
See SESP_ROOT/include/egadsErrors.h for a list of the return code de f ines.

P EGADS Objects

C structure definition - an ego

typedef struct egObject {
int magicnumber;

short oclass;
short mtype;
void =*attrs;
void *blind;

struct egObject xtopObj;
struct egObject xref;
struct egObject x*prev;
struct egObject *next;

} egObject;

#define ego egObjectx;

/+ must be properly set to validate
the object */

/+ object class x/

/* object member type =*/

/* attributes or reference */

/* blind pointer to OpenCASCADE or
EGADS data x/

/* top of the hierarchy or
context (if top) =/

/* threaded list of references =/

/* back pointer x/

/+ forward pointer =*/

Context Object

o Start of dual threaded-list of active egos

@ Pool of deleted objects

Haimes ESP Session on the EGADS API July 2025

8/55

SP EGADS Objects — Ownership

Deleting Objects
@ Use the function EG_deleteObject to delete Objects
@ The Object must be reference free — i.e. not used by another

o Delete in the opposite order of creation
o If in a Body, delete the Body instead (unless the Body is in a
Model)
@ EG_deleteObject on a Context does not delete the Context

o Deletes all Objects in the Context that are not in a Body
o Use EG_close to delete all objects in a Context (and the Context)

Another Rule

@ A Body can only be in one Model
o Copy the Body of interest, then include the copy in the new Model

Haimes ESP Session on the EGADS API July 2025 9/55

SP EGADS Geometry Objects

@ 3D surfaces in the space of 2 parameters: [u, V]
o Types: Plane, Spherical, Cylindrical, Revolution, Toriodal, Trimmed, Bezier, BSpline, Offset,

Conical, Extrusion

@ All types abstracted to [x,y,z| = f(u,v)

pcurve — Parameter Space Curves

|

@ 2D curves in the Parametric space [u, v] of a surface
o Types: Line, Circle, Ellipse, Parabola, Hyperbola, Trimmed, Bezier, BSpline, Offset
@ All types abstracted to [u, v] = h(¢)

@ 3D curve in the space of 1 running parameter: ¢
o Types: Line, Circle, Ellipse, Parabola, Hyperbola, Trimmed, Bezier, BSpline, Offset
o All types abstracted to [x,y, z] = g(¢)

Haimes ESP Session on the EGADS API July 2025 10/55

@ All EGADS C/C++ Functions begin with “EG_”

@ There is an attempt to have a descriptive function name
@ Inputs are usually at the beginning of the argument list
@ Outputs are usually at the end

@ Return Values (icode):

(Almost) all EGADS function have an i code return value
o A value of 0 (EGADS_SUCCESS) indicates success
o A negative value indicates an error

@ see SESP_ROOT/include/egadsErrors.h for a list of the
return code defines.

Some functions have a positive return code to indicate partial
success or provide other information to the caller

Create a Geometry Object

icode = EG.makeGeometry(ego context, int oclass, int mtype, ego rGeom,
const int xints, const double =*reals,
ego *nGeom) ;

context the Context Object
oclass the Object Class: PCURVE, CURVE or SURFACE
mtype the Member Type (depends on oclass)
rGeom the reference Geometry Object (if none use NULL)
ints the integer information (if none use NULL)
reals the real data used to construct the geometry
nGeom the returned pointer to the new Geometry Object
icode the integer return code
Notes:
o ints is required for either mtype = BEZIER or BSPLINE
e See pages 16-29 of SESP_ROOT /doc/EGADS/egads .pdf for oclass/mtype data requirements)

" Hames " E5p Session onthe EGADS API July 2025 12755

Evaluating the Object
icode = EG_evaluate (ego object, double xparams, double *result);

object the input Object

params NODE —ignored (can be NULL)
PCURVE, CURVE, EDGE - the ¢ value
SURFACE, FACE — u then v

result the filled returned position, 1 and 21d derivatives:

Edge Face
length = | Node -3 | PCurve -6 Curve -9 Surface — 18
Position [x,y,2] [u,v] [x,y,2] [x,y,7]
I8 - [du, dv] [dx, dy, dz] [dxu, dyu, dzu)
[dxy, dyy, dz]
P2z = [d?,dv?] | [dx?,dy?,dZ?] | [dx2, dy2,dZ?)]
[dxuw dYuy, dZuv]
[dx3, dy3, dz3]

icode the integer return code

Note: You cannot evaluate a DEGENERATE Edge.

