Bob Haimes
bob@geocentrictech.com or haimes@mit.edu
Geocentric Technologies LLC

<ps CAPS Definitions

Bound Object

A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the “outer surface of the wing”). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body). This is
accomplished either through interpolation or through a scheme that provides
conservative transfers.

Internally the data to support transfers is held in the CAPS structure capsDiscr
(one per Analysis instance) — the VertexSet Object. This is manipulated by CAPS
proper and the AIM functions documented here.

Creating the detailed data associated with a Bound is the focus of this session.

Haimes Bounds & The AIM Discretization Structure July 2025 2/35

<ps CAPS Definitions

VertexSet Object

A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
it’s data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object

A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

Haimes Bounds & The AIM Discretization Structure July 2025 3/35

<ps| CAPS Objects

’ Object ‘ SubTypes Parent Object
capsProblem Parametric, Static
capsValue Geometryln, GeometryOut, | capsProblem
Parameter, User
capsAnalysis capsProblem
capsValue AnalysisIn, AnalysisOut, capsAnalysis
AnalysisDynO
capsBound capsProblem
capsVertexSet | Connected, Unconnected capsBound
capsDataSet | FieldOut, FieldIn*, User, caps VertexSet

GeomSens, TessSens, Builtin
Body Objects are EGADS Objects (egos)
* A change in a FieldIn DataSet will dirty the Analysis Instance

Haimes Bounds & The AIM Discretization Structure July 2025 4/35

<ps Bounds — Analysis Data

DataSet Naming Conventions

@ Multiple DataSets in a Bound can have the same Name

o Allows for automatic data transfers

@ One source (from either FieldOut or User Methods)
@ Reserved Names:

DSet Name rank Meaning Comments

Xyz 3 Geometry Positions

xyzd 3 Data Positions Not for vertex-based
discretizations

param 2 [u,v] data for Geometry

Positions

paramd 2 [u,v] for Data Positions Not for vertex-based
discretizations

Geomlin 3 Sensitivity for the Geometry can have [irow, icol] in

Input GeomlIn

name

Haimes

Bounds & The AIM Discretization Structure

July 2025 5/35

Initialization Information for th

icode =

qFlag
uSys
aimInfo

instStore

major
minor
nln
nOut
nFields
fnames
franks
fInOut

icode

aimInitialize (int gFlag,

M

const char xuSys, void xaimInfo,
void *xinstStore, int +major, int =minor,
int x*nIn, int *nOut, int *nFields,
char xxxfnames, int **franks, int x+xfInOut)
—1 indicates a query and not a new analysis instance (0 or greater)

a pointer to a character string declaring the unit system — can be NULL
the AIM context — NULL if qFlag == -1

a returned pointer to a block of memory to be associated with this AIM instance
may be returned as NULL if no AIM state data is required

the returned AIM major version number

the returned AIM minor version number

the returned number of Inputs (minimum of 1)

the returned number of possible Outputs

the returned number of fields to responds to for DataSet filling

a returned pointer to a list of character strings with the field/DataSet names T

a returned pointer to a list of ranks associated with each field {

a returned pointer to a list of field flags (FIELDIN - input, FIELDOUT - output) t

integer return code

e

July 2025

6/35

<«@ps Conservative Data Transfers

Conservation is a statement of integration

@ Consistency with solvers is difficult (in general)
o must hold onto the data required to do the integration
e must be able to perform the integration in the same manner as the
solver integrates

@ How many different solver discretizations are there?

finite volume, finite element, ...

node-based or cell-based data storage

continuous or discontinuous formulations

AMR Cartesian

higher order FEM (e.g., continuous or discontinuous Galerkin)

Interdisciplinary Coupling

o Traditionally custom pairwise codes are required.

@ CAPS goal: let CAPS provide the ability to transfer data
internally.

