
Computational Aircraft Prototype Syntheses
AIM Programming – AIMs and Units

For ESP Rev 1.28

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

Geocentric Technologies LLC

Haimes AIMs and Units July 2025 1 / 11

CAPS and Units

Any CAPS Value Object can be assigned Units
It is best to give any AnalysisIn, AnalysisOut or AnalysisDynO
the appropriate units that the analysis expects. This makes dealing
with the analysis much simpler.
Any AnalysisIn Value will have already gone through a units
conversion when exposed to the AIM.
Examine the Body’s capsLength attribute to determine the
geometry’s units.
The AIM should either be unit-less as with all previous exercises
or with all appropriate units defined.

Haimes AIMs and Units July 2025 2 / 11

pyCAPS/Python Units
pyCAPS uses the CAPS unit manipulation functions (from udunits) to be
consistent with internal use of units in CAPS. Similar to the Pint1 Python package,
this defines the following two classes:

pyCAPS.Unit

pyCAPS.Quantity

where pyCAPS.Unit defines a unit which can be manipulated with standard operator,
and pyCAPS.Quantity represents a value with units. This is designed to work with
these classes as the C API uses the optional units string of the Value Structure. The
best way to extract a value from a pyCAPS.Quantity is to divide it out by its units.

Unit Manipulation
kg = pyCAPS.Unit("kg")
m = pyCAPS.Unit("m")
s = pyCAPS.Unit("s")

Newton = kg*m/s**2

Value from Quantity
m = pyCAPS.Unit("m")
ft = pyCAPS.Unit("ft")

q = 10 * m # Make a Quantity

assert(10 == q/m)
assert(10 == q.value())
assert(q.convert(ft).value() == q/ft)

1https://pint.readthedocs.io
Haimes AIMs and Units July 2025 3 / 11

Other uses for Units in the Value Structure

Path strings
If the Value type is String and units member of the Value Structure is
set to “PATH” then any slashes are converted automatically based on
the OS type currently in use.

Pointer types and linkages
For Value types of either Pointer or PointerMesh the units member of
the Value Structure can be used to insure that there is an appropriate
match when linking Values. That is; the unit strings must also match.

Note: using pointer linkages between AIMs should only be done
cautiously because the data pointed to always needs to be structurally
identical across the AIMs.

Haimes AIMs and Units July 2025 4 / 11

AIM Helper Functions
Units Handling

provides useful functions for the AIM programmer
gives access to CAPS Object data
note that all function names begin with aim_
if any of these functions are used, then the library must be
included (libaimUtil.a/aimUtil.lib) in the AIM so/DLL build

Haimes AIMs and Units July 2025 5 / 11

AIM Utility Library – Units
Unit conversion
icode = aim_convert(void *aimInfo, const int count

const char *inUnits, double *inValue,
const char *outUnits, double *outValue)

aimInfo the AIM context
count length of inValue and outValue

inUnits the pointer to the string declaring the source units
inValue array of values to be converted

outUnits the pointer to the string declaring the desired units
outValue array of returned converted value (may be same pointer as inValue)

icode integer return code

Unit invertion
icode = aim_unitInvert(void *aimInfo, const char *inUnits,

char **outUnits)

aimInfo the AIM context
inUnits the pointer to the string declaring units

outUnits the returned string units = 1/inUnits (freeable)
icode integer return code

Haimes AIMs and Units July 2025 6 / 11

AIM Utility Library – Units

Unit multiplication
icode = aim_unitMultiply(void *aimInfo, const char *inUnits1,

const char *inUnits2, char **outUnits)

aimInfo the AIM context

inUnits1 the pointer to the string declaring left units

inUnits2 the pointer to the string declaring right units

outUnits the returned string units = inUnits1*inUnits2 (freeable)

icode integer return code

Unit division
icode = aim_unitDivision(void *aimInfo, const char *inUnits1,

const char *inUnits2, char **outUnits)

aimInfo the AIM context

inUnits1 the pointer to the string declaring numerator units

inUnits2 the pointer to the string declaring denominator units

outUnits the returned string units = inUnits1/inUnits2 (freeable)

icode integer return code

Haimes AIMs and Units July 2025 7 / 11

AIM Utility Library – Units

Unit raise to a power
icode = aim_unitRaise(void *aimInfo, const char *inUnits,

const int power, char **outUnits)

aimInfo the AIM context

inUnits the pointer to the string declaring units

power power to raise inUnits

outUnits the returned string units = inUnits ^ power (freeable)

icode integer return code

Unit raise to root
icode = aim_unitRoot(void *aimInfo, const char *inUnits,

const int root, char **outUnits)

aimInfo the AIM context

inUnits the pointer to the string declaring units

root root to raise inUnits

outUnits the returned string units = inUnits ^ 1/root (freeable)

icode integer return code

Haimes AIMs and Units July 2025 8 / 11

AIM Utility Library – Units

Unit Offset
icode = aim_unitOffset(void *aimInfo, const char *inUnits,

const double offset, char **outUnits)

aimInfo the AIM context

inUnits the pointer to the string declaring units

offset offset to add to inUnits

outUnits the returned string units = inUnits @ offset (freeable)

icode integer return code

Check if two unit strings are convertible
icode = aim_unitConvertible(void *aimInfo, const char *unit1,

const char *unit2)

aimInfo the AIM context

unit1 string pointer declaring units

unit2 string pointer declaring units

icode integer return code

Haimes AIMs and Units July 2025 9 / 11

AIM Utility Library – Units

Retrieve capsLength length unit attribute from bodies
icode = aim_capsLength(void *aimInfo, const char **lengthUnit)

aimInfo the AIM context

lengthUnit the returned string length unit of the bodies

icode integer return code

Get Unit System
icode = aim_unitSys(void *aimInfo, char **unitSys)

aimInfo the AIM context

unitSys a returned pointer to a character string declaring the unit system – can be NULL

icode integer return code

Note: This is a string set at Problem initialization and was supposed to set the unit system in use (i.e., SI,
US or the like) for the problem at-hand. This standardization never took hold, but this string got used for
other unit information (so it could not be easily removed). Best to ignore!

Haimes AIMs and Units July 2025 10 / 11

Exercises

In exercises/session11 modify theAIM.c to work with session11.py:
Mass should be in kg and length should be in m
Add another input (wallThickness – in m), so that all densities
can be in kg/m3
Add unit definitions for the variables set by aimInputs and
aimOutputs

Allow for the scaling of the geometry (when the triangulation is
written)

Once functioning, explore changing units in the Python script

Haimes AIMs and Units July 2025 11 / 11