" Hames E5p Session onthe EGADS API July 2025 13755

Inverse evaluation on the Object

icode = EG._invEvaluate (ego object, double xpos, double xparams,
double xresult);

object the input Object
pos is [u, v] for a PCURVE and [x, y, z] for all others
params the returned parameter(s) found for the nearest position on the Object:

for PCURVE, CURVE or EDGE the one value is ¢
for SURFACE or FACE the 2 values are u then v

result the closest position found is returned:
[u, v] for a PCURVE (len = 2)
[x,y, 7] for all others (len = 3)

icode the integer return code
Note: When using this with a Face the timing is significantly slower than making the call with the

Face’s reference surface (due to the clipping). If you don’t need this limiting call EG_.invEvaluate
with the underlying Surface Object.

" Hames E5p Session onthe EGADS API July 2025 14755

Boundary Representation — BRep

Top | Topology | Geometric Entity | Function |

Down
Model
Body Solid, Sheet, Face, Wire
Shell
Face surface (x,y,2) = f(u,v)
Loop pcurve (non-planar)

Botom | Edze | curve (ry.2) = 80

Up Node point

@ Nodes that bound Edges may not be exactly on the underlying
curves

o Edges in the Loops that trim the Face may not exactly sit on the
surface, hence the use of pcurves

-~ Hames ESP Session on the EGADS API July 2025 15/55

P EGADS Topology Objects

e Contains [x,y, 7]
@ Types: none

Edge
@ Has a 3D curve (if not Degenerate)
@ Has a t range (2, tO t,4c, Where t,;, < tnax)
Note: The positive orientation is going from t,,;, tO .
@ Has a Node for t,,;, and for #,,,, — can be the same Node
@ Types:
o OneNode — periodic

e TwoNode — normal
o Degenerate — single Node, 7 range used for the associated pcurve

t = Imin t = lnax
——OC O—
Ny Ny

N\

Haimes ESP Session on the EGADS API July 2025 16/55

P EGADS Topology Objects

Loop — without a reference surface

@ Free standing connected Edges that can be used in a non-manifold
setting (for example in WireBodies)

©Q A list of connected Edges associated with a Plane (which does not

require pcurves)
@ An ordered collection of Edge objects with associated senses

o Edges must not be Degenerate

@ Types: E;
Ny - N3
+| E»

+
Ny E, N>

Open: +E| +E, -E3 Closed: +E; +E; -E5 -E4

Haimes ESP Session on the EGADS API July 2025 17/55

&P

EGADS Topology Objects

Loop — with a reference surface

o

Collections of Edges followed by a corresponding collection of
pcurves that define the [, v] trimming on the surface

An ordered collection of Edge objects with associated senses

Degenerate Edges are required when the [u, v] mapping collapses
like at the apex of a cone (note that the pcurve is needed to be
fully defined using the Edge’s 7 range)

Trims the surface by maintaining material to the left of the
running Loop

An Edge may be found in a Loop twice (with opposite senses)
and with different pcurves.

Types: Open or Closed (comes back on itself)

Haimes ESP Session on the EGADS API July 2025 18/55

P EGADS Topology Objects

@ A surface bounded by one or more Loops with associated senses

@ Only one outer Loop (sense = 1) and any number of inner Loops
(sense = -1). Note that under very rare conditions a Loop may be
found in more than 1 Face — in this case the one marked with
sense = +/- 2 must be used in a reverse manner.

o All Loops must be Closed

@ Loop(s) must not contain reference geometry for Planar surfaces

o If the surface is not a Plane then the Loop’s reference Object must
match that of the Face

@ Type is the orientation of the Face based on surface’s UxV:
o SFORWARD or SREVERSE when the orientations are opposed

Note that this is coupled with the Loop’s orientation (i.e. an outer Loop traverses the Face in a
right-handed manner defining the outward direction)

Haimes ESP Session on the EGADS API July 2025 19/55

E;

I
I
I
I
I
:
I
Ey | —
I
I
I
I
I
I
I
1.

