
Engineering Sketch Pad (ESP)

Training Session 1

ESP Overview & Getting Started

John F. Dannenhoffer, III
jfdannen@syr.edu

Syracuse University

updated for v1.25

Dannenhoffer ESP Training - Session 1 June 2024 1 / 66

Overview (1)

Training Overview

ESP Overview

Background and Objectives
ESP Architecture
Distinguishing Features

Starting serveESP

User Interface

Screen Layout
Image Manipulation
View Manipulation

Dannenhoffer ESP Training - Session 1 June 2024 2 / 66

Overview (2)

Getting Info

StepThru Mode

Journals & Exporting

Script Editor

Collaboration mode

Dannenhoffer ESP Training - Session 1 June 2024 3 / 66

Training Outline (1)
Each session consists of a lecture and homework exercises

1 ESP Overview & Getting Started

2 Solids Fundamentals (1)

3 CSM Language

4 Solids Fundamentals (2)

5 UDPs, UDFs, and UDCs

6 Pyscript Fundamentals

7 Sketcher Fundamentals

Dannenhoffer ESP Training - Session 1 June 2024 4 / 66

Training Outline (2)
Each session consists of a lecture and homework exercises

8 Selection & Attribution

9 Sensitivities

10 Airfoil Optimization with CAPS

11 Aerodynamic Analyses with CAPS

12 Building Large Models

13 Associated Tools

14 Structural Analyses and Data Transfers with CAPS

Dannenhoffer ESP Training - Session 1 June 2024 5 / 66

Training Files

Download the latest version of ESP:
Either acdl.mit.edu/ESP/PreBuilts/... to get
pre-compiled versions for various operating systems

follow instructions to Setup on your computer

Or acdl.mit.edu/ESP/ESP.tgz to get source distribution

you will need to compile the program

Download the training overlay:

acdl.mit.edu/ESP/Training/ESP training 2024.tgz or
acdl.mit.edu/ESP/Training/ESP training 2024.zip

Should be expanded under ESP125/EngSketchPad/ to make
ESP125/EngSketchPad/training/ESP/...

Dannenhoffer ESP Training - Session 1 June 2024 6 / 66

Training Facilitators

John Dannenhoffer

Syracuse University
jfdannen@syr.edu

Marshall Galbraith

Massachusetts Institute of Technology
galbramc@mit.edu

Nitin Bhagat

University of Dayton Research Institute
NBhagat1@UDayton.edu

Dannenhoffer ESP Training - Session 1 June 2024 7 / 66

Background (1)

Over the past 40 years, there have been an
increasingly-complex (complicated) series of “CAD” systems
to support the geometry needs of the manufacturers of
mechanical devices

CAD = “computer aided drafting”
CAD = “computer-aided drawing”
CAD = “computer-aided design”
CAD = “computer-aided development”

“CAD” has sometimes been erroneously equated with
geometry

Dannenhoffer ESP Training - Session 1 June 2024 8 / 66

Background (2)

These systems are built around the notion that the developer
of a geometric model should construct the model to be
consistent with the manufacturing process (mCAD)

The analytical designer of a system wants to think about the
function and performance of the device being generated,
often leading to the generation of a separate aCAD model

The modeling techniques supported by aCAD and mCAD
are often so dissimilar that model transfer between them is
done by limited translators or by “starting over”

This one-way path from aCAD to mCAD leads to a
“broken process”

Dannenhoffer ESP Training - Session 1 June 2024 9 / 66

Objective

ESP is:

a geometry creation and manipulation system designed
specifically to support the analysis and design of aerospace
vehicles
can be run stand-alone for the development of models
can be embedded into other analysis and design systems to
support their geometry needs

ESP is not:

a full-featured computer-aided design (CAD) system
designed specifically to support the mechanical design and
manufacturing of any complex system
a system to be used for creating “drawings”

Dannenhoffer ESP Training - Session 1 June 2024 10 / 66

ESP Architecture

ESP user interactions

serveESP
system driver
create graphic objects

OpenCSM UDPs

design parameters
feature tree
user-defined primitives
sensitivities

EGADS
top-down & bottom-up
persistent attribution
watertight tessellation

OpenCASCADE
geometry primitives
boundary representations

?

?

6?

?

?

-

? ?

?