Haimes Bounds & The AIM Discretization Structure July 2025 7135

Universal View of Solver Spatial Discretizations

Technique Used

@ Gradient-based optimization that balances integrated quantities by
adjusting the equivalent of “interpolation coefficients”

@ Needs solver consistent interpolation, integration and their duals

Data required — take an FEM perspective

o Element type — must support heterogeneous discretizations
@ Positions within an element are defined by the Barycentric
coordinates (s, t)
e geometry positions define the geometry of the cell
o data positions define where dependent variables are stored
o needed for cell-based, discontinuous and/or non-isoparametric

discretizations
o by default, the data is stored at the geometry locations

@ Data to associate back to the owning geometry (i.e., the Face and
parametric coordinates (u, v))

Haimes Bounds & The AIM Discretization Structure July 2025 8/35

Definition of Element Types

For the element examples that follow:

@ nRef is the number of polygonal positions (per element) that the
physical “corners” of the element are defined
@ nData is the number of positions used to define the data locations
in the element — O indicates that geometric = data positions
@ Higher-order positions (must be nodal, not modal) — do not
contribute to the polygonal shape
o the first positions must be those that define the polygon and should
be ordered (using a right-handed traversal)
@ All are indices into lists of points
o Note: discontinuous discretizations do not share indices at bounds

Haimes Bounds & The AIM Discretization Structure July 2025 9/35

Simple continuous linear triangle

nRef =3, nData=0

2 Barycentric Coordinates
geom&data s ¢

0 0 0

1 1 0

2 0 1

_ Bounds & The AIM Discretization Structure July 2025

10/35

Hanging vertex (AMR) quadrilateral

nRef =5, nData =0

@ @ Barycentric Coordinates
3 2 geom&data s ¢
0 0 0
1 1 0
4@~ 2 11
3 0 1
4 1 12

¢ le-

_ Bounds & The AIM Discretization Structure July 2025

4
11/35

Second order continuous triangle

nRef = 6, nData=0

0

O R N O R S

s
0
1
0
172
172
172

1

Barycentric Coordinates
geom&data

t
0
0
1
0
2
0

I T

July 2025

12/35

Discontinuous triangle (q=2, p=3)

Barycentric Coordinates

nRef = 6, nData =9 ggomn w0

0 0 0

1 1 0

2 0 1

3 12 0

4 172 172

5 172 0
data s t data s t
0 0 0 5 13 273
I 173 0 6 0 1
2 23 0 7 0 2713
3 1 0 8 0 173

4 2/3 173 9 13 173)

_ Bounds & The AIM Discretization Structure July 2025 13/35

Spatial Discretizations

Additionally needed:

@ Optional positions that support matching during the optimization.
Required for discontinuous discretizations so that the resultant
data at the reference positions are not the same.

e nMat is the number of match positions
0 indicates that reference = match positions

@ Cutting up the element into triangles which facilitates finding a
particular element given a target quilt (u, v)
o nTris is the number of triangles that best represent the element in a
linear sense

Haimes Bounds & The AIM Discretization Structure July 2025 14/35

Second order continuous triangle

nTris =4, nRef = 6

nData = 0, nMat = 0 HomEit 5
0 0
1 1
2 0
3 172
4 172
5 172
Triangle Indices
0 3 5
31 4
5 4 2
3 45

Barycentric Coordinates

t
0
0
1
0
172
0

I T

July 2025

15/35

Cell-centered or discontinuous constant triangle

nTris =1, nRef =3
nData =1, nMat =1

Barycentric Coordinates
geom t

0 0 O
1 1 0
2 0 1
data
0 173 1/3
match
0 173 1/3
Triangle Indices
01 2
~ Haimes Bounds & The AIM Discretization Structure July 2025 16/35

Discontinuous bilinear quadrilateral

nTris = 2, nRef =4
nData = 4, nMat =4

3 2
3
X
) 0 { 2N
0 I

Barycentric Coordinates

geom data s t
0 0 0 0
1 1 1 0
2 2 1 1
3 3 0 1
match
0 1/4 1/4
1 3/4 1/4
2 3/4 3/4
3 1/4 3/4
Triangle Indices
01 2
0 2 3

I T

July 2025

17/35

«@ps ATM — Discrete Structure 1/6

Discrete Structure — Used to define a VertexSet

The CAPS Discrete data structure holds the spatial discretization information for a
Bound. It defines reference positions for the location of the vertices that support the
geometry and optionally the positions for the data locations (if these differ). This
structure can contain a homogeneous or heterogeneous collection of element types
and optionally specifies match positions for conservative data transfers.