O
E;

N E; N,

@ Outer Loop — right handed/counterclockwise: +E; +E, -E5 -E,4
@ Inner Loop — left handed/clockwise: -Es -E¢

B P Seion o B BEED AT iy 3035 S07%s

! 1
! 1
! |
! |
! |
! |
! |
E, E || PCy PG E,
|
. I
! |
! |
I ! |
/”7 ‘\\\ X !
\ PCy !
\O—/ o - - _>‘I,O V= Viin
Ny E; 1
Ny u=0 u=2m

Unrolled periodic cylinder Face
Single Outer Loop — right handed/counterclockwise:
+E, +E, -E5 -E»

N N
S - v
+ o T =
O
| < |
1 1
m 1 1
N |
2 1
S S|
] < g =
1 1
_J 1 1
k[t 1
1 1
1 O.. 1
\ = "
||||||||||||||||| -
o - o1
= = =z =
= =

Unrolled Cone

N4C — ’?N3
- +
Ey |- O) O +| E»
- +
+
O 0
Ny E, N>

@ Outer Loop — right handed/counterclockwise: +E; +E, -E5 -E,
@ Inner Loop #1 — left handed/clockwise: -E5 -Eg
o Inner Loop #2 — left handed/clockwise: +E; +Eg

Es

Noo . oNs
+

E7 |- +| Es
G
Eyt|-

1\/1C E-: ’\NJZ ;; wN4

Single Outer Loop — right handed/counterclockwise:
+E, +E, +E5 -E> +E4 +E5 -E¢ -E

Note: PCurve the same for both sides of E»

B P Seion o B BEED AT iy 3035 Siss

P EGADS Topology Objects

@ A collection of one or more connected Faces, that if Closed
segregates regions of 3-Space

@ All Faces must be properly oriented
@ Non-manifold Shells can have more than 2 Faces sharing an Edge

@ Types: Open (including non-manifold) or Closed

Face #1 Loop: +E| +E; -E3 -E4
Face #2 LOOpZ +Es +E¢ -E7 -E

Haimes ESP Session on the EGADS API July 2025 25/55

P EGADS Topology Objects
SolidBody

@ Manifold collection of one or more Closed Shells

@ One outer Shell (sense = 1); any number of inner (sense = -1)

o Edges (except Degenerate) are found exactly twice (sense = £1)

Simple SolidBody: 8 Nodes, 12 Edges, 6 Loops and 6 Faces

Haimes ESP Session on the EGADS API July 2025 26/55

Manifold vs. Nonmanifold

I L l L . L

nonmanifold manifold manifold

figure stolen from “An introduction to Geometrical Modelling and Mesh Generation: The Gmsh Companion” by Christophe Geuzaine, Emilie
Marchandise & Jean-Frangois Remacle — used without permission!

Can the geometry be manufactured?

-~ Haimes ESP Session on the EGADS API July 2025 27155

P EGADS Topology Objects
Body — including SolidBody

@ Container used to aggregate Topology

@ Connected to support non-manifold collections at the Model level
@ Owns all the Objects contained within it
@ Types:
o A WireBody contains a single Loop
o A FaceBody contains a single Face — IGES import
o A SheetBody contains a single Shell which can be either
non-manifold or manifold (though usually a manifold Body of this
type is promoted to a SolidBody)

@ A collection of Bodies — becomes the Owner of contained Objects
o Returned by SBO & Sew Functions
@ Read and Written by EGADS

Haimes ESP Session on the EGADS API July 2025 28/55

Create a simple Solid Body

icode = EG.makeSolidBody (ego context, int stype, const double xdata,

context

stype
data

body

icode

ego xbody) ;

the Context Object
one of: BOX, SPHERE, CONE, CYLINDER, TORUS
length and fill depends on stype:

