
AEROSPACE COMPUTATIONAL DESIGN LABORATORY

 !

EGADS:
Engineering Geometry Aircraft

Design System

Bob Haimes
haimes@mit.edu

Aerospace Computational Design Lab
Department of Aeronautics & Astronautics

Massachusetts Institute of Technology

Release Specification

Revision 1.06 -- December 2014
1!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Outline

•  Overview

•  Objects
–  Geometry
–  Topology
–  Tessellation
–  Others

•  API
–  Utility & IO Functions
–  Attribution
–  Geometry
–  Topology
–  Tessellation
–  High-Level Functions

2!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Overview
Provide a “bottom up” and/or Constructive Solid

Geometry foundation for building Aircraft

•  Built upon OpenCASCADE
–  Open Source solid modeling geometry kernel
–  Support for manifold and non-manifold data
–  Reading & writing IGES, STEP and native formats
–  C++ with ~17,000 methods!

•  Open Source (LGPL v2.1)

•  C/C++ and FORTRAN Interfaces
–  Single API with minor variations for FORTRAN
–  Always returns an integer code (success/error condition)
–  Requires C pointer access in FORTRAN

•  Cray-pointer construct
•  C-pointers (2003 extension to FORTRAN 90)
•  Both supported by Intel FORTRAN and gfortran
•  API contains memory functions

3!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Overview
•  System Support (32 & 64 bit):

–  Mac OSX with gcc, ifort and/or gfortran
–  LINUX with gcc, ifort and/or gfortran
–  Windows with Microsoft Visual Studio C++ and ifort

•  Compiler version must match system used to build OpenCASCADE
–  No globals (but not thread-safe due to OpenCASCADE)
–  Various levels of output (0-none, through 3-debug)
–  Written in C and C++

•  EGADS Objects
–  Treated as “blind” pointers -- an ego

•  Can access internals in C/C++
–  Egos are INTEGER*8 variables in FORTRAN

•  Allows for same source code regardless of size of pointer
•  Requires “freeing” of internal lists of objects (not in C/C++)

4!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects
•  C Structure Definition:

 typedef struct egObject {
 int magicnumber; /* must be set to validate the object */
 short oclass; /* object class */
 short mtype; /* object member type */
 void *attrs; /* attributes or reference */
 void *blind; /* blind pointer to OCC or EGADS data */
 struct egObject *topObj; /* top of the hierarchy or context (if top) */
 struct egObject *ref; /* threaded list of references */
 struct egObject *prev; /* back pointer */
 struct egObject *next; /* forward pointer */
 } egObject;
 #define ego egObject*;

•  Context Object

–  Holds ‘globals’ including output level
–  Start of dual-threaded list of active egos
–  Pool of deleted objects

5!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Attribution
•  Attributes

–  Are identified by a name (character string with no spaces or other
special characters)

–  Each named attribute has a single type:
•  Integer
•  Real (double precision)
•  String (can have spaces and other special characters)

–  And a length (for Integer and Real types)

•  Objects
–  Any Object (except for REFERENCE) may have multiple Attributes
–  Only Attributes on Topological Objects are copied
–  Only Attributes on Topological Objects are persistent -- and this is

available only for “.egads” file IO.

•  SBOs and Intersection Functions
–  Attributes on Faces will be carried through to the resultant

fragments after intersections

6!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Attribution
•  Some operations return more complete associations

–  Attributes on Faces are always copied from the source regardless
of the Function* (an exact copy, trimmed or split)

–  These return a list of Face mappings for each Face in the result:
•  EG_filletBody
•  EG_chamferBody
•  EG_hollowBody

–  The list contains an operation and an index to the source object:

7!

