Bob Haimes
bob@geocentrictech.com or haimes@mit.edu
Geocentric Technologies LLC

<@ps Introduction

Geometric Sensitivities
@ Provides access to OpenCSM’s sensitivity calculations
@ Accomplished one Design Parameter at a time

@ pyCAPS user has access through built-in dataSets named with the
CSM Design Parameter — seen in exercises/sessionl2 by running
sensitivities.py.

Output Values — derivatives

@ The CAPS Value structure has slots to store derivative information
if available from the analysis at-hand

@ This should be populated when the value is set

N\

Haimes AIM Programming — Sensitivities July 2025 2/11

(]

(]

AIM Helper Functions

Sensitivity Access

provides useful functions for the AIM programmer
gives access to CAPS Object data

provides a dynamically loadable writer interface for dealing with
large meshes

note that all function names begin with aim_

if any of these functions are used, then the library must be
included (libaimUtil.a/aimUltil.lib) in the AIM so/DLL build

Haimes AIM Programming — Sensitivities July 2025 3/11

Define Parameter Associated with Sensitivities

icode = aim_setSensitivity(void xaimInfo, const char xGIname,
int xirow, int =icol)

aimInfo the AIM context

GIname the pointer to the string that matches the Geometry Input Parameter name
irow the parameter row to use — 1 bias
icol the parameter column to use — 1 bias

icode integer return code

Notes:

0 aim_newTess must have been invoked sometime before calling this function to set the
tessellations for the Bodies of interest

e Call aim_setSensitivity before call(s) to aim_getSensitivity.

Get Sensitivities based on Tessellation Components

icode = aim_getSensitivity(void xaimInfo, ego tess, int ttype,
int index, int =npts, double xxdxyz)

aimInfo

tess

ttype

index
npts
dxyz
icode
Note:

the AIM context
the EGADS Tessellation Object

topological type — 0 - NODE, Tessellation Sensitivities: 1 - EDGE, 2 - FACE
Geometric Sensitivities: -1 - EDGE, -2 - FACE

the index in the Body (associated with the tessellation) based on the type (bias 1)
the returned number of sensitivities (number of tessellation points)
a pointer to the returned sensitivities — 3*npts in length (freeable)

integer return code

@ Call aim_setSensitivity before call(s) to aim_getSensitivity

N i

5/11

Get Global Tessellation Sensitivities

icode = aim_tessSensitivity(void xaimInfo, const char xname,
int irow, int icol, ego tess, int xnpts,
double **dxyz)

aimInfo
name
irow
icol

tess
npts
dxyz
icode

Notes:

the AIM context

the pointer to the string that matches the Geometry Input Parameter name
the parameter row to use — 1 bias

the parameter column to use — 1 bias

the EGADS Tessellation Object

the returned number of sensitivities (number of global vertices)

a pointer to the returned sensitivities — 3*npts in length (freeable)

integer return code

@ Used to get the tessellation sensitivities for the entire Tessellation Object
e The number of points is the global number of vertices in the tessellation
o This function does not require that aim_setSensitivity be called first

6/11

<ps AIM Utility Library — Sensitivities

Set Step Size for Sensitivities

icode = aim_setStepSize (void xaimInfo, double step)

aimInfo the AIM context

step the step size used for subsequent AIM-based sensitivity calculations
minus indicates defaulting to CAPS, 0.0 is for analytic, positive sets the finite
difference step size

icode integer return code

Get Step Size for Sensitivities

icode = aim_getStepSize (void xaimInfo, double xstep)

aimInfo the AIM context

step the step size used for subsequent AIM-based sensitivity calculations
minus indicates defaulting to CAPS, 0.0 is for analytic, positive sets the finite
difference step size

icode integer return code

These functions should only be used for debugging

Haimes AIM Programming — Sensitivities July 2025 7111

Filling in the Value Structure

char *sensvar; // filled with WRT string
double value_dot; // filled with the derivative

/+ only 1 derivative (WRT sensVar) x/

val->nderiv = 1; // only 1 derivative of rank 1
AIM_ALLOC (val->derivs, val->nderiv, capsDeriv, aimInfo, status);
val->derivs[0] .name = NULL;

val->derivs[0] .deriv = NULL;

/* set what the first (only) derivative is with respect to */
AIM_STRDUP (val->derivs[0] .name, sensVar, aimInfo, status);

/+ the rank (i.e., area, volume, and mass all have rank 1) =/
val->derivs[0].len_wrt = 1;

/* allocate storage for the derivative(s) */
length = val->length * val->derivs[0].len_wrt;
AIM_ALLOC (val->derivs[0] .deriv, length, double, aimInfo, status);

/+ £ill it */
val->derivs[0] .deriv[0] = value_dot;

8/11

«@ps BExercises

Setup theAIM to deal with sensitivities through tankCalc

@ Select an Geometryln or Analysisln to get the derivative WRT.
This should be in the form of a string value.

@ Get the geometry dot information via the routines listed above
The dot value for AnalysisIn sensitivities is 1.0 for the input of
interest, 0.0 for all others

@ Fill the derivative information into the derivs member of the
appropriate AnalysisOut Value structure in Post or CalcOutput

@ The type of any Output Value Structure that contains derivatives
must be set to DoubleDeriv (not Double)

Note that in exercises/session12 we will be looking at geometric
sensitivities associated with Bounds

Haimes AIM Programming — Sensitivities July 2025 9/11

«@ps BExercises

The simple analysis: tankCalc

Computes a fuel tank’s mass with AnalysisIn Sensitivities
o Input file format — ASCII

o An integer — 1

o 4 doubles — wallDensity, wallDensity_dot, fuelDensity and
fuelDensity_dot

o 9 floating point numbers — 3 xyzs for 3 points for the triangle
There may be as many triangles as necessary, which should
represent a closed volume

@ Output file format — ASCII

e 6 floating point numbers on a single line
e area, area_dot, volume, volume_dot, mass and mass_dot of the
fuel tank

Haimes AIM Programming — Sensitivities July 2025 10/11

«@ps BExercises

The simple analysis: tankCalc

Computes a fuel tank’s mass with GeometrylIn Sensitivities
@ Input file format — ASCII

o An integer — 2

o 4 doubles — wallDensity, wallDensity_dot, fuelDensity and
fuelDensity_dot

o 18 floating point numbers representing a single triangle
3 xyzs then 3 xyz_dots for the 3 points that support the triangle
There may be as many triangles as necessary, which should
represent a closed volume

@ Output file format — ASCII

o 6 floating point numbers on a single line
e area, area_dot, volume, volume_dot, mass and mass_dot of the
fuel tank

Haimes AIM Programming — Sensitivities July 2025

11/11