BOX 6 [x,y,2] then [dx, dy, dz] for the size of box
SPHERE 4 [x,y,7] of center then the radius

CONE 7 apex [x,y, 2], base center [x,y, z], then the radius
CYLINDER 7 2 axis points and the radius

TORUS 8 [x,y,z] of center, direction of rotation, then the

major radius and minor radius
the resultant Solid Body Object

the integer return code

A

29/55

SP EGADS API — Topology

Create a Topology Object

icode

= EG.makeTopology (ego context,

ego geom, int oclass,
double xreals, int nchild,
int xsenses, ego *topo);

int mtype,
ego *children,

context the Context Object
geom the reference Geometry Object (if none use NULL)
oclass the Object Class: NODE, EDGE, LOOP, FACE, SHELL, BODY or MODEL
mtype the Member Type (depends on oclass)
reals the real data: may be NULL except for NODE that contains the [x, y, z] location and
EDGE where the #,,j, and t,,4x (the parametric bounds) are specified
nchild number of children (lesser) Topological Objects
children vector of children objects (nchild in length)
if a LOOP with a reference SURFACE, then 2*nchild in length (PCurves follow)
senses a vector of children integer senses: SFORWARD/SREVERSE for LOOP, and
SOUTER/SINNER for FACE nchild > 1 (may be NULL for FACE nchild = 1)
topo the returned pointer to the new Topology Object
icode the integer return code
Haimes ESP Session on the EGADS API July 2025 30/55

SP EGADS API — Topology

Query a Topology Object

icode = EG-getTopology (ego topo, ego *geom, int =*oclass, int *mtype,

topo
geom
oclass
mtype

reals

nchild

children

senses

icode

double xreals, int xnchild, ego **children,
int *xsenses);

the Topology or Effective Topology Object to query

the returned reference Geometry Object (can be NULL)

the returned Topology Object Class

the returned Member Type (depends on oclass)

the real data (at most 4 doubles are filled): NODE — contains the [x, y, z] location,
EDGE where the t,,;, and t,,4x (the parametric bounds) are returned and
FACE where the [u, v] box is filled — the limits first for u then for v (4 in length)

the returned number of children (lesser) Topological Objects

the returned pointer to a vector of children objects (nchild in length)
if a LOOP with a reference SURFACE, then 2*nchild in length (PCurves follow)
if a MODEL — nchild is the number of Body Objects, mtype the total ego count

a vector of senses for the children (LOOPs) or inner/outer for (FACEs & SHELLSs)

the integer return code

Haimes

ESP Session on the EGADS API July 2025 31/55

ueries the Objects in a Body

icode = EG._getBodyTopos (const ego body, ego ref, int oclass,

body

ref

oclass

ntopo

topos

icode

int xntopo, ego xxtopos);

the Body Object

reference Topology Object or NULL. Sets the context for the returned Objects
(i.e., all objects of the class oclass in the tree looking towards that class from ref)
NULL starts from the body (for example all Nodes in the Body)

is NODE, EDGE, LOOP, FACE or SHELL — must not be the same class as ref
for EBODY can be EEDGE, ELOOPX, EFACE, ESHELL or the above

the returned number of Topology Objects

is a returned pointer to the vector of Objects, it is possible that an individual Object
may be NULL (freeable)
Note: the argument can be NULL so the Objects are not filled

the integer return code

This allows for the traversal of the Topology tree by jumping levels and/or looking up the hierarchy.

32/55

Get the index of the Object in a Body

index = EG.indexBodyTopo (const ego body, const ego obj);

body the Body Object
obj is the Topology Object in the Body

index the index (bias 1) or the integer return code (negative)

Get the Object in a Body by index

icode = EG.objectBodyTopo (const ego body, int oclass, int index,
ego xobj);

body the Body Object
oclass the Topology Object class
index the index (bias 1) of the entity requested
obj is the returned Topology Object from the Body

icode the integer return code

33/55

SP EGADS API — Topology

Return the Bounding Box info

icode

EG_.getBoundingBox (const ego object, double xbbox);

object any topological object
bbox 6 doubles filled reflecting [x, y, Z]min and [X, ¥, Z]max

icode the integer return code

Computes the smallest Cartesian bounding box surrounding the object.