Operation
NODEOFF (1) The Face is the result of a Node – the index is that

of the Node in the source Body

EDGEOFF (2) The Face is the result of an Edge – the index is the
Edge index (see EG_indexBodyTopo)

FACEDUP* (3) The Face is an exact copy of the source

FACECUT* (4) The Face has been trimmed or split from the source

FACEOFF (5) The Face is offset from the source Face

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Geometry

•  PCURVE -- Parameter Curves
–  2D Curves in the Parametric space [u,v] of a Surface
–  Single “running” parameter t
–  [u,v] = f(t)

•  CURVE
–  3D Curves
–  Single “running” parameter t
–  [x,y,z] = f(t)

•  SURFACE
–  3D Surfaces of 2 parameters [u,v]

–  [x,y,z] = f(u,v)

8!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- PCURVE/CURVE

•  LINE
 Curve (6) PCurve (4)

Location [x,y,z] [u,v]
Direction [dx,dy,dz] [du,dv]

•  CIRCLE
 Curve (10) PCurve (7)

Center [x,y,z] [u,v]
Xaxis [dx1,dx2,dx3] [dx1,dx2]
Yaxis [dy1,dy2,dy3] [dy1,dy2]
Radius

 note: Xaxis and Yaxis should be orthogonal

9!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- PCURVE/CURVE
•  ELLIPSE

 Curve (11) PCurve (8)
Location [x,y,z] [u,v]
Xaxis [dx1,dx2,dx3] [dx1,dx2]
Yaxis [dy1,dy2,dy3] [dy1,dy2]
MajorRadius
MinorRadius

 note: Xaxis and Yaxis should be orthogonal

•  PARABOLA
 Curve (10) PCurve (7)

Location [x,y,z] [u,v]
Xaxis [dx1,dx2,dx3] [dx1,dx2]
Yaxis [dy1,dy2,dy3] [dy1,dy2]
Focus

 note: Xaxis and Yaxis should be orthogonal

10!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- PCURVE/CURVE
•  HYPERBOLA

 Curve (11) PCurve (8)
Location [x,y,z] [u,v]
Xaxis [dx1,dx2,dx3] [dx1,dx2]
Yaxis [dy1,dy2,dy3] [dy1,dy2]
MajorRadius
MinorRadius

 note: Xaxis and Yaxis should be orthogonal

•  TRIMMED (has Reference Geometry)
–  2 in length for both Curve types (t-start & t-end)

•  OFFSET (has Reference Geometry)
 Curve (4) PCurve (1)

Direction [dx,dy,dz] -
Offset

11!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- PCURVE/CURVE
•  BEZIER (3 integer header):

BitFlag 2 - rational, 4 - periodic
Degree
nCP

 Curve PCurve
ControlPts 3*nCP 2*nCP
Weights nCP nCP
note: Weights only if rational

•  BSPLINE (4 integer header):
BitFlag 2 - rational, 4 - periodic
Degree
nCP
nKnots

 Curve PCurve
Knots nKnots nKnots
ControlPts 3*nCP 2*nCP
Weights nCP nCP
note: Weights only if rational
12!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- SURFACE

•  PLANE (9 doubles in length):

Location [x,y,z]
Xaxis [dx1,dx2,dx3]
Yaxis [dy1,dy2,dy3]
note: Xaxis and Yaxis should be orthogonal

•  SPHERICAL (10 doubles in length):

Center [x,y,z]
Xaxis [dx1,dx2,dx3]
Yaxis [dy1,dy2,dy3]
Radius

 note: Xaxis and Yaxis should be orthogonal

13!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- SURFACE
•  CONICAL (14 doubles in length):

Location [x,y,z]
Xaxis [dx1,dx2,dx3]
Yaxis [dy1,dy2,dy3]
Direction [dz1,dz2,dz3] rotation axis (may be LeftH)
Angle
Radius
note: Xaxis, Yaxis and Direction should be orthogonal

•  CYLINDRICAL (13 doubles in length):

Center [x,y,z]
Xaxis [dx1,dx2,dx3]
Yaxis [dy1,dy2,dy3]
Direction [dz1,dz2,dz3] rotation axis (may be LeftH)
Radius

 note: Xaxis and Yaxis should be orthogonal

14!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- SURFACE
•  TOROIDAL (14 doubles in length):