Contains enough information so that the Bound data may be visualized.

EGADS Tessellation Object
@ Used to specify the discretization of the entire Body

@ Requires triangles
@ Can be constructed from an external mesh generator
o Lookat EG_initTessBody, EG_setTessEdge,

EG_setTessFace & EG_statusTessBody
o Setin CAPS by invoking aim_newTess

Haimes Bounds & The AIM Discretization Structure July 2025 18/35

Structure capsEleT

typedef struct {

int nref; /* number of geometry reference points =*/

int ndata; /* number of data ref points —— 0 data at ref x/

int nmat; /* number of match points (0 —— match at
geometry reference points) x/

int ntri; /* number of triangles to represent the elem x/

double xgst; /* [s,t] geom reference coordinates in the
element —- 2xnref in length */

double =xdst; /x [s,t] data reference coordinates in the
element —- 2xndata in length %/

double xmatst; /* [s,t] positions for match points - NULL
when using reference points (2+nmat long) */

int «tris; /+ the triangles defined by geom reference indices
(bias 1) -- 3*ntri in length x/

int nseg; /+ number of element segments (sides) =*/

int *segs; /+ the element segments by reference indices
(bias 1) —-- 2#nsegs in length =/

} capsEleType;
You will usually have only a small number of element types
’

See AIAApaper2014-0294.pdf on the website in Publications for a
complete write-up
_ Bounds & The AIM Discretization Structure July 2025 19/35

Structure sElement — a single element

typedef struct ({
int tIndex; /* the element type index (bias 1) */
int eIndex; /* element owning index —— dim 1 Edge, 2 Face */
int *gIndices; /* local indices (bias 1) geom ref positions,
tess index -- 2*nref in length x/
int *dIndices; /* the vertex indices (bias 1) for data ref
positions -- ndata in length or NULL */
union {
int tql2]; /* tri or quad (bias 1) for ntri <= 2 %/
int xpoly; /* the multiple indices (bias 1) for ntri > 2 x/
} eTris; /* triangle indices that make up the element =/
} capsElement;
v

@ tIndex - index into the collected capsEleTypes of capsDiscr
@ elndex — index into the owning ego in the Body

@ glndices — index in capsBodyDiscr member gIndices — [2*nref in length]
index in capsDiscr member tessGlobal

@ dIndices — index in capsBodyDiscr member dIndices — [ndata in length or NULL]

@ eTris - triangle index/indices from the ego of the Body tessellation
poly must be allocated in capsBodyDiscr — this is a pointer into that memory block

_ Bounds & The AIM Discretization Structure July 2025 20/35

E ok ok kb % ok

/

typedef struct {

ego tess;

int nElems;

capsElement *elems;

int *gIndices;

int +*dIndices;

int *poly;

int globalOffset;
} capsBodyDiscr;

/%

/*
/*
/*
/*
/*
/*

defines a discretized collection of Elements for a body

specifies the connectivity based on a collection of Element Types and the
elements referencing the types.

tessellation object associated with the
discretization */

number of Elements */

the Elements (nElems in length) =/
memory storage for elemental glIndices */
memory storage for elemental dIndices */
memory storage for elemental poly */

tessellation global index offset across bodies */

@ glndices — allocated memory block for the collection of reference positions [length — > 2*nref]
@ dIndices — allocated memory block for data indices [y ndata in length or NULL]

@ poly - allocated memory block for polygon indices [y ntri in length or NULL]

@ globalOffset — an offset into tessGlobal that produces a unique index across multiple bodies

I T

July 2025 21/35

defines a discretized collection of Bodies

in the element which may be different from nVerts which is the number of
positions used for the data representation in the element. For simple nodal
* or isoparametric discretizations, nVerts is zero and verts is set to NULL.