Returns the Mass Properties

icode = EG-getMassProperties (const ego object, double xprops);

object can be EDGE, LOOP, FACE, SHELL, BODY or Effective Topology counterpart

props 14 doubles filled reflecting Volume, Area (or Length), Center of Gravity (3) and the
inertia matrix at CG (9)

icode the integer return code

Computes and returns the physical and inertial properties of a Topology Object.

Haimes ESP Session on the EGADS API July 2025 34/55

Memory Functions

These functions need to be used instead of the C/C++ variants for persistent memory

due to the need to allocate/free from the same DLL under Windows.

void

void

void

char

*ptr

*ptr

*ptr

*str

EG-free (void x*ptr);

EG.alloc (size_t nbytes);
EG_calloc(size_t nele, size_t size);
EG._reall (void xpointer, size_t nbytes);

EG_strdup (const char xstring);

35/55

Get revision

EG-revision (int *imajor, int *iminor, const char xxOCCrev) ;

imajor the returned major revision
iminor the returned minor revision number

OCCrev the returned revision of OpenCASCADE in use

Returns the version information for both EGADS and OpenCASCADE.

icode = EG-open (ego *context);

context the returned Context Object

icode the integer return code

Opens and returns a Context object. This is required for the use of all EGADS (except for the above).

" Hames E5p Session onthe EGADS API July 2025 36/55

Close a Context

icode = EG.close(ego context);

context the Context Object to close

icode the integer return code

Cleans up and closes the Context.

Delete Object

icode = EG-deleteObject (ego object) ;

object the Object to delete
icode the integer return code
Deletes an Object (if possible). A positive return indicates that the Object is still referenced by this number

of other Objects and has not been removed from the Context. If the Object is the Context then all
Geometry/Topology Objects in the Context are deleted except those attached to Body or Model Objects.

Haimes ESP Session on the EGADS API July 2025 37155

ead Geometric data from a File

icode = EG-loadModel (ego context, int bitFlag, const char xname,
ego *model) ;

context the Context Object to receive the geometry
bitFlag Options (additive):
1 Don’t split closed and periodic entities
2 Split to maintain at least C! in BSPLINEs
4 Don’t maintain Units on STEP/IGES read (always millimeters)
8 Try to merge Edges and Faces (with same geometry)
16 Load unattached Edges as WireBodies (stp/step & igs/iges)

name path of file to load (with extension — case insensitive):
igs/iges IGES file
stp/step STEP file
brep native OpenCASCADE file
egads native file format with persistent Attributes (splits ignored)
model the returned Model Object that was read

icode the integer return code

Loads and returns a Model Object from disk and puts it in the Context.

" Hames " Esp Session onthe EGADS API July 2025 38755

Writes the Model to a File

icode = EG.saveModel (const ego object, const char xname);

object the Model Object to write

name path of file to write, type based on extension (case insensitive):
igs/iges IGES file
stp/step STEP file
brep a native OpenCASCADE file
egads a native file format with persistent Attributes and the ability to write
EBody and Tessellation data

icode the integer return code

Writes the BReps (with optional Tessellation and EBody Objects) contained in the Model to disk. Only
writes BRep data for anything but EGADS output.

Note: object can be a single Body for convenience

" Hames E5p Session onthe EGADS API July 2025 39755

P EGADS API — Utility & IO Functions

Copy and optionally Transform an Object

icode = EG-copyObiject (const ego object, void xother, ego x*newObj);
object the Object to copy
other Transformation Object, Body Object, NULL for a strict copy, or a vector of doubles
newObj The resultant new Object

icode the integer return code
Creates a new EGADS Object by copying and optionally transforming the input object. A Tessellation or
PCurve Object cannot be transformed. For a Tessellation Object, other can be a vector of displacements
that is 3 times the number of vertices of doubles in length to morph the tessellation. Also, if object is a
Tessellation Object or an EBody Object and other is a Body Object, the existing Object is copied but
associated with the Body specified (not the original referenced object). Note that other is not checked if it
is compatible with the original referenced Body.