Location [x,y,z]
Xaxis [dx1,dx2,dx3]
Yaxis [dy1,dy2,dy3]
Direction [dz1,dz2,dz3] rotation axis (may be LeftH)
MajorRadius
MinorRadius
note: Xaxis, Yaxis and Direction should be orthogonal

•  REVOLUTION (6 doubles in length):

Center [x,y,z]
Direction [dx,dy,dz]

•  EXTRUSION (3 doubles in length):
Direction [dx,dy,dz]

15!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- SURFACE
•  BEZIER (5 integer header):

BitFlag 2 - rational, 4 - uPeriodic, 8 - vPeriodic
uDegree
nCPu
vDegree
nCPv

 Data Packed:
ControlPts 3*nCPu*nCPv
Weights nCPu*nCPv
note: Weights only if rational

•  TRIMMED (has Reference Geometry)
–  4 in length (u-start, u-end, v-start & v-end)

•  OFFSET (has Reference Geometry)
–  1 in length -- offset distance

16!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- SURFACE

•  BSPLINE (7 integer header):
BitFlag 2 - rational, 4 - uPeriodic, 8 - vPeriodic
uDegree
nCPu
nUKnots
vDegree
nCPv
nVKnots

 Data Packed:
uKnots nUKnots
vKnots nVKnots
ControlPts 3*nCPu*nCPv
Weights nCPu*nCPv
note: Weights only if rational

17!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Topology

EGADS Topological Entity OpenCASCADE term Geometric Entities

Model Compound Shape

Body Solid (or lesser shape)

Shell

Face surface

Loop Wire * see note below

Edge curve

Node Vertex

•  Topological entities have children (entities lower on the table) except for Nodes

*  Loops may be geometry free or have associated PCurves (one for each Edge)
and the surface where the PCurves reside!

18!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Topology

•  NODE
–  Contains [x,y,z]

•  EDGE
–  Has a 3D CURVE (if not DEGENERATE)
–  Has a t range (tmin to tmax, where tmin < tmax)
–  The positive orientation is going from tmin to tmax
–  Has a NODE for tmin and for tmax
–  Can be ONENODE (closed or periodic), TWONODE, or

DEGENERATE (which has a single NODE and a valid
range which will be used for the associated PCurve)

19!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Topology

•  LOOP (without a reference SURFACE)
–  Free standing collection of EDGEs that can be used in a

non-manifold setting (for example in WireBodies)
–  Collections of EDGEs associated with a PLANE which

does not require PCurves in OpenCASCADE

–  An ordered collection of EDGE objects with associated
senses that define the connected Wire

–  Segregates space by maintaining material to the left of the
running LOOP (or traversed right-handed pointing out of
the intended volume)

–  No EDGEs should be DEGENERATE
–  Can be OPEN or CLOSED (comes back on itself)

20!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Topology

•  LOOP (with a reference SURFACE)
–  Collections of EDGEs (like without a SURFACE) followed

by a corresponding collection of PCurves that define the
[u,v] trimming on the SURFACE

–  DEGENERATE EDGEs are required when the [u,v]
mapping collapses like at the apex of a cone (note that
the PCurve is needed to be fully defined using the
EDGE’s t range)

–  An EDGE may be found in a LOOP twice (with opposite
senses) and with different PCurves. For example a
closed cylindrical surface at the seam -- one PCurve
would represent the beginning of the period where the
other is the end of the periodic range.

21!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Topology
•  FACE

–  A SURFACE bounded by one or more LOOPs with associated
senses

–  Only one outer LOOP (sense = 1) and any number of inner
LOOPs (sense = -1). Note that under very rare conditions a
LOOP may be found in more than 1 FACE -- in this case the one
marked with sense = +/- 2 must be used in a reverse manner.

