
AEROSPACE COMPUTATIONAL DESIGN LABORATORY

 !

wv: A General
 Web-based 3D Viewer

Bob Haimes (haimes@mit.edu)
Aerospace Computational Design Laboratory

Department of Aeronautics & Astronautics
Massachusetts Institute of Technology

GEM: Geometry Environment for MDAO

September 2012

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objective

The objective of this work is to
generate a visual tool targeted for
the 3D needs found within the MDAO
process. A WebBrowser-based
approach is considered, in that it
provides the broadest possible
platform for deployment.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Outline
•  System Architecture

–  Browser / WebGL / WebSockets
–  Server or Data Generator(s)

•  Data Model
–  VBO based
–  Primitives
–  Graphic Objects

•  Functionality at the Viewer
–  IO Handling
–  Rendering / GUI Loop

•  Binary Data Packets
•  GUI Call-backs
•  Procedural-based Server-side API

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture

Goal: Effective 3D component that
can support the viewing of:

•  Geometry
•  Meshing
•  Scientific Visualization Tools (including

transient data)
•  Multi-dimensional Design Space Examination
•  Other 3D needs

 Contains no GUI but the hooks (in the form of
JavaScript call-backs) to graft a customized
UI specifically designed for the task at hand.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture -- Viewer
Efficient Browser Implementation

•  Must support WebGL (& JavaScript)
•  Use of WebSockets (part of HTML5)

–  Asynchronicity
–  Segregation of data-streams (via protocols)
–  Data handling consistent with WebGL

•  Extensive use of Vertex Buffer Objects (VBOs)
•  IO from the server

–  Packed messages -- few network packets that are
unpacked into typed JavaScript Arrays at the Browser

–  Binary -- known common types, allows avoiding the costs
of serialization / deserialization (WebSocket binary)

–  Techniques to provide data to the GUI (WebSocket text)
•  IO to the server

–  Nothing from the Viewer by default
–  Only data from the customized GUI (WebSocket text)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture -- Server
Data Generation and Handling

•  Web server (or acts as one -- libwebsockets)
•  Visualization state must be maintained (note:

 Viewer is stateless except for viewMatrix
 & current plotting attributes)

•  VBO components generated and sent
•  IO to the Viewer

–  Aggregated VBOs with metadata
–  What is sent is based on changes from the GUI or

from transient data
–  Data for the GUI portion of the Viewer

•  IO from the Viewer
–  Only data from the customized GUI

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- VBO Components
•  Vertices

–  Coordinates (3 by float -- Float32Array)
–  length

•  Indices (optional)
–  The index into the Vertex Array (unsigned short -- Uint16Array)
–  length (can be different from Vertex length)

•  Colors (optional)
–  RGBs associated with the Vertices(3 by unsigned byte --

Uint8Array)
–  Must be same length as Vertices

•  Normals (optional, used for Triangles or Decorated
 Lines)

–  The normal pointing vector for lighting (3 by float --
Float32Array) or Decorated Triangles and normals (no stripes)

–  Must be same length as Vertices (Triangles)

 Note: the unsigned short of Indices limits the size of the
VBO used, so larger data needs to be striped.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- VBO Types
•  Points

–  Vertices [Colors & Indices]

•  Lines (2 vertices per -- disjoint segments)
–  Vertices [Colors & Indices]
–  Optional Normals for Decorations (i.e. 3D Arrows)

•  Triangles (3 vertices per -- also disjoint)
–  Vertices [Normals, Colors & Indices]

Notes:
1.  Constant element coloring of Lines/Triangles requires

non-indexed VBOs and the duplication of color
information (per vertex)

2.  Facetted lighting requires similar treatment with Normals
3.  Any non-planar set of Triangles requires Normals VBO

component

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Primitives
•  Locations (GPType 0 -- 0D)

–  Collections of one or more Points
–  Foreground Color
–  Size (in pixels)
–  Coloring & Transparency Flags

•  Disjoint Lines (GPType 1 -- 1D)
–  Optional collected Indexed Points into the Lines Vertex Array
–  Collections of one or more Lines
–  Line Color
–  Foreground Color for Decorations
–  Back-facing Color for Decorations
–  Line Width (in pixels)
–  Point Color
–  Point size (in pixels)
–  Coloring & Transparency Flags