If other is a Context, then object is copied to this target Context. This is useful in multithreaded settings.

Get the Context

icode = EG_getContext (ego object, ego xcontext);

|

object the queried Object
context the returned owning Context
icode the integer return code

Haimes ESP Session on the EGADS API July 2025 40/55

o Attributes — metadata consisting of name/value pairs
o Unique name — no spaces
o A single type: Integer, Real, String, CSys, Pointer (not persistent)
o A length (for Integers & Reals)

@ Objects

e Any (non-internal) Object can have multiple Attributes
e Only Attributes on Topological Objects are copied and are
persistent (saved)

@ SBO & Intersection Functions

e Unmodified Topological Objects maintain their Attributes
o Face Attributes are carried through to the resultant fragments
o All other Attributes may be lost

@ CSys Attributes are modified through Transformations

~ Hames ESP Session on the EGADS API July 2025 41/55

dd an Attribute to an Object

icode = EG.attributeAdd(ego object, const char xname, int type,
int len, const int =*ints, const double =xreals,
const char xstring);

object the Object to attribute
name the name of the attribute

type the attribute type:
ATTRINT, ATTRREAL, ATTRSTRING, ATTRCSYS or ATTRPTR

len the number of integers or reals (ignored for strings and pointers)
ints the integers for ATTRINT
reals the floating-point data for ATTRREAL or ATTRCSYS
string the character string pointer for ATTRSTRING or ATTRPTR types
icode the integer return code
Notes:
0 Only the one appropriate attribute value (of ints, reals or string) is required.

e If the name already exists the type and value(s) are overwritten.

" Hames E5p Session onthe EGADS API July 2025 /55

Delete an Attribute from an Object

icode = EG.attributeDel (ego object, const char xname);

object the Object
name the name of the attribute to delete

icode the integer return code

Deletes an attribute from the Object. If the name is NULL then all attributes are removed from this Object.)

The number of Object Attributes

icode = EG.attributeNum(ego object, int *nAttr);

object the Object
nAttr the returned number of attributes attached to the Object

icode the integer return code

Returns the number of attributes found with this object.

" Hames E5p Session onthe EGADS API July 2025 43/55

Return an Attribute on an Object

icode = EG-attributeRet (ego object, const char xname, int xtype,
int +len, const int =**ints,
const double **reals, const char *xstring);

object
name
type
len
ints
reals
string
icode
Notes:

the Object to query

the name to query

the type: ATTRINT, ATTRREAL, ATTRSTRING, ATTRCSYS or ATTRPTR
the returned number of integers or reals

the returned pointer to integers for ATTRINT

the returned pointer to floating-point data for ATTRREAL or ATTRCSYS

the returned pointer to a character string for ATTRSTRING or ATTRPTR types

the integer return code

° Only the appropriate attribute value (of ints, reals or string) is returned.
e The CSys (12 reals) is returned in reals after the len values.

44/55

Get an Attribute on an Object

icode = EG.attributeGet (ego object, int index, const char xxname,
int xtype, int xlen, const int *xints,
const double xxreals, const char xxstring);
object the Object to query
index the index (1 to nAttr from EG_attributeNum)
name the returned name
type the type: ATTRINT, ATTRREAL, ATTRSTRING, ATTRCSYS or ATTRPTR
len the returned number of integers or reals
ints the returned pointer to integers for ATTRINT
reals the returned pointer to floating-point data for ATTRREAL or ATTRCSYS
string the returned pointer to a character string for ATTRSTRING or ATTRPTR types
icode the integer return code
Notes:
0 Only the appropriate attribute value (of ints, reals or string) is returned.
e The CSys (12 reals) is returned in reals after the len values.