*/

typedef struct {
int
void
void

int

double

int

int

int

int

int

int

int
capsEleType
int
capsBodyDiscr
int

void
} capsDiscr;

dim;
*instStore;
xalnfo;

nvVerts;
*verts;
xcelem;
nDtris;
*«dtris;
nDsegs;
*dsegs;
nPoints;
nTypes;
*types;
nBodys;
*bodys;
*tessGlobal;

*ptrm;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

*
*
*
* nPoints refers to the number of indices referenced by the geometric positions
*
*

dimensionality [1-3] */

analysis instance storage */

AIM info =/

below handled by the AIMs: */

number data ref positions or unconnected =/

data ref positions -- NULL if same as geom %/
2xnVerts (body, element) containing vert or NULL x/
number of triangles to plot data =/

NULL for NULL verts -- indices into verts */
number of segs (sides) to plot data mesh */
NULL for NULL verts -- indices into verts =/

number of entries in the geom positions */

number of Element Types */

the Element Types (nTypes in length) =/

number of Body discretizations /

the Body discretizations (nBodys in length) «/
tessellation indices to this local space

2xnPoints in len (bodys index, global tess index) =/
pointer for optional AIM use */

See $ESP_ROOT/doc/capsDiscr.pdf for a complete description
~ Haimes Bounds & The AIM Discretization Structure July 2025 22/35

<aps

© 0

AIM — Discrete Structure 6/6

The first members (dim, instance and ainfo) are filled by CAPS before calling aimDiscr.
All physical positions (except for those in verts) are found in the associated Tessellation Object,
which may be created in the AIM and set in CAPS by invoking aim_setTess.

The number of geometric reference points (nPoints) is the total number of vertices that support
the discretization.

The number of elements types is set by the member nTypes and the types themselves are defined
by a pointer to the allocated block of memory t ypes which contains nTypes of capsEleType.
The number of vertices used for the data positions is defined by nverts. If nVerts is nonzero:

@ nVerts entries must be allocated for the member verts and this must be filled with the
XYZ positions associated with the appropriate data reference positions defined as part of
the elements. The member ce lem refers to the index of the element containing the position
and must be allocated consistent with verts.

@ The number of triangles used for plotting data reference information is set by the member
nDtris. The actual triangles are defined in dt ris, which should be 3 times nDtris in
length. The values stored are the indices into the verts member (bias 1). The number of
segments (nDsegs) is associated with plotting the data mesh information, which is defined
in dsegs (should be 2 times nDsegs in length), which contains pairs of indices into the
verts member (bias 1).

The association between geometric reference points and the Tessellation Object is done by the
tessGlobal member. The first of the pair of integers in an index (bias 1) into the bodys
member. The second is the global index (bias 1) in the Tessellation Object.
Note: the tessGlobal memory block is allocated and populated automatically within CAPS.
The member pt rm is set aside for the plugin author and can be used to hold on to any data needed
to communicate with and between the AIM routines.

Haimes Bounds & The AIM Discretization Structure July 2025 23/35

Fill-in the Discrete data for a Bound Object — Optional

icode = aimDiscr (char xbname, capsDiscr xdiscr)

bname the Bound name
Note: all of the BRep entities are examined for the attribute capsBound. Any that
match bname must be included when filling this capsDiscr.

discr the Discrete structure to fill
Note: the AIM instance, AIM info pointer and the dimensionality have been filled in
before this function is invoked.

icode integer return code

Frees up pointer in the Discrete Structure — Optional

void aimFreeDiscrPtr (void xptrm)

ptrm the optional pointer in the Discrete Structure that needs to be freed
will not be called if the pointer is already NULL