Dannenhoffer ESP Training - Session 1 June 2024 11 / 66

Gallery of ESP Configurations

Dannenhoffer ESP Training - Session 1 June 2024 12 / 66

Distinguishing Features — Solid Modeller

Construction process guarantees that models are realizable
solids

watertight representation needed for grid generators
sheets and wires are supported when needed

Parametric models are defined in terms of:
Feature Tree

“recipe” for how to construct the configuration

Design Parameters

“values” that describe any particular instance of the
configuration

Dannenhoffer ESP Training - Session 1 June 2024 13 / 66

Distinguishing Features — Feature-based

Configurations start with the generation of primitives

standard primitives: point, box, sphere, cone, cylinder, torus
grown primitives (from sketches): extrude, rule, blend,
revolve, sweep, loft
user-defined primitives (UDPs)

Bodys can be modified

transformations: translate, rotate, scale, mirror
applications: fillet, chamfer, hollow

Bodys can be combined

Booleans: intersect, subtract, union
other: join, connect, extract, elevate

Dannenhoffer ESP Training - Session 1 June 2024 14 / 66

Construction Process (1)

bolt example

design parameters

1: DESPMTR Thead 1.00 # thickness of head

2: DESPMTR Whead 3.00 # width of head

3: DESPMTR Fhead 0.50 # fraction of head that is flat

4: DESPMTR Dslot 0.75 # depth of slot

5: DESPMTR Wslot 0.25 # width of slot

6: DESPMTR Lshaft 4.00 # length of shaft

7: DESPMTR Dshaft 1.00 # diameter of shaft

8: DESPMTR sfact 0.50 # overall scale factor

head

9: BOX 0 -Whead/2 -Whead/2 Thead Whead Whead

10: ROTATEX 90 0 0

11: BOX 0 -Whead/2 -Whead/2 Thead Whead Whead

12: ROTATEX 45 0 0

13: INTERSECT

...

Dannenhoffer ESP Training - Session 1 June 2024 15 / 66

Construction Process (2)

...

14: SET Rhead (Whead^2/4+(1-Fhead)^2*Thead^2)/(2*Thead*(1-Fhead))

15: SPHERE 0 0 0 Rhead

16: TRANSLATE Thead-Rhead 0 0

17: INTERSECT

slot

18: BOX Thead-Dslot -Wslot/2 -Whead 2*Thead Wslot 2*Whead

19: SUBTRACT

shaft

20: CYLINDER -Lshaft 0 0 0 0 0 Dshaft/2

21: UNION

22: SCALE sfact

23: END

Dannenhoffer ESP Training - Session 1 June 2024 16 / 66

Review of Construction Process (3)

BOX
(9)

?
ROTATEX

(10)
XXXXz

BOX
(11)

?
ROTATEX

(12)
����9

INTERSECT
(13)
XXXXz

SPHERE
(15)

?
TRANSLATE

(16)
����9

INTERSECT
(17)
XXXXz

BOX
(18)
����9

SUBTRACT
(19)
XXXXz

CYLINDER
(20)
����9

UNION

(21)

?
SCALE

(22)

Dannenhoffer ESP Training - Session 1 June 2024 17 / 66

Distinguishing Features — Parametric

ESP models typically contain one or more Design Parameters

Design Parameters can be single-valued, 1D vectors, or 2D
arrays of numbers

Each Design Parameter has a current value, upper- and
lower-bounds, and a current “velocity” (which is used to
define sensitivities)

Design Parameters can be “set” and “get”

through ESP’s tree window
through Pyscript
externally via calls to the Application Programming
Interface (API)

Arguments of all operations can be written as “expressions”
that reference Design Parameters

Dannenhoffer ESP Training - Session 1 June 2024 18 / 66

Parameter Changes for Glider

aspect = 15 aspect = 7
sweep = 10 sweep = 30
taper = 0.8 taper = 0.3

Dannenhoffer ESP Training - Session 1 June 2024 19 / 66

Distinguishing Features — Associative

ESP maintains a set of global and local attributes on a
configuration that are persistent through rebuilds

Supports the generation of multi-fidelity models

attributes can be used to associate conceptually-similar parts
in the various models

Supports the generation of multi-disciplinary models

attributes can be used to associate surface groups which
share common loads and displacements

Supports the “marking” of Faces and Edges with attributes
such as boundary conditions, nominal grid spacings, material
properties, . . .

Dannenhoffer ESP Training - Session 1 June 2024 20 / 66

Multiple Models for Glider

Dannenhoffer ESP Training - Session 1 June 2024 21 / 66

Distinguishing Features — Differentiated

ESP allows a user to compute the sensitivity of any part of a
configuration with respect to any Design Parameter
Many of OpenCSM’s commands have been analytically
“differentiated”

efficient, since there is no need to re-generate the
configuration
accurate, since there is no truncation error associated with
“differencing”

Other commands (currently) require the use of
finite-differenced sensitivities

robust, due to new mapping technique
less efficient, since it requires the generation of a “perturbed”
configuration
less accurate, since one needs to carefully select a
“perturbation step” that is a balance between truncation and
round-off errors