–  All LOOPs must be CLOSED
–  If the SURFACE is a PLANE, the LOOP(s) must not contain any

reference geometry
–  If the SURFACE is not a PLANE then the LOOP’s reference

Object must match that of the FACE
–  The orientation of the FACE is either SFORWARD (where the

SURFACE’s natural normal (UxV) matches the FACE) or
SREVERSE when the orientations are apposed. Note that this is
coupled with the LOOP’s orientation (i.e. an outer LOOP
traverses the FACE in a right-handed manner defining the
outward direction)

22!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Topology
•  SHELL

–  A collection of one of more connected FACEs that (if
CLOSED) segregates regions of 3-Space

–  All FACEs must be properly oriented
–  SHELLs can be either OPEN or CLOSED
–  Non-manifold SHELLs can have more than 2 FACEs

sharing an EDGE (OPEN in this case)

•  SOLIDBODY
–  A manifold collection of one or more CLOSED

SHELLs with associated senses
–  There may be only one outer SHELL (sense = 1) and

any number of inner SHELLs (sense = -1)

23!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Topology
•  BODY (including SOLIDBODY)

–  Container used to aggregate Topology
–  Connected but non-manifold at the MODEL level
–  A WIREBODY contains a single LOOP
–  A FACEBODY contains a single FACE
–  A SHEETBODY contains a single SHELL which can

be either non-manifold or manifold (though usually
manifold bodies of this type are promoted to
SOLIDBODYs)

•  MODEL
–  A collection of BODIES
–  Can be treated like Assemblies
–  This is Read and Written by EGADS

24!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Tessellation
Discrete representation of another Object

•  Geometry
–  Unconnected discretization of a range of the Object

•  PolyLine for CURVEs at constant t increments
•  Regular Grid for SURFACEs at constant increments

•  Body Topology
–  Connected and trimmed tessellation including:

•  PolyLine for EDGEs
•  Triangulation for FACEs
•  Optional Quadrilateral Patching for FACEs

–  Ownership and Geometric Parameters for Vertices
–  Adjustable Parameters for side length and curvature
–  Watertight

25!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Tessellation
Control of the use of Quadrilateral Templates

•  Automatic with triangulation scheme
•  Attempts to Isolate 3 or 4 “sides”

–  Only single LOOPs
–  FACEs with more than 4 EDGEs are analyzed to see is

multiple EDGEs can be treated as a single “side”
•  Point counts on sides (based on EDGE

Tessellation) are used:
–  TFI if opposites are equal
–  Templates otherwise

•  Defeated/modified with BODY attribute “.qParams”
–  If ATTRSTRING -- turn off quadding templates
–  If ATTRREAL (3 in length):

1.  EDGE matching expressed as the deviation from alignment [default: 0.05]
2.  Maximum quad side ratio point count to allow [default: 3.0]
3.  Number of smoothing iterations [default: 0.0]

26!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Tessellation
Watertight Quadrilateral FACE Treatment

•  Manual
•  Requires Existing Topologic Tessellation
•  Must be able to Isolate 4 “sides”

–  Only single LOOPs
–  FACEs with more than 4 EDGEs are analyzed to see is

multiple EDGEs can be treated as a single “side”
–  Currently no DEGENERATE EDGEs

•  Point counts on sides (based on EDGE
Tessellation) are used:
–  TFI if opposites are equal
–  Templates otherwise

•  EDGE Tessellation Adjustment Functions
–  When point counts don’t allow for Quadding

 27!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Tessellation
Using Tessellations for Finite-Differences

•  Useful for Parametric Sensitivities in a parameter
driven build system

•  Requires the same Topologic structure between
Bodies (may need a mapping)

•  BSpline SURFACEs (on mapped FACEs) must
have the same knot sequences (note: the knots
define the [u,v] parametrization).

•  This is accomplished by 2 EGADS functions:
–  EG_mapBody – sets up the mapping if required
–  EG_mapTessBody – builds the tessellation from a source

•  These functions respond to mapped indices:
–  EG_getTessEdge
–  EG_getTessFace
–  EG_locateTessBody

 28!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Others

•  TRANSFORM

–  Used when copying Objects to change the root
position and orientation

•  REFERENCE
–  Allows of the management of Objects that refer to

other Objects (so that deletion does not invalidate the
data)

–  This is an internal Object and is not usually seen by
the EGADS programmer.