" Hames " Esp Session onthe EGADS API July 2025 45/55

Copy the Attributes from an Object to another

icode = EG.attributeDup(ego src, ego dst);

src the source Object
dst the Object to receive src’s attributes
icode the integer return code

Deletes an attribute from the destination Object and then copies the source’s attributes to the destination.
ATTRPTR attributes copy the pointer, other types allocate new data and copy the contents of the source.

-~ Haimes ESP Session on the EGADS API July 2025 46/55

P EGADS Tessellation Objects

Geometry

@ Unconnected discretization of a range of the Object

o Polyline for curves at constant ¢ increments
o Regular grid for surfaces at constant increments (isoclines)

N\

Body Topology

@ Connected and trimmed tessellation including:

o Polyline for Edges
o Triangulation for Faces
o Optional Quadrilateral Patching for Faces

@ Ownership and Geometric Parameters for Vertices

@ Adjustable parameters for side length and curvature (x2)
o Watertight

o Exposed per Face/Edge or Global indexing

Haimes ESP Session on the EGADS API July 2025 47155

P EGADS Tessellation Objects

from $ESP_ROOT/bin/vGeom from $ESP_ROOT/bin/vTess

Haimes ESP Session on the EGADS API July 2025 48/55

P EGADS API - Tessellation

Creates a Discrete Object from a Body

icode = EG.makeTessBody (ego body, double xparms, ego xtess);
body the input Body or closed EBody Object, may be any Body type

parms a set of 3 parameters that drive the Edge discretization and the Face triangulation:
params[0] — the maximum length of an Edge segment or triangle side (in physical
space); a zero is no limit, and a negative value only tessellates Edges.
params[1] — a curvature-based value that looks locally at the deviation between the
centroid of the discrete object and the underlying geometry. Any deviation larger than
the input value will cause the tessellation to be enhanced in those regions.
params[2] — the maximum interior dihedral angle (in degrees) between triangle facets
(or Edge segment tangents for a WIREBODY tessellation), note that a zero ignores
this phase.

tess the returned resultant Tessellation of body

icode the integer return code

See the next page for attribute-based tessellation control.

Haimes ESP Session on the EGADS API July 2025 49/55

&P EGADS API — Tessellation

Tessellation control at the Topological level

.tParams this attribute can be placed on the Body, individual Faces or Edges which overrides
parms locally (the minimums are used). This attribute must be ATTRREAL and have 3
values (as described in EG_makeTessBody).

.tParam like the attribute .tParams, this attribute completely overrides parms locally (without
using the minimum).
.tPos this ATTRREAL attribute on an Edge directly sets the ¢s for interior Edge positions.
.rPos this ATTRREAL attribute sets the relative spacing (in arc-length) for interior Edge
positions.

.nPos this ATTRINT attribute sets the number of interior vertices (length is 1). The spacing
is set equal in arc-length.
.inserts this ATTRREAL attribute (on a Face) specifies that these vertex [u, v] positions will be
inserted into the tessellation. The length must be 2 times the number of inserts.

.insert! like the attribute .inserts, this specifies the [u, v] positions to be inserted, but after these
inserts the Face tessellation terminates (i.e., no additional insertions are performed by
the normal algorithm).

Note:
An ATTRINT attribute .tPos or .rPos of length 1 and containing a zero indicates no interior points.

Haimes ESP Session on the EGADS API July 2025 50/55

Gets the Edge discretization data

icode = EG_getTessEdge (const ego tess, int elndex, int =xlen,
const double *xxyzs, const double xxts);

tess the input Body Tessellation Object

elndex the Edge index (1 bias). The Edge Objects and number of Edges can be retrieved via
EG_getBodyTopos and/or EG_-indexBodyTopo . A minus index refers to the use
of a mapped (+) Edge index from applying the functions EG_mapBody and
EG-mapTessBody.

len the returned number of vertices in the Edge discretization
xyzs the returned pointer to the set of coordinate data — 3*len in length
ts the returned pointer to the parameter values associated with each vertex — len in length

icode the integer return code

Note: DEGENERATE Edges return 2 vertices (both the same coordinates of the single Node) and the ¢
range in ts. This Edge will not be referenced in the associated Face tessellation.