Dannenhoffer ESP Training - Session 1 June 2024 22 / 66

Sensitivities for Glider

twist fuselage width

Dannenhoffer ESP Training - Session 1 June 2024 23 / 66

Distinguishing Features — Extensible

Users can add their own user-defined primitives (UDPs)

create a single primitive solid
are written in C, C++, or FORTRAN and are compiled
can be written either top-down or bottom-up
have access to the entire suite of methods provided by EGADS

are coupled into ESP dynamically at run time

Users can add their own user-defined functions (UDFs)

consume one or more Bodys from stack
are otherwise similar to UDPs

Users can add their own user-defined components (UDCs)

can be thought of as “macros”
create zero or more Bodys
are written as .csm-type scripts

Dannenhoffer ESP Training - Session 1 June 2024 24 / 66

Distinguishing Features — Deployable

ESP’s back-end (server) runs on a wide variety of modern
compute platforms

LINUX
MAC-OS
Windows

ESP’s user-interface (client) runs in most modern web
browsers

FireFox
Google Chrome
Safari
Edge (chromium-based versions)

ESP can be distributed anywhere in the computer
environment

open-source project (using the LGPL 2.1 license) that is
distributed as source

Dannenhoffer ESP Training - Session 1 June 2024 25 / 66

Distinguishing Features — Embeddable

Models are defined in .csm files

human readable ASCII
stack-like language that is consistent with Feature Tree
traversal
contains looping via “patterns”
contains logical (if/then) constructs
contains error recovery via thrown/caught signals

OpenCSM modeling system is defined by an Application
Programming Interface (API) that allows it to be embedded
into other applications

load a Master Model
interrogate and/or edit the Master Model
execute the Feature Tree and create BRep(s)
interrogate the BRep(s)
“set” and “get” sensitivities

Dannenhoffer ESP Training - Session 1 June 2024 26 / 66

Launching serveESP (1)

Double-clicking runESP125 icon on desktop

Automatically starts server and brings up browser
User can select File→Open to use existing .csm file
Closing the browser automatically stops the server
No command-line options can be used

Double-clicking on ESP125 icon on desktop

Brings up a terminal window in which all the ESP

environment variables are set
Allows user to launch serveESP multiple times, with
filenames and/or command-line options
Terminal window remains open until the user closes it

Dannenhoffer ESP Training - Session 1 June 2024 27 / 66

Launching serveESP (2)

If starting from terminal window:

Technique 1: start browser automatically:
setenv ESP_START "open -a /Applications/Firefox.app ...

... $ESP_ROOT/ESP/ESP.html"

or
export ESP_START="open -a /Applications/Firefox.app ...

... $ESP_ROOT/ESP/ESP.html"

or
set ESP_START="open -a /Applications/Firefox.app ...

... ESP_ROOT/ESP/ESP.html"

and then
serveESP $ESP_ROOT/data/tutorial1

Technique 2: start browser separately:
serveESP $ESP_ROOT/data/tutorial1

and then open a browser on ESP.html

Dannenhoffer ESP Training - Session 1 June 2024 28 / 66

serveESP Command Line (1)

To start serveESP

serveESP [filename[.csm]] [options...]

where filename can be given in the following forms:

(blank) starts without any input files (File→Open is then
typically used within ESP)
name.csm reads the given .csm file
name.cpc reads the given .cpc file, which is a .csm file with
all the UDCs inline
name.stp or name.step or name.STP or name.STEP creates
and reads autoStep.csm (which loads the given STEP file)
name.igs or name.iges or name.IGS or name.IGES creates
and reads autoIges.csm (which loads the given IGES file)
. . .

Dannenhoffer ESP Training - Session 1 June 2024 29 / 66

serveESP Command Line (2)

To start serveESP

serveESP [filename[.csm]] [options...]

where filename can be given in the following forms:

. . .
name.egads or name.EGADS creates and reads
autoEgads.csm (which loads the given EGADS file)
name.py to start with a Pyscript (and without a Brep)
otherwise a .csm extension is added and the file is read

Dannenhoffer ESP Training - Session 1 June 2024 30 / 66

serveESP Command Line (3)

Frequently used [options...] include:

-batch runs the case but does not attach to a browser
-help or -h prints listing of acceptable options
-jrnl jrnlname can be used to replay a previous session

current session is stored in file portXXXX.jrnl

file must be renamed to be used for next session

-skipBuild to skip initial build
-skipTess to skip tessellation at end (and automatically
select -batch)
--version or -version or -v to return version information
. . .