29!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objects -- Lifetime & Scope

•  BODY

–  When made, copies of all referenced objects are
created and stored

•  MODEL
–  A BODY can be included in only one MODEL (you will

get a “reference error” if violated)
–  Copy the BODY if it is needed in a second MODEL

•  Others
–  Unconnected (at the BODY-level) Geometric &

Topologic Objects can be deleted en masse by
invoking EG_deleteObject on the CONTEXT

30!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Utility & IO Functions
•  open

icode = EG_open(ego *context)
icode = IG_open(I*8 context)

Opens and returns a CONTEXT object. Note that the Context is the
beginning of the threaded list of objects.

•  free

 EG_free(void *ptr)
call IG_free(cptr ptr)

Used to free up a pointer returned from EGADS if marked as “freeable”

•  deleteObject
icode = EG_deleteObject(ego object)
icode = IG_deleteObject(I*8 object)

Deletes an Object (if possible). A positive return indicates that the
object is still referenced by this number of other objects and has not
been removed from the context. If the object is the context then all
objects in the context are deleted except those attached to BODY or
MODEL objects.
31!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Utility & IO Functions
•  getContext

icode = EG_getContext(ego object, ego *context)
icode = IG_getContext(I*8 object, I*8 context)

Returns the CONTEXT given an object

•  setOutLevel
icode = EG_setOutLevel(ego context, int outLevel)
icode = IG_setOutLevel(I*8 context, I*4 outLevel)

Sets the EGADS verbose level (0-silent to 3-debug), The default is 1.
Success returns the old output level.

•  close
icode = EG_close(ego context)
icode = IG_close(I*8 context)

Cleans up and closes the CONTEXT

•  revision
 EG_revision(int *major, int *minor, char **OCCrev)
call IG_revision(I*4 major, I*4 minor, C** OCCrev)

Returns the version information for EGADS and OpenCASCADE
32!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Utility & IO Functions
•  loadModel

icode = EG_loadModel(ego context, int flags,
 char *name, ego *model)
icode = IG_loadModel(I*8 context, I*4 flags,
 C** name, I*8 model)
Loads and returns a MODEL object from disk and put it in the CONTEXT.
flags:

 1 - Don’t split closed and periodic entities
name: Load by extension

–  igs/iges
–  stp/step
–  brep (for native OpenCASCADE files)
–  egads (for native files with persistent Attributes, split ignored)

•  saveModel
icode = EG_saveModel(ego model, char *name)
icode = IG_saveModel(I*8 model, C** name)

Saves the MODEL to disk based on the filename extension.

33!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Utility & IO Functions
•  getTransform

icode = EG_getTransform(ego oform, double *xform)
icode = IG_getTransform(I*8 oform, R*8 xform)

Returns the transformation information. This appears like is a column-
major matrix that is 4 columns by 3 rows and could be thought of as
[3][4] in C (though is flat) and in FORTRAN dimensioned as (4,3).

oform the transformation object
xform a vector of double precision reals at least 12 in length

•  makeTransform
icode = EG_makeTransform(ego context, double *xform,
 ego *oform)
icode = IG_makeTransform(I*8 context, R*8 xform,
 I*8 oform)

Creates a TRANSFORM object from the 12 values. The rotation portion
[3][3] must be “scaled” orthonormal (orthogonal with a single scale
factor).

34!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Utility & IO Functions
•  copyObject

icode = EG_copyObject(ego object, ego oform,
 ego *newObject)
icode = IG_copyObject(I*8 object, I*8 oform,
 I*8 newObject)

Creates a new EGADS object by copying and transforming the input object.

object the input object (3D geometry or topology)
oform the transformation object (may be NULL for a strict copy)
newObject the resultant new object

•  flipObject
icode = EG_flipObject(ego object, ego *newObject)
icode = IG_flipObject(I*8 object, I*8 newObject)

Creates a new EGADS object by copying and reversing the input object.