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Primitives

•  Disjoint Triangles (GPType 2 -- 2D)
–  Optional collected Indexed Points into the Triangles Vertex Array
–  Optional collected Indexed Lines into the Triangles Vertex Array
–  Collections of one or more Triangles
–  Foreground Color
–  Back-facing Color
–  Planar Normal (if planar)
–  Line Color
–  Line Width (in pixels)
–  Point Color
–  Point size (in pixels)
–  Coloring, Transparency, Orientation & Point/Line Flags

Note: Simple two-sided (ambient & diffuse) lighting is applied
by default (modification to wv_render.js is required for
other lighting models)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Objects
•  Graphic Object

–  ID -- Unique character string assigned by the server
–  GPType
–  Number of Striped Primitives in the Collection
–  GPType specific metadata
–  Graphic Primitive data

•  VBO Internal Reference
–  ID string
–  Stripe # 24bits
–  One of Point, Line, Triangle Data (3) byte
–  One of Vertices, Indices, Colors, Normals (4) byte

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer

IO Handling
–  Initialize (connect to server)
–  Handshake to ensure compatibility

•  Arrays generated by “unpacking” received
VBOs (with metadata) via binary protocol

•  Handle any GUI related data (text protocol) via
the call-back wvServerMessage

•  Continue until End-of-Frame marker
•  Inform Rendering Loop that there is new data

and accept no new data until released

Asynchronously performed by WebSocket

event handling

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer
Rendering / GUI Loop

–  Initialize (generate canvas on WebGL context)
–  Execute GUI setup call-back wvInitUI
1.  Setup scene

–  Blank canvas and depth buffer
–  Adjust viewMatrix (wvUpdateView call-back)

2.  Render any Graphics Objects
3.  Add custom renderings by call-back wvUpdateCanvas
4.  Execute GUI call-back wvUpdateUI
5.  Do we have an End-of-Frame marker?

–  If no -- has anything changed in the GUI?
§  No -- Wait then goto 4
§  Yes -- goto 1

6.  Handshake with IO Handling, update the Graphics
Objects & release the IO hold

7.  goto 1

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer
Rendering Model

•  WebGL requires fragment & vertex shaders
•  Lighting & texture mapping done in the shaders
•  The supplied shaders support:

–  Two-sided lighting
–  Ambient & Diffuse lighting model
–  Back-face coloring
–  Constant and/or linearly interpolated color-space mapping
–  Simple transparency
–  Picking
–  Bumping of lines forward (in screen Z)

•  Any other requirements will involve modifying
the shaders (which can be found in wv-render.js)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets
•  Individual data collections should be aggregated

to reduce network latencies -- large packets
•  All data is tightly packed and VBO “ready”
•  Data collections begin with an Opcode (1 byte):

–  0 -- end of packet (but not End-of-Frame)
–  1 -- new Graphic Object
–  2 -- delete Graphic Object
–  3 -- new Data for Graphic Object
–  4 -- update Data in Graphic Object
–  7 -- End-of-Frame Marker (must be last in total packet)
–  8 -- Initialize Packet

•  All data is aligned on 4-byte boundaries
–  Colors are unsigned byte
–  Indices are unsigned short
–  The ID is a string

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets
•  Each collection starts with:

–  Opcode (MSB)
–  Stripe # or Number of Stripes (3 bytes -- LSB)
–  Complete for Opcode 0 & 7

•  Next 32 bits (all but Opcode 0, 7 & 8):
–  GPType (1 byte -- MSB)
–  vflag -- bits can be summed (1 btye):

–  Vertices 1
–  Indices 2
–  Colors 4
–  Normals 8
–  Point Indices 16
–  Line Indices 32

–  ID character Length (integer factor of 4) (2 bytes -- LSB)

•  ID Character string (number of bytes above)

Opcode 2 (delete) requires no more data"

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets
•  Opcode 1 (new Graphic Object)

–  Plotting Attributes (bit flag -- int):
 1 - Render On
 2 - Transparent
 4 - Color Interpolation
 8 - Show orientation
16 - Plot Points
32 - Plot Lines

–  Point size (float)
–  Point color (3*float)

 [Done for Point Objects]

–  Line width (float)
–  Line color (3*float)
–  Foreground constant color (3*float)
–  Background color (3*float)

 [Done for Line Objects]

–  Constant Normal (3*float)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets
•  Opcode 3 (new data) & 4 (update data)

–  Number of data elements for the Graphic
Primitive stripe (int):
•  Total number of primitive words is found by

multiplying by 3 for Vertices (xyz), Colors (rgb) &
Normals

•  Applying “sizeof()” to the above provides the
total byte length (plus any required padding)

–  The VBO data (type based on bit in vflag)
–  Repeated for each bit in vflag in LSB order

