
Computational Aircraft Prototype Syntheses
AIM Programming – Sensitivities

For ESP Rev 1.28

Bob Haimes
bob@geocentrictech.com or haimes@mit.edu

Geocentric Technologies LLC

Haimes AIM Programming – Sensitivities July 2025 1 / 11

Introduction

Geometric Sensitivities
Provides access to OpenCSM’s sensitivity calculations
Accomplished one Design Parameter at a time
pyCAPS user has access through built-in dataSets named with the
CSM Design Parameter – seen in exercises/session12 by running
sensitivities.py.

Output Values – derivatives
The CAPS Value structure has slots to store derivative information
if available from the analysis at-hand
This should be populated when the value is set

Haimes AIM Programming – Sensitivities July 2025 2 / 11

AIM Helper Functions
Sensitivity Access

provides useful functions for the AIM programmer
gives access to CAPS Object data
provides a dynamically loadable writer interface for dealing with
large meshes
note that all function names begin with aim_
if any of these functions are used, then the library must be
included (libaimUtil.a/aimUtil.lib) in the AIM so/DLL build

Haimes AIM Programming – Sensitivities July 2025 3 / 11

AIM Utility Library – Sensitivities

Define Parameter Associated with Sensitivities
icode = aim_setSensitivity(void *aimInfo, const char *GIname,

int *irow, int *icol)

aimInfo the AIM context

GIname the pointer to the string that matches the Geometry Input Parameter name

irow the parameter row to use – 1 bias

icol the parameter column to use – 1 bias

icode integer return code

Notes:
1 aim_newTess must have been invoked sometime before calling this function to set the

tessellations for the Bodies of interest
2 Call aim_setSensitivity before call(s) to aim_getSensitivity.

Haimes AIM Programming – Sensitivities July 2025 4 / 11

AIM Utility Library – Sensitivities

Get Sensitivities based on Tessellation Components
icode = aim_getSensitivity(void *aimInfo, ego tess, int ttype,

int index, int *npts, double **dxyz)

aimInfo the AIM context

tess the EGADS Tessellation Object

ttype topological type – 0 - NODE, Tessellation Sensitivities: 1 - EDGE, 2 - FACE
Geometric Sensitivities: -1 - EDGE, -2 - FACE

index the index in the Body (associated with the tessellation) based on the type (bias 1)

npts the returned number of sensitivities (number of tessellation points)

dxyz a pointer to the returned sensitivities – 3*npts in length (freeable)

icode integer return code

Note:

Call aim_setSensitivity before call(s) to aim_getSensitivity

Haimes AIM Programming – Sensitivities July 2025 5 / 11

AIM Utility Library – Sensitivities

Get Global Tessellation Sensitivities
icode = aim_tessSensitivity(void *aimInfo, const char *name,

int irow, int icol, ego tess, int *npts,
double **dxyz)

aimInfo the AIM context

name the pointer to the string that matches the Geometry Input Parameter name

irow the parameter row to use – 1 bias

icol the parameter column to use – 1 bias

tess the EGADS Tessellation Object

npts the returned number of sensitivities (number of global vertices)

dxyz a pointer to the returned sensitivities – 3*npts in length (freeable)

icode integer return code

Notes:
1 Used to get the tessellation sensitivities for the entire Tessellation Object
2 The number of points is the global number of vertices in the tessellation
3 This function does not require that aim_setSensitivity be called first

Haimes AIM Programming – Sensitivities July 2025 6 / 11

AIM Utility Library – Sensitivities

Set Step Size for Sensitivities
icode = aim_setStepSize(void *aimInfo, double step)

aimInfo the AIM context

step the step size used for subsequent AIM-based sensitivity calculations
minus indicates defaulting to CAPS, 0.0 is for analytic, positive sets the finite
difference step size

icode integer return code

Get Step Size for Sensitivities
icode = aim_getStepSize(void *aimInfo, double *step)

aimInfo the AIM context

step the step size used for subsequent AIM-based sensitivity calculations
minus indicates defaulting to CAPS, 0.0 is for analytic, positive sets the finite
difference step size

icode integer return code

These functions should only be used for debugging
Haimes AIM Programming – Sensitivities July 2025 7 / 11

Storing derivative information in CAPS
Filling in the Value Structure
char *sensVar; // filled with WRT string
double value_dot; // filled with the derivative

/* only 1 derivative (WRT sensVar) */
val->nderiv = 1; // only 1 derivative of rank 1
AIM_ALLOC(val->derivs, val->nderiv, capsDeriv, aimInfo, status);
val->derivs[0].name = NULL;
val->derivs[0].deriv = NULL;

/* set what the first (only) derivative is with respect to */
AIM_STRDUP(val->derivs[0].name, sensVar, aimInfo, status);

/* the rank (i.e., area, volume, and mass all have rank 1) */
val->derivs[0].len_wrt = 1;

/* allocate storage for the derivative(s) */
length = val->length * val->derivs[0].len_wrt;
AIM_ALLOC(val->derivs[0].deriv, length, double, aimInfo, status);

/* fill it */
val->derivs[0].deriv[0] = value_dot;

Haimes AIM Programming – Sensitivities July 2025 8 / 11

Exercises

Sensitivities
Setup theAIM to deal with sensitivities through tankCalc

Select an GeometryIn or AnalysisIn to get the derivative WRT.
This should be in the form of a string value.
Get the geometry dot information via the routines listed above
The dot value for AnalysisIn sensitivities is 1.0 for the input of
interest, 0.0 for all others
Fill the derivative information into the derivs member of the
appropriate AnalysisOut Value structure in Post or CalcOutput
The type of any Output Value Structure that contains derivatives
must be set to DoubleDeriv (not Double)

Note that in exercises/session12 we will be looking at geometric
sensitivities associated with Bounds

Haimes AIM Programming – Sensitivities July 2025 9 / 11

Exercises

The simple analysis: tankCalc
Computes a fuel tank’s mass with AnalysisIn Sensitivities

Input file format – ASCII
An integer – 1
4 doubles – wallDensity, wallDensity_dot, fuelDensity and
fuelDensity_dot
9 floating point numbers – 3 xyzs for 3 points for the triangle
There may be as many triangles as necessary, which should
represent a closed volume

Output file format – ASCII
6 floating point numbers on a single line
area, area_dot, volume, volume_dot, mass and mass_dot of the
fuel tank

Haimes AIM Programming – Sensitivities July 2025 10 / 11

Exercises

The simple analysis: tankCalc
Computes a fuel tank’s mass with GeometryIn Sensitivities

Input file format – ASCII
An integer – 2
4 doubles – wallDensity, wallDensity_dot, fuelDensity and
fuelDensity_dot
18 floating point numbers representing a single triangle
3 xyzs then 3 xyz_dots for the 3 points that support the triangle
There may be as many triangles as necessary, which should
represent a closed volume

Output file format – ASCII
6 floating point numbers on a single line
area, area_dot, volume, volume_dot, mass and mass_dot of the
fuel tank

Haimes AIM Programming – Sensitivities July 2025 11 / 11