Dannenhoffer ESP Training - Session 1 June 2024 31 / 66

serveESP Command Line (4)

Other [options...] include:

-despmtrs despname to update the Design Parameters from
the despname file
-dict dictname loads Constant Parameters from the
dictname file
-dumpEgads to dump EGADS file in form Body XXXXXX.egads

after each Body is built
-loadEgads to load Body XXXXXX.egads file if it exists in
current directory
-onormal to plot in (nearly) orthonormal (not perspective)
-outLevel n selects the output level (1 is the default)
-port portnum selects the port for communication with the
browser (7681 is the default)
-printStack to print the contents of the stack after every
command is executed (useful for debugging)

Dannenhoffer ESP Training - Session 1 June 2024 32 / 66

serveESP Command Line (5)

Other [options...] include:

-plot plotfile to plot additional information or provide
input for the -histDist option
-plotBDF filename superimposes BDF information in
GraphicsWindow
-plotCP to plot Bspline control points
-histDist dist to generate histograms of the distances
from the points in the plotfile from the configuration.
Points that are further than dist are added to a new
plotfile called bad.points

Dannenhoffer ESP Training - Session 1 June 2024 33 / 66

serveESP Command Line (6)

Still other (less frequently used) [options...] include:

-verify to execute ASSERT statements that contain
verify=1

-addVerify creates verification files (for automatic
regression testing)
-egg eggname uses an external grid generator
-tess tessfile to specify the name of an input tessellation
file (to be used instead of the EGADS tessellation)

Dannenhoffer ESP Training - Session 1 June 2024 34 / 66

serveESP Command Line (7)

Other (for development) [options...] include:

-ptrb ptrbname to generate information with which the
sensitivities are debugged
-allVels to compute Node/Edge/Face velocities
-dxdd despmtr to create a .sens file that contains the
geometric sensitivities with respect to despmtr

(automatically selects -batch)
-egads egadsfile to start from an .egads file

Dannenhoffer ESP Training - Session 1 June 2024 35 / 66

ESP Screen Layout

GraphicsWindow

3D image
2D sketcher
forms

TreeWindow

Design
Parameters
Local
Variables
Branches
Display

KeyWindow

color key

MessageWindow

Dannenhoffer ESP Training - Session 1 June 2024 36 / 66

GraphicsWindow Default Colors

Faces
yellow — front of Face (for SolidBody)
pink — front of Face (for SheetBody)
grey — back of Face
black — grid

Edges
green — manifold Edge that was first created as part of a
primitive (such as the Edges in a BOX)
blue — manifold Edge that was first created as part of a
Boolean or Applied Branch
brown — non-manifold Edge that supports only one Face
orange — non-manifold Edge that supports more than two
Faces
black — grid

Nodes
black

Dannenhoffer ESP Training - Session 1 June 2024 37 / 66

Image Manipulation via the Mouse

Translation

press and drag any mouse button

Rotation

hold down Ctrl and drag any mouse button
hold down Alt and drag any mouse button

Zoom

hold down Shift and drag any mouse button
scrolling the middle mouse button also scrolls in/out

Flying mode

press ! in GraphicsWindow to toggle mode
image continues moving image until mouse is released

Note: the mouse mappings are defined in ESP.js

Dannenhoffer ESP Training - Session 1 June 2024 38 / 66

Image Manipulation via Key Presses
“flying-mode” is off by default

Key-press “flying-mode” off “flying-mode” on

← rotate left 30◦ translate left
→ rotate right 30◦ translate right
↑ rotate up 30◦ translate up
↓ rotate down 30◦ translate down
+ zoom in zoom in
- zoom out zoom out

PgUp zoom in zoom in
PgDn zoom out zoom out
Home home view home view

Note: holding Shift reduces the increment

Dannenhoffer ESP Training - Session 1 June 2024 39 / 66

Image Manipulation via Buttons

Button press orientation note

H home view y vs x
L left side view y vs z
R right side view y vs −z
B bottom view z vs x
T top view −z vs x
+ zoom in
- zoom out

Buttons are near top of TreeWindow

Dannenhoffer ESP Training - Session 1 June 2024 40 / 66

Saving Viewing Orientation

key press action

> save view (in memory)
< restore view (from memory)

Ctrl-> save view (in a file)
. save view (in a file)

Ctrl-< restore view (from a file)
, restore view (from a file)

Dannenhoffer ESP Training - Session 1 June 2024 41 / 66

Image Manipulation via the TreeWindow

In the TreeWindow, Display contains an entry for each Body

If the Body is expanded (the + on the left is pressed), then
entries appear for Faces, Edges, Nodes, and Csystems

If the Faces, Edges, Nodes, or Csystems are expanded,
the names of all entities in the “group” are listed

Viz toggles the visibility of the associated Body(s), Face(s),
Edge(s), Node(s), or Csystem(s)

Grd toggles the visibility of the grid of the associated
Body(s), Face(s), or Edge(s)

Trn toggles the pseudo-transparency of the associated
Face(s)

Ori toggles the orientation vectors of the associated Edge(s)

Toggling at a “group” level effects the setting of its children

Pressing Display gives the user the option of turning on/off
the display of all Nodes, Edges, or Faces in all Bodys
Dannenhoffer ESP Training - Session 1 June 2024 42 / 66

Image Inquiry

Re-center the image at the current location and set a new
“rotation center”

* or 8

Find the approximate location of the cursor (in 3D space)
and report it in the MessageWindow

@ or 2
little red square shows location
distance to last inquiry is also reported
red square is turned off if distance from last inquiry is zero

Identify the object (Edge or Face) and list all its attributes in
the MessageWindow

∧ or 6

List the key-press options in the MessageWindow

?