(Opcode 3), i.e. vertices always first

Notes:
–  Opcode 4 can only have a single bit in vflag set
–  Data types shorter than 32 bits must be padded

at the end so that the next read can be 4-byte
aligned

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets
•  Opcode 8 (Initialize) -- 56 bytes long

–  Opcode field (4*bytes)
–  Field of View (float)
–  zNear (float)
–  zFar (float)
–  Eye location (3*float)
–  Focus position (3*float)
–  Up direction (3*float)
–  End-of-Frame (4*bytes)

•  Examples of IO routines:
–  Reading in wv-socket.js
–  Writing in wsServer/wv.c

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

GUI Call-backs (need to be supplied)
•  function wvInitUI()

–  Invoked once to initialize the UI variables and state

•  function wvUpdateUI()
–  Called in the rendering loop so that the state of the UI

can be adjusted
–  Note: if the state is modified directly in an event handler

the rendering for that frame may be corrupted

•  function wvUpdateView()
–  Allows for the adjustment of the viewMatrix before the

scene is rendered again

•  function wvUpdateCanvas(gl)
–  Allows for the customization of what is rendered by

additional WebGL calls
–  gl is the WebGL context

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

GUI Call-backs & A Useful Function

•  function wvServerMessage(text)
–  Called when an ASCII text message has been

received from the server (UI text protocol)
–  Note: this is invoked from a WebSocket event handler

•  g.socketUt.send(text)
–  g (wv globals), socketUt (UI text interface)
–  Send the text string text to the server using

WebSockets
–  This should obviously be the routine called to

communicate GUI information to the server
–  Can be used from within any call-back

Usage examples can be found in SimpleUI.js!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

wv Status
•  Viewer

–  Tested against:
•  Google Chrome
•  Mozilla FireFox (& SeaMonkey)

–  Greater than 18 MegaTriangles per second for large
VBOs on a older generation MacBook Pro (Chrome
about 20% slower than SeaMonkey)

•  Server-like Implementation
–  Python options:

•  pywebsockets
•  ws4py
•  gevent-websocket

–  Use of libwebsockets open source project (
http://git.warmcat.com/cgi-bin/cgit/libwebsockets)

•  C API to specify data and allow for GUI IO
•  Used to generate the Procedural-based Server-side API"

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  createContext
wvContext *context =
 wv_createContext(int bias, float fov, float zNear,
 float zFar, float *eye, float *center,
 float *up)
call iv_createContext(I*4 bias, R*4 fov, R*4 zNear,
 R*4 zFar, R*4 eye, R*4 center,
 R*4 up, I*8 context)

Initializes a WebViewer Context.

bias the offset used for indexing (usually either 0 or 1)
fov the field of view for the perspective (angles)
zNear the Z value for the clipping plane closest to the observer
zFar the Z value for the clipping plane farthest from the observer
eye the position of the observer (X,Y,Z)
center the focus for the viewing matrix
up a normalized vector referring to positive Y
context the returned WebViewer context

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  startServer
status = wv_startServer(int port, char *dev, char *path,
 char *key, int opts, wvContext *context)
status = iv_startServer(I*4 port, C** dev, C** path,
 C** key, I*4 opts, I*8 context)

Starts a server thread on the WebViewer Context. The calling
thread of execution continues. Use statusServer to determine
the state of the connections.

port the socket port to use for communication
dev the network interface device name (can be NULL)
path the path to locate certificate (if secure transmissions are used)
key the file path for the private key (if secure transmissions are used)
opts 0, or 1 (Defeat the client mask)
context the WebViewer context (from createContext)
status the server instance/return status (negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API
•  statusServer

status = wv_statusServer(int server)
status = iv_statusServer(I*4 server)

Checks the state of the server connections.

server the server instance (from startServer)
status the state (negative is an error):

 0 - all clients have disconnected
 1 - active

•  cleanupServers

 wv_cleanupServers()
call iv_cleanupServers()

Cleans up all memory associated with this API. Should be used as
the last function in this suite.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  setData
status = wv_setData(int dtype, int len, void *data,
 int VBOcomp, wvData *item)
status = iv_setData(I*4 dtype, I*4 len, ANY data,
 I*4 VBOcomp, I*8 item)

Sets the data associated with an item to be used with addGPrim
and modGPrim. Striping is internally performed where
necessary.