" Hames " Esp Session onthe EGADS API July 2025 s1/55

P EGADS API - Tessellation

Gets the Face triangulation data

icode = EG-getTessFace (const ego tess, int fIndex, int =xlen,

tess
fIndex
len
Xyz
uv
ptype
pindx
ntri

tris

tric

icode

const double xxxyz, const double =*xxuv,
const int x*xptype, const int xxpindx, int =*ntri,
const int xxtris, const int xxtric);
the input Body Tessellation Object
the Face index (1 bias) — Minus index refers to a mapped (+) Face index (if it exists).
the returned number of vertices in the Face triangulation
the returned pointer to the set of coordinate data — 3*len in length
the returned pointer to the parameters for each vertex — 2*len in length
returned pointer to the vertex type (-1 - internal, O - Node, > 0 Edge) — len in length
returned pointer to vertex index (-1 internal) — len in length
returned number of triangles

returned pointer to triangle indices, 3 per triangle (1 bias) — 3*ntri in length
orientation consistent with the Face’s mtype

returned pointer to neighbor information, 3 per triangle looking at opposing side:
triangle (1-ntri), negative is Edge index for an external side — 3*ntri in length

the integer return code

Haimes

ESP Session on the EGADS API July 2025 52/55

Status of a Tessellation Object

icode = EG.statusTessBody (ego tess, ego *body, int *stat, int *npts);

tess the Tessellation Object to query
body the returned associated Body Object
stat the returned state of the tessellation: -1 — closed but warned, 0 — open, 1 — OK,
2 —displaced
npts the returned number of global points in the tessellation (0 — open)
icode the integer return code: EGADS_SUCCESS - complete, EGADS_OUTSIDE - still
open
Note: Placing the attribute “.mixed” on tess before invoking this function allows for tri/quad (2 tris)
tessellations. The type must be ATTRINT and the length is the number of Faces, where the values are
the number of quads (triangle pairs) per Face. Single triangles are followed by triangle pairs for a Face
with both triangle and quads.

Given quad 123 4 ==> 4===3

trias 123 and 1 34 I/
-

" Hames " E5p Session onthe EGADS API July 2025 53/55

P EGADS API - Tessellation
Global Lookup

icode = EG-localToGlobal (const ego tess, int ind, int locl, int =gbl);

tess
ind
locl
gbl

icode

the closed Tessellation Object

the topological index (1 bias) — 0 Node, (-) Edge, (+) Face
the local (or Node) index

the returned global vertex index

the integer return code

Gets the vertex type and index

icode = EG._getGlobal (const ego tess, int global, int xpytpe,

tess
global
ptype
pindex
Xyz

icode

int xpindex, double *xyz);
the closed Tessellation Object
the global index (1 bias)
the point type (-) Face local index, (0) Node, (+) Edge local index
the point topological index (1 bias)
the filled (3 in length) coordinates at this global index (can be NULL)

the integer return code

Haimes

ESP Session on the EGADS API July 2025

54/55

In the exercise/session02 directory:
@ Examine the Makefile (or NMakefile on Windows). Notice
the library(s) included.
@ Build the executable and run it. The output should look like:

Using EGADS 1.28 Interim Release with OpenCASCADE 7.8.1
Number of Bodies = 2

Body 0: Name = capsLength String = cm
Tessellation 0 npts = 1306 (Solid)
Volumes = 7.280172e+00 7.296560e+00

Body 1: Name = capslLength String = cm
Tessellation 0 npts = 2263 (Solid)
Volumes = 3.454432e+01 3.464152e+01

EGADS Info: 0 Objects, 0 Reference in Use (of 247) at Close!

@ Modify myExample. c to print all attributes using
EG_getBodyTopos for all of the FACEs, EDGEs and NODEs
in each Body. Note that you must free the vectors of Objects.

@ Modify myExample. c to traverse the BRep Topology from
Model to Nodes using EG_getTopology and output all
attributes attached to each Topological entity.

~ Hames ESP Session on the EGADS API July 2025 55/55