object the input object: 3D geometry (flip the parameterization) or topology
 (reverse the sense). Not for NODE, EDGE, BODY or MODEL. SURFACEs

 reverse only the u parameter.
newObject the resultant new flipped object

35!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Utility & IO Functions
•  getInfo

icode = EG_getInfo(ego object, int *oclass, int *mtype,
 ego *topRef, ego *prev, ego *next)
icode = IG_getInfo(I*8 object, I*4 oclass, I*4 mtype,
 I*8 topRef, I*8 prev, I*8 next)
Returns information about the object:
oclass CONTEXT, TRANSFORM, TESSELLATION, REFERENCE,
 PCURVE, CURVE, SURFACE,
 NODE, EGDE, LOOP, FACE, SHELL, BODY, MODEL
mtype PCURVE/CURVE
 LINE, CIRCLE, ELLIPSE, PARABOLA, HYPERBOLA, TRIMMED,
 BEZIER, BSPLINE, OFFSET
 SURFACE
 PLANE, SPHERICAL, CYLINDRICAL, REVOLUTION, TORIODAL,
 TRIMMED, BEZIER, BSPLINE, OFFSET, CONICAL, EXTRUSION
 EDGE is TWONODE, ONENODE or DEGENERATE
 LOOP is OPEN or CLOSED
 FACE is either SFORWARD or SREVERSE
 SHELL is OPEN or CLOSED
 BODY is either WIREBODY, FACEBODY, SHEETBODY or SOLIDBODY
topRef is the top level BODY/MODEL that owns the object or context (if top)
prev is the previous object in the threaded list (NULL at CONTEXT)
next is the next object in the list (NULL is the end of the list)

36!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Utility & IO Functions
Additional Memory Functions

for the FORTRAN Bindings

•  alloc

icode = IG_alloc(I*4 nbytes, CPTR ptr)

Allocates a block of memory

•  calloc

icode = IG_calloc(I*4 nele, I*4 size, CPTR ptr)

Allocates a zero fills a block of memory

•  reall

icode = IG_reall(CPTR ptr, I*4 nbytes)

Reallocates a block of memory

37!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Attribution
•  attributeAdd

icode = EG_attributeAdd(ego object, char *name, int atype,
 int len, int *ints, double *reals,
 char *string)
icode = IG_attributeAdd(I*8 object, C** name, I*4 atype,
 I*4 len, I*4 ints, R*8 reals,
 C** string)

Adds an attribute to the object. If an attribute exists with the name it is
overwritten with the new information.

object the object
name the name of the attribute. Must not contain a space or other special characters
atype must be either:

ATTRINT for integers
ATTRREAL for double precision
ATTRSTRING for a character string

len the number of integers or reals (ignored for strings)
ints the integers for ATTRINT
reals the floating point data for ATTRREAL
string the character string for an ATTRSTRING type

 Note: Only the appropriate one (of ints, reals or string) is required

38!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Attribution
•  attributeDel

icode = EG_attributeDel(ego object, char *name)
icode = IG_attributeDel(I*8 object, C** name)

Deletes an attribute from the object. If the name is NULL then all attributes
are removed from this object.

object the object
name the name of the attribute.
 FORTRAN can use a string containing just space(s) to indicate NULL

•  attributeNum

icode = EG_attributeNum(ego object, int *nattr)
icode = IG_attributeNum(I*8 object, I*4 nattr)

Returns the number of attributes found with this object.

object the object
nattr the number of attributes

39!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Attribution
•  attributeGet

icode = EG_attributeGet(ego object, int index, char **name,
 int *atype, int *len, int **pints,
 double **preals, char **string)
icode = IG_attributeGet(I*8 object, I*4 index, C** name,
 I*4 atype, I*4 len, CPTR pints,
 R*8 preals, C** string)

Retrieves a specific attribute from the object.

object the object
index the index (1 to num from attributeNum)
name the returned name of the attribute
atype the returned type: ATTRINT, ATTRREAL or ATTRSTRING
len the returned length for integers or reals
pints a pointer to integer(s) for ATTRINT
preals a pointer to the floating point data for ATTRREAL
string the returned character string for an ATTRSTRING type