dtype the type of the data array (see wsss.h or wsserver.inc)
len the number of elements in the data array (Vertices, Normals,

 and Colors require 3 words per element)
data the data array of type dtype
VBOcomp the type of the VBO component (see wsss.h or wsserver.inc)
item the output placement for the item
status the return status (negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  adjustVerts
 wv_adjustVerts(wvData *item, float *focus)
call iv_adjustVerts(I*8 item, R*4 focus)

Allows for the adjustment of the vertex coordinates so they fit into
screen coordinates (not clipped away).

item the Vertices component (from setData)
focus a vector of length 4 that is used to adjust the coordinates

 the first is subtracted from the X coordinate
 the second is subtracted from the Y coordinate
 the third is subtracted from the Z coordinate
 the forth is used to normalize (divide) all coordinates

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  addGPrim
status = wv_addGPrim(wvContext *context, char *name, int gtype,
 int attrs, int nItems, wvData *items)
status = iv_addGPrim(I*8 context, C** name, I*4 gtype,
 I*4 attrs, I*4 nItems, I*8 items)

Creates and adds this Graphics Primitive to the scene graph
associated with this context.

context the WebViewer context (from createContext)
name unique (in the scene graph) name of the primitive

gtype the graphics primitive type: Point, Line, Triangle
 (see wsss.h or wsserver.inc)

attrs the initial plotting attributes (see wsss.h or wsserver.inc)
nItems the number of components used to define the primitive
items the components (from setData)
status the index created for the primitive (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  modGPrim
status = wv_modGPrim(wvContext *context, int index,
 int nItems, wvData *items)
status = iv_modGPrim(I*8 context, I*4 index,
 I*4 nItems, I*8 items)

Modifies an existing Graphics Primitive in scene graph associated
with this context.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)
nItems the number of components to modify in the primitive
items the components (from setData)
status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  addArrowHeads
status = wv_addArrowHeads(wvContext *context, int index,
 float size, int nHeads, int *heads)
status = iv_addArrowHeads(I*8 context, I*4 index,
 R*4 size, I*4 nHeads, I*4 heads)

Add Arrow Head decorations to an existing Line Graphics
Primitive in scene graph associated with this context.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)
size the size of the arrow head
nHead the number of head definitions
heads the head definitions (index into the line segments -- if negative

 the head position (and direction) is associated with the first
 point in the segment, otherwise it is the second position. This is
 always bias 1.

status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API
•  removeGPrim

 wv_removeGPrim(wvContext *context, int index)
call iv_removeGPrim(I*8 context, I*4 index)

Removes an existing Graphics Primitive in scene graph
associated with this context.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)

•  removeAll
 wv_removeGPrim(wvContext *context)
call iv_removeGPrim(I*8 context)

Removes all Graphics Primitive from the scene graph associated
with this context.

context the WebViewer context (from createContext)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  indexGPrim
status = wv_indexGPrim(wvContext *context, char *name)
status = iv_indexGPrim(I*8 context, C** name)

Finds the index given the name for an existing Graphics Primitive
in scene graph associated with this context.

context the WebViewer context (from createContext)
name the name of the GPrim in the scene graph
status the index (where a negative value is an error)

•  printGPrim

 wv_printGPrim(wvContext *context, int index)
call iv_printGPrim(I*8 context, I*4 index)

Prints the Graphics Primitive to standard output.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

Call-back Required to catch Client Messages

•  browserMessage
browserMessage(struct libwebsocket *wsi, char *text, int len)
subroutine browserMessage(I*8 wsi, C** text)

This required routine gets called for each message sent from a
client.

wsi the WebSocket Interface Structure
text the ASCII text received from the Browser
len the length of the text

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

Text based communication to the Client(s)

•  broadcastText
 wv_broadcastText(char *text)
call iv_broadcastText(C** text)

Sends the text to all active clients (Browsers).

text the text to send

•  sendText
 wv_sendText(struct libwebsocket *wsi, char *text)
call iv_sendText(I*8 wsi, C** text)

Sends the text to the specific client designated by wsi.

wsi the WebSocket Interface Structure (from browserMessage)
text the text to send

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API
FORTRAN Only Utility Functions

•  setPsize

call iv_setPisze(I*8 context, I*4 index, R*4 size)

Sets the Point Size in an existing Graphics Primitive in scene
graph associated with this context.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)
size the point size in pixels

•  setLwidth

call iv_setLwidth(I*8 context, I*4 index, R*4 width)

Sets the Line Width in an existing Graphics Primitive.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)
width the line width in pixels

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

•  usleep

call iv_usleep(I*4 micsec)

Suspends the calling thread for the specified number of
microseconds

micsec the number of microseconds