Dannenhoffer ESP Training - Session 1 June 2024 43 / 66

Image Orientation

Orientation of image in GraphicsWindow

red axis in x-direction
green axis in y-direction
blue axis in z-direction

Visibility of Axes is also sometimes useful

Dannenhoffer ESP Training - Session 1 June 2024 44 / 66

Image Manipulation

Turn off the visibility of the Node, Edge, or Face at cursor

v

Toggle the grid on the Edge or Face at cursor

g

Toggle the transparency of the Face at cursor

t

Toggle the orientation vectors of the Edge at cursor

o

Dannenhoffer ESP Training - Session 1 June 2024 45 / 66

StepThru Mode

Show step-by-step build process

StepThru button (near top of TreeWindow)

Next step in build process

NextStep button (near top of TreeWindow) or n key in
GraphicsWindow

Previous step in build process

p key in GraphicsWindow

First step in build process

f key in GraphicsWindow

Last step in build process

l key (letter “l”) in GraphicsWindow

Exit StepThru mode

CancelStepThru at bottom of Display listing in
TreeWindow or going beyond first or last step

Dannenhoffer ESP Training - Session 1 June 2024 46 / 66

Creating a Script (1)
Using the ESP Interface

Method:

start ESP: serveESP
add Design Parameter by pressing DesignParameters
add Branch by pressing Branch

Advantages:

most similar to other CAD packages
can use interactive sketcher

Disadvantages:

generally slow
cannot add comments, indentation, etc.
harder to debug

Dannenhoffer ESP Training - Session 1 June 2024 47 / 66

Creating a Script (2)
Using an External Text Editor

Method:

use any text editor to create myFile.csm

run ESP: serveESP -loadEgads -dumpEgads myFile

Advantages;

can use any editor with which you are familiar
easy to add comments, spacing, indentation, . . .

Disadvantages:

do not get help in writing .csm file
cannot use interactive sketcher (except via a UDC)
requires many ESP restarts

Dannenhoffer ESP Training - Session 1 June 2024 48 / 66

Creating a Script (3)
Using the Integrated Code Editor

Method:

start ESP: serveESP
File→Edit and then Save

Advantages:

context-sensitive editor with hints
easy to add comments, spacing, indentation, . . .
supports debugging and tracing

Disadvantages:

slightly different key mappings
cannot use interactive sketcher (except via a UDC)

Dannenhoffer ESP Training - Session 1 June 2024 49 / 66

Using the jrnl (1)

Every time that you execute ESP, a new .jrnl file is
generated (which overwrites any existing file)

default name if port7681.jrnl (unless you used the -port

command line option)

The .jrnl file remembers all the interactions that you had
with the ESP interface (example on next page)

Each user action is a separate line in the .jrnl file

Dannenhoffer ESP Training - Session 1 June 2024 50 / 66

Using the jrnl (2)
Example port7681.jrnl

setPmtr|H|1|1|3|

build|0|

clrVels|

setVel|D|1|1|1|

build|0|

Dannenhoffer ESP Training - Session 1 June 2024 51 / 66

Using the jrnl (3)

To use a .jrnl file, follow these steps:

when ESP completes, rename the .jrnl file, with a command
such as

mv port7681.jrnl my.jrnl

or

ren port7681.jrnl my.jrnl

(this is needed so that the .jrnl is not overwritten below)
edit the .jrnl file to remove the offending command (which
is usually the last line)
restart ESP with the command

serveESP -jrnl my.jrnl my.csm

(assuming that the name of your .csm file is my.csm)

Dannenhoffer ESP Training - Session 1 June 2024 52 / 66

Saving vs. Exporting (1)

ESP has two ways of saving your work:
File→Edit→Save

Save an exact copy of information in the code editor
Remembers comments, indentation, line-splitting, spacing,
etc.
Is preferred method of saving your work, unless you make
changes in the ESP TreeWindow (for example,
add/edit/remove a Branch or change a Design Parameter)

File→Export FeatureTree

Makes an output file by reading the current feature tree
Forgets comments, indentation, line-splitting, spacing, etc.
Is only useful if you have made edits via the TreeWindow

Dannenhoffer ESP Training - Session 1 June 2024 53 / 66

Saving vs. Exporting (2)
Original .csm file

example program

written by John Dannenhoffer

define parameters for the box

DESPMTR L 3.0 # length (ft)