 Notes: (1) Only the appropriate one (of pints, preals or string) is returned
 (2) Care must be taken with name and string in FORTRAN not to

 overstep the declared CHARACTER length

40!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Attribution
•  attributeRet

icode = EG_attributeRet(ego object, char *name, int *atype,
 int *len, int **pints, double **preals,
 char **string)
icode = IG_attributeRet(I*8 object, C** name, I*4 atype,
 I*4 len, CPTR pints, R*8 preals,
 C** string)

Retrieves an attribute by name from the object.

object the object
name the name of the attribute to return
atype the returned type: ATTRINT, ATTRREAL or ATTRSTRING
len the returned length for integers or reals
pints a pointer to integer(s) for ATTRINT
preals a pointer to the floating point data for ATTRREAL
string the returned character string for an ATTRSTRING type

 Notes: (1) Only the appropriate one (of pints, preals or string) is returned
 (2) Care must be taken with the string variable in FORTRAN not to

 overstep the declared CHARACTER length

41!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Attribution
•  attributeDup

icode = EG_attributeDup(ego src, ego dst)
icode = IG_attributeDup(I*8 src, I*8 dst)

Removes all attributes from the destination object, then copies the
attributes from the source.

src the source object
dst the destination object

42!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry
•  getGeometry

icode = EG_getGeometry(ego object, int *oclass, int *mtype,
 ego *rGeom, int **pinfo, double **prv)
icode = IG_getGeometry(I*8 object, I*4 oclass, I*4 mtype,
 I*8 rGeom, CPTR pinfo, CPTR prv)

Returns information about the geometric object:

oclass PCURVE, CURVE or SURFACE
mtype PCURVE/CURVE
 LINE, CIRCLE, ELLIPSE, PARABOLA, HYPERBOLA, TRIMMED,
 BEZIER, BSPLINE, OFFSET
 SURFACE
 PLANE, SPHERICAL, CYLINDRICAL, REVOLUTION, TORIODAL,
 TRIMMED, BEZIER, BSPLINE, OFFSET, CONICAL, EXTRUSION
rGeom is the reference geometry object (if none this is returned as NULL)
pinfo is a returned pointer to the block of integer information. Filled for
 either BEZIER or BSPLINE, and when nonNULL is freeable.
prv is the returned pointer to a block of double precision reals. The
 content and length depends on the oclass/mtype (freeable).

43!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry
•  makeGeometry

icode = EG_makeGeometry(ego contxt, int oclass, int mtype, ego rGeom,
 int *pinfo, double *prv, ego *geom)
icode = IG_makeGeometry(I*8 contxt, I*4 oclass, I*4 mtype, I*8 rGeom,
 CPTR pinfo, CPTR prv, I*8 geom)

Creates a geometric object:

contxt the CONTEXT object
oclass PCURVE, CURVE or SURFACE
mtype PCURVE/CURVE
 LINE, CIRCLE, ELLIPSE, PARABOLA, HYPERBOLA, TRIMMED,
 BEZIER, BSPLINE, OFFSET
 SURFACE
 PLANE, SPHERICAL, CYLINDRICAL, REVOLUTION, TORIODAL,
 TRIMMED, BEZIER, BSPLINE, OFFSET, CONICAL, EXTRUSION
rGeom is the reference geometry object (if none use NULL)
pinfo is a pointer to the block of integer information. Required for
 either BEZIER or BSPLINE.
prv is the pointer to a block of double precision reals. The
 content and length depends on the oclass/mtype.
geom is the resultant new geometry object

44!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry
•  getRange

icode = EG_getRange(ego object, double *range, int *periodic)
icode = IG_getRange(I*8 object, R*8 range, I*4 periodic)

Returns the valid range of the object:

object may be one of PCURVE, CURVE, SURFACE, EDGE or FACE
range for PCURVE, CURVE or EDGE returns 2 values:
 t-start and t-end
 for SURFACE or FACE returns 4 values:

 u-min, u-max, v-min and v-max
periodic: 0 for non-periodic, 1 for periodic in t or u

 2 for periodic in v (or-able)

•  arcLength
icode = EG_arcLength(ego obj, double t1, double t2, double *alen)
icode = IG_arcLength(I*8 obj, R*8 t1, R*8 t2, R*8 alen)