_ Bounds & The AIM Discretization Structure July 2025 24/35

Return Element in the Mesh — Optional

icode = aimLocateElement (capsDiscr xdiscr, double *params,
double xparam, int xbIndex, int xelndex,
double xbary)

discr the input Discrete Structure

params the input global parametric space (at all of the geometry support positions)
rank is the dimensionality (¢ for 1D, [u, v] for 2D and [x, y, z] for 3D)

param the input requested parametric position in params (dimensionality in length)

blndex the returned body index in discr where the position was found (1 bias)

elndex the returned element index in discr where the position was found (1 bias)
bary the resultant Barycentric/reference position in the element e Index

icode integer return code

_ Bounds & The AIM Discretization Structure July 2025 25/35

Data Associated with the Discrete Structure — Optional

icode = aimTransfer (capsDiscr *discr, const char xfname, int npts,
int rank, double xdata, char **units)

discr the input Discrete Structure
fname the field name to that corresponds to the fill
npts the number of points to be filled
rank the rank of the data
data a pointer associated with the data to be filled (rank*npt s in length)

units the returned pointer to the string declaring the units {
return NULL to indicate unitless values

icode integer return code

Fills in the DataSet Object

~ Haimes Bounds & The AIM Discretization Structure July 2025 26/35

Interpolation on the Bound — Optional

icode = aimInterpolation(capsDiscr xdiscr, const char xname,
int bIndex, int eIndex, double xbary,
int rank, double xdata, double *result)

icode = aimInterpolateBar (capsDiscr *discr, const char xname,

int bIndex,

int eIndex,

discr
name
bIndex
elndex
bary
rank
data
result
r_bar
d_bar

icode

int rank, double x*r_bar,

double «bary,
double =xd_bar)

the input Discrete Structure

a pointer to the input DataSet name string

the input target body index (1 bias) in the Discrete Structure

the input target element index (1 bias) in the Discrete Structure
the input Barycentric/reference position in the element e Index
the input rank of the data

values at the data (or geometry) positions

the filled in results (rank in length)

input d(objective)/d(result)

returned d(objective)/d(data)

integer return code

S T

Forward and reverse differentiated functions
July 2025

27135

Element Integration on the Bound — Optional

icode = aimIntegration(capsDiscr xdiscr, const char xname,
int bIndex, int eIndex, int rank,
double xdata, double =*result)

icode = aimIntegrateBar (capsDiscr xdiscr, const char *name,
int bIndex, int elIndex, int rank,
double *r_bar, double =xd_bar)

discr the input Discrete Structure
name a pointer to the input DataSet name string
blndex the input target body index (1 bias) in discr
elndex the input target element index (1 bias) in discr
rank the input rank of the data
data values at the data (or geometry) positions — NULL length/area/volume of element
result the filled in results (rank in length)
r_bar input d(objective)/d(result)
d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
_ Bounds & The AIM Discretization Structure July 2025 28/35

AIM Helper Functions

Discretization Structure

e provides useful functions for the AIM programmer
@ gives access to CAPS Object data
@ note that all function names begin with aim_

e if any of these functions are used, then the library must be
included (libaimUtil.a/aimUtil.lib) in the AIM so/DLL build

Haimes Bounds & The AIM Discretization Structure July 2025 29/35

<ps AIM Utility Library

Get Discretization Structure
icode = aim_getDiscr (void xaimInfo, const char xbname, capsDiscr **discr)

aimInfo the AIM context
bname the Bound name

discr pointer to the returned Discrete structure
icode integer return code

Get Data from Existing DataSet

icode = aim_getDataSet (capsDiscr xdiscr, const char xdname,
enum capsdMethod xmethod, int *npts,
int xrank, double **data, char *xunits)

discr the input Discrete Structure
dname the requested DataSet name
method the returned method used for data transfers
npts the returned number of points in the DataSet
rank the returned rank of the DataSet
data areturned pointer to the data within the DataSet
units the unit string associated with the data within the DataSet
icode integer return code