DESPMTR H 2.0 # height (ft)

DESPMTR D 1.0 # depth (ft)

create the box (centered at the origin)

BOX -L/2 -H/2 -D/2 \

L H D

put _name attributes on the Faces

PATBEG iface 6

SELECT FACE iface

ATTRIBUTE _name $face_+iface

PATEND

END

Dannenhoffer ESP Training - Session 1 June 2024 54 / 66

Saving vs. Exporting (3)
.csm file generated by Export FeatureTree

example_out.csm written by ocsmSave (v1.22)

Constant, Design, and Output Parameters:

despmtr L 3.00000

despmtr H 2.00000

despmtr D 1.00000

Global Attributes:

Branches:

box -L/2 -H/2 -D/2 L H D

patbeg iface 6

select FACE iface

attribute _name $face_+iface

patend

end

Dannenhoffer ESP Training - Session 1 June 2024 55 / 66

ESP Script Editor (1)

Started via the button File→Edit: or Tool→Pyscript:

Dannenhoffer ESP Training - Session 1 June 2024 56 / 66

ESP Script Editor (2)

Copy - puts highlighted text onto clipboard

Cut - puts highlighted text onto clipboard and removes it
from file

Paste - pastes clipboard contents at current cursor

Insert - inserts contents of given file at current cursor

Search - search for a given string using regular expressions
(input is on top line)

Next - search for next occurence of search string

Prev - search for previous occurence of search string

Replace - replace one string with another

Dannenhoffer ESP Training - Session 1 June 2024 57 / 66

ESP Script Editor (3)

Comment
if first highlighted line is not a comment, it comments all
highlighted lines
if the first highlighted line is a comment, it uncomments all
highlighted lines

Indent - performs smart indentation for the highlighted lines

Hint - provides a hint (on the top line) for the statement at
the cursor

Undo - un-does last change to file

. . .

Cancel - exits editor without making changes (changes are
lost)

Save - makes changes to the file and exits editor; if there is
only one file in the session, the configuration is automatically
re-built
Dannenhoffer ESP Training - Session 1 June 2024 58 / 66

ESP Script Editor (4)

Debug

if highlighted line generated a Body, tells type of Body
created, which Bodys are consumed by the operation, and
where the Body produced is used
otherwise, lists lines that created all Bodys

Trace
1 shows where selected Parameters are set and used
2 shows where selected Storage locations are made and used
3 shows to which Bodys the selected attributes are applied
4 shows the tree of .csm and .udc files used

Dannenhoffer ESP Training - Session 1 June 2024 59 / 66

$ESP ROOT/doc/ESP QuickReference.pdf

CSM Commands

Primitives
POINT xloc yloc zloc
BOX xbase ybase zbase dx dy dz
SPHERE xcent ycent zcent radius
CYLINDER xbeg ybeg zbeg xend yend zend radius
CONE xvrtx yvrtx zvrtx xbase ybase zbase radius
TORUS xcent ycent zcent dxaxis dyaxis dzaxis ...

... majorRad minorRad
IMPORT $filename bodynumber=1
UDPRIM $primtype $argName1 argValue1 ...argValue4

name ! UDP/UDF
/name ! path($pwd)/name.udc
$/name ! path($csm)/name.udc
$$/name ! path($root)/udc/name.udc

RESTORE $name index=0

Grown
EXTRUDE dx dy dz
RULE reorder=0
BLEND begList=0 endList=0 reorder=0 oneFace=0
REVOLVE xorig yorig zorig dxaxis dyaxis dzaxis angDeg
SWEEP
LOFT* smooth

Applied
FILLET radius edgeList=0 listStyle=0
CHAMFER radius edgeList=0 listStyle=0
HOLLOW thick=0 entList=0 listStyle=0

Booleans
INTERSECT $order=none index=1 maxtol=0
SUBTRACT $order=none index=1 maxtol=0
UNION toMark=0 trimList=0 maxtol=0
JOIN toler=0 toMark=0
CONNECT faceList1 faceList2 edgeList1=0 edgeList2=0
EXTRACT entList
COMBINE toler=0

Transforms
TRANSLATE dx dy dz
ROTATEX angDeg yaxis zaxis
ROTATEY angDeg zaxis xaxis
ROTATEZ angDeg xaxis yaxis
SCALE fact xcent=0 ycent=0 zcent=0
MIRROR nx ny nz dist=0
APPLYCSYS $csysName ibody=0
REORDER ishift iflip=0

Sketch
SKBEG x y z relative=0
SKVAR $type valList
SKCON $type index1 index2=-1 $value=0
LINSEG x y z
CIRARC xon yon zon xend yend zend
ARC xend yend zend dist $plane=xy
SPLINE x y z
SSLOPE dx dy dz
BEZIER x y z
SKEND wireonly=0

Solver
SOLBEG $varList
SOLCON $expr
SOLEND

Stack
MARK
STORE $name index=0 keep=0
GROUP nbody=0

Logic
IFTHEN val1 $op1 val2 $op2=and val3 $op3 val4
ELSEIF val1 $op1 val2 $op2=and val3 $op3 val4
ELSE
ENDIF

Looping
PATBEG $pmtrName ncopy
PATBREAK expr
PATEND

Error handling
CATBEG sigCode
CATEND
THROW sigCode

Declarations
DIMENSION $pmtrName nrow ncol despmtr=0
CFGPMTR $pmtrName values
DESPMTR $pmtrName values
CONPMTR $pmtrName value
OUTPMTR $pmtrName
LBOUND $pmtrName bounds
UBOUND $pmtrName bounds

Attribution
ATTRIBUTE $attrName attrValue
CSYSTEM $csysName csysList
GETATTR $pmtrName attrID global=0

User-defined components
INTERFACE $argName $argType default=0
END

Miscellaneous
SET $pmtrName exprs
UDPARG $primtype $argName1 argValue1 ...
SELECT $type arg1 ...
ASSERT arg1 arg2 toler=0 verify=0
DUMP $filename remove=0 toMark=0
EVALUATE $type arg1 ...
NAME $branchName
PROJECT x y z dx dy dz useEdges=0

User-defined Primitives/Functions

bezier $filename debug imax jmax cp[]
biconvex thick camber
box dx dy dz rad @area @volume
csm $filename $pmtrname pmtrvalue @volume
createBEM $filename space imin imax nocrod
createPoly $filename hole[]
droop xle thetale xye thetate
editAttr $attrname $input $output overwrite

$filename verbose @nchange
ellipse rx ry rz nedge thbeg
fitcurve $filename ncp ordered periodic xform[] xyz[] @npnt @rms
flend fraca fracb toler plot
freeform $filename imax jmax kmax xyz[]
ganged $op toler
guide nxsect origin axis
hex corners[] uknots[] vknots[] wknots[] @area @volume
import $filename bodynumber @numbodies
kulfan class[] ztail[] aupper[] alower[]
naca series thickness camber maxloc offset sharpte
naca456 thkcode toc xmaxt leindex camcode cmax xmaxc cl a
nurbbody $filename
parsec yte poly[] param[] meanline
pod length fineness @volume
poly points[]
printBbox
printBrep

(continued on other side)

ESP Quick Reference 1 Version 1.18

(UDPs/UDFs — continued from other side)
radwaf ysize zsize nspoke xframe[]
sew $filename toler bodynum
stag rad1 beta1 gama1 rad2 beta2 gama2 ...

... alfa xfrnt xrear
sti↵ener beg[] end[] depth angle
supell rx rx w rx e ry ry s ry n n n w n e ...

... n s n n n sw n se n nw n ne offset nquad
wa✏e depth segments[] $filename progress

Built-in Functions

General
pi(x)
min(x,y)
max(x,y)
sqrt(x)
abs(x)
int(x)
nint(x)
ceil(x)
floor(x)
mod(a,b)
sign(test)
exp(x)
log(x)

Trigonometric

log10(x)
sin(x)
sind(x)
asin(x)
asind(x)
cos(x)
cosd(x)
acos(x)
acosd(x)
tan(x)
tand(x)
atan(x)
atand(x)
atan2(y,x)
atan2d(y,x)
hypot(x,y)
hypot3(x,y,z)

Sketch utilities
incline(xa,ya,dab,xb,yb)
Xcent(xa,ya,dab,xb,yb)
Ycent(xa,ya,dab,xb,yb)
Xmidl(xa,ya,dab,xb,yb)
Ymidl(xa,ya,dab,xb,yb)
seglen(xa,ya,dab,xb,yb)
radius(xa,ya,dab,xb,yb)
sweep(xa,ya,dab,xb,yb)
turnang(xa,ya,dab,xb,yb,dbc,xc,yc)
dip(xa,ya,xb,yb,rad)
smallang(x)

Conversions
val2str(num,digits)
str2val(string)
findstr(str1,str2)
slice(str,ibeg,iend)
path($pwd) or path($csm) or path($root) or path($file)

Logic

ifzero(test,ifTrue,ifFalse)
ifpos(test,ifTrue,ifFalse)
ifneg(test,ifTrue,ifFalse)
ifmatch(str,pat,ifTrue,ifFalse)
ifnan(test,ifTrue,ifFalse)

Dot-su�xes
x.nrow number of rows in x or 0 if a string
x.ncol number of columns in x or 0 if a string
x.size number of elements in x (=x.nrow*x.ncol) or len of str x
x.sum sum of elements in x
x.norm L2-norm (RMS) of elements in x
x.min minimum value in x
x.max maximum value in x