Note: may only be called from aimPreAnalysis

Haimes Bounds & The AIM Discretization Structure July 2025 30/35

<ps AIM Utility Library — Data Transfers

Initialize capsBodyDiscr Pointer

void aim_initBodyDiscr (capsBodyDiscr xdiscBody)

discBody pointer to initialize

Linear Triangle/Quad Element Type with Nodal Data

icode =
icode = aim_nodalQuadType (capsEleType xeletype)

aim nodalTriangleType (capsEleType xeletype)

eletype element type pointer to fill

icode integer return code

Linear Triangle/Quad Element Type with Cell Data

aim _cellTriangleType (capsEleType xeletype)
aim_cellQuadType (capsEleType =*eletype)

icode
icode

eletype element type pointer to fill

icode integer return code

Haimes Bounds & The AIM Discretization Structure July 2025 31/35

eturn Element in a Linear Mesh

icode = aim_locateElement (capsDiscr *discr, double xparams,
double xparam, int xeIndex, int xbIndex,
double xbary)

discr the input Discrete Structure

params the input global parametric space (at all of the geometry support positions)
rank is the dimensionality (¢ for 1D, [u, v] for 2D and [x, y, z] for 3D)

param the input requested parametric position in params (dimensionality in length)

blndex the returned body index in discr where the position was found (1 bias)

elndex the returned element index in discr where the position was found (1 bias)
bary the resultant Barycentric/reference position in the element e Index

icode integer return code

_ Bounds & The AIM Discretization Structure July 2025 32/35

<ps AIM Utility Library — Data Transfers

Interpolation on the Bound in a Linear Mesh

= aim_interpolation(capsDiscr xdiscr, const char xname,

icode

icode

int bIndex, int eIndex, double xbary,

int rank, double xdata, double *result)

= aim_interpolateBar (capsDiscr xdiscr, const char xname,

discr
name
blndex
elndex
bary
rank
data
result
r_bar
d_bar

icode

int bIndex, int eIndex, double xbary,
int rank, double xr_bar, double =*d_bar)

the input Discrete Structure for a Linear Mesh

a pointer to the input DataSet name string

the input target body index (1 bias) in the Discrete Structure

the input target element index (1 bias) in the Discrete Structure
the input Barycentric/reference position in the element e Index
the input rank of the data

values at the data (or geometry) positions

the filled in results (rank in length)

input d(objective)/d(result)

returned d(objective)/d(data)

integer return code

Haimes

Forward and reverse differentiated functions
Bounds & The AIM Discretization Structure July 2025

33/35

Element Integration on the Bound in a Linear Mesh

icode = aim_integration (capsDiscr xdiscr, const char *name,
int bIndex, int eIndex, int rank,
double xdata, double =*result)
icode = aim_integrateBar (capsDiscr *discr, const char *name,
int bIndex, int elIndex, int rank,
double *r_bar, double xd_bar)

discr the input Discrete Structure for a Linear Mesh
name a pointer to the input DataSet name string
blndex the input target body index (1 bias) in discr
elndex the input target element index (1 bias) in discr
rank the input rank of the data
data values at the data (or geometry) positions — NULL length/area/volume of element
result the filled in results (rank in length)
r_bar input d(objective)/d(result)
d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
_ Bounds & The AIM Discretization Structure July 2025 34/35

In exercises/sessionl?2:

o Examine the differences between session08.py and
sessionl?2.py in the functions common to both

o Examine, build and execute sessionl?2.py as well as

crossXfer.py
Why the differences? Why turn off aut oExec for one of the

instances?
@ Review the differences between myAIM. c from session08 and
the source in exercises/sessionl?2.

@ Run sensitivity.py which uses Bounds to store (and in this

case view) geometric sensitivities.
Examine other CSM DESPMTR sensitivities.