Character Set
hash introduces comment
” quotes ignore spaces until following ”
\ backslash ignore this and following characters and

concatenate next line
<space> space separates arguments in .csm file (except

between ” and ”)
0-9 digits used in numbers, names, and

strings
A-Z a-z letters used in names and strings

: @ characters used in names and strings
? % = characters used in strings
. period decimal separator (used in numbers), in-

troduces dot-su�xes (in names)
, comma separates function arguments and

row/column in subscripts
; semicolon multi-value item separator
() parentheses groups expressions and function argu-

ments
[] brackets specifies subscripts in form [row,column]

or [index]
{ } < > characters used in strings
+ - * / ^ arithmetic operators
$ dollar as first character, introduces a string that

is terminated by end-of-line or un-escaped
plus, comma, or open-bracket

@ at-sign as first character, introduces @-
parameters

’ apostrophe used to escape comma, plus, or open-
bracket within strings

! exclamation if first character of implicit string, ignore
$! and treat as an expression

| bar cannot be used (reserved for OpenCSM
internals)

˜ tilde cannot be used (reserved for OpenCSM
internals)

& ampersand cannot be used (reserved for OpenCSM
internals)

ESP User Interface

Keypress (if not caught by browser)
ctrl-h -or- <Home> initial view (or H button)
ctrl-f front view
ctrl-l leftside view (or L button)
ctrl-r riteside view (or R button)
ctrl-t top view (or T button)
ctrl-b bottom view (or B button)
ctrl-i -or- <PgUp> zoom in (or + button)
ctrl-o -or- <PgDn> zoom out (or - button)
<Left> rotate or xlate (in flying mode) left
<Rite> rotate or xlate (in flying mode) rite
<Up> rotate or xlate (in flying mode) up
<Down> rotate or xlate (in flying mode) down
> save view
< recall view
ctrl-> -or- . save view to file
ctrl-< -or- , read view from file
^ -or- 6 query object at cursor
@ -or- 2 get coords. @ cursor
v toggle Viz (visability) at cursor
g toggle Grd (grid) at cursor
t toggle Trn (transparency) at cursor
o toggle Ori (orientation) at cursor
A add Attribute at cursor
⇤ -or- 8 center view @ cursor
! toggle flying mode

ESP Quick Reference 2 Version 1.18

Dannenhoffer ESP Training - Session 1 June 2024 60 / 66

Recovering from an Error

If the MessageWindow turns green

nothing to worry about
ESP is waiting for you to press the button highlighted in
green

If the MessageWindow turns yellow

OpenCSM has detected an error
Double-clicking in the MessageWindow will automatically
open the code editor to the appropriate line

If the MessageWindow turns pink

ESP has lost its connection to serveESP and the session must
be restarted
Consider using the -jrnl option to get you (almost) back to
the situation that caused the connection to be lost

Dannenhoffer ESP Training - Session 1 June 2024 61 / 66

Collaboration Mode (1)

Inspired by Pair Programming* paradigm

Driver: writes programs, detail-level, tactical decisions
Navigator: overlooks, feedback, high-level strategic choices

Studies on pair programming show:

only about 20% increase in overall time
but about 5-fold decrease in error rate

ESP uses a browser-based, client-server architecture

Interface is similar for single as well as multiple users

Interchangeable role of Driver and Navigator by “Passing the
Ball”

Interface can be coupled with voice and/or other visual tools
to enhance experience

Dannenhoffer ESP Training - Session 1 June 2024 62 / 66

Collaboration Mode (2)

New collaborative environment in ESP has several benefits:

shared ownership of the model
tendency to take fewer short-cuts
low error rate
reduced labor is more apparent while performing complex
tasks

To use:

first user starts serveESP as usual (with a hostname that is
accessible to all expected users)
subsequent users start a browser on ESP.html and use same
hostname:port as first user

Dannenhoffer ESP Training - Session 1 June 2024 63 / 66

Homework exercise

1 Start serveESP using the file
$ESP ROOT/training/ESP/data/session01/bottle2.csm

or
../training/ESP/data/session01/bottle2.csm

Note that on Windows, you will need to use backslash (\)
instead of the forward slash (/)

2 Explore the various image manipulation tools

3 See if you can get the image on the next page

4 Use StepThru to see how the bottle was created

Dannenhoffer ESP Training - Session 1 June 2024 64 / 66

bottle After Image Manipulations

Dannenhoffer ESP Training - Session 1 June 2024 65 / 66

Muddy Cards

Opportunity to provide immediate “feedback”

Any questions about presentation material, critique of sample
problems, . . .

Questions will be answered at next session

Dannenhoffer ESP Training - Session 1 June 2024 66 / 66