Returns the arc-length of an object.

obj may be one of PCURVE, CURVE or EDGE
t1 starting t
t2 terminating t for calculation
alen arc-length (returned)
 45!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry

•  evaluate
icode = EG_evaluate(ego object, double *parms, double *eval)
icode = IG_evaluate(I*8 object, R*8 parms, R*8 eval)

Returns the result of evaluating on the object:

object may be one of PCURVE, CURVE, SURFACE, EDGE or FACE
parms parameter(s) used to evaluate on the object:
 for PCURVE, CURVE or EDGE the one value is t
 for SURFACE or FACE the 2 values are u then v
eval the returned position, 1st and 2nd derivatives (length):

 Edge -or- Face -or-
 PCurve (6) Curve (9) Surface (18)
Position [u,v] [x,y,z] [x,y,z]
1st Derivative [du,dv] [dx,dy,dz] [dxu,dyu,dzu]
 [dxv,dyv,dzv]
2nd Derivative [du2,dv2] [dx2,dy2,dz2] [dxu

2,dyu
2,dzu

2]
 [dxuv,dyuv,dzuv]

 [dxv
2,dyv

2,dyv
2]

46!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry

•  invEvaluate

icode = EG_invEvaluate(ego object, double *pos,
 double *parms, double *result)
icode = IG_invEvaluate(I*8 object, R*8 pos,
 R*8 parms, R*8 result)

Returns the result of inverse evaluation on the object. For topology the
result is limited to inside the EGDE/FACE valid bounds.

object may be one of PCURVE, CURVE, SURFACE, EDGE or FACE
pos is [u,v] for a PCURVE and [x,y,z] for all others
parms the returned parameter(s) found for the nearest position on the
 object:

 for PCURVE, CURVE or EDGE the one value is t
 for SURFACE or FACE the 2 values are u then v

result the closest position found is returned:
 [u,v] for a PCURVE (2) and [x,y,z] for all others (3)

47!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry

•  curvature
icode = EG_curvature(ego object, double *parms, double *crva)
icode = IG_curvature(I*8 object, R*8 parms, R*8 crva)

Returns the curvature and principle directions/tangents:

object may be one of PCURVE, CURVE, SURFACE, EDGE or FACE
parms parameter(s) used to evaluate on the object:
 for PCURVE, CURVE or EDGE the one value is t
 for SURFACE or FACE the 2 values are u then v
crva the returned curvature information (length):

 Edge -or- Face -or-
 PCurve (3) Curve (4) Surface (8)
 curvature curvature curvature1
 [dir.x, dir.y] [dir.x ,dir.y, dir.z] [dir1.x, dir1.y, dir1.z]

 curvature2
 [dir2.x, dir2.y, dir2.z]

48!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry
•  approximate

icode = EG_approximate(ego context, int mDeg, double tol,
 int *sizes, double *xyz, ego *geo)
icode = IG_approximate(I*8 context, I*4 mDeg, R*8 tol,
 I*4 sizes, R*8 xyz, I*8 geo)

Computes and returns the resultant geometry object created by
approximating the data by a BSpline (OCC or EGADS method).

context the CONTEXT object used to place the result
mDeg the maximum degree used by OCC [3-8], or cubic by EGADS [0-2]

 0 – fixes the bounds and uses natural end conditions
 1 – fixes the bounds and maintains the slope input at the bounds
 2 – fixes the bounds & quadratically maintains the slope at 2nd order

tol is the tolerance to use for the BSpline approximation procedure,
 zero for a SURFACE fit (OCC).

sizes a vector of 2 integers that specifies the size and dimensionality of
 the data. If the second is zero, then a CURVE is fit and the first
 integer is the length of the number of [x,y,z] triads. If the second
 integer is nonzero then the input data reflects a 2D map.

xyz the data to fit (3 times the number of points in length)
geo the returned approximated (or fit) BSpline resultant object

49!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry
•  otherCurve

icode = EG_otherCurve(ego surface, ego iCrv, double tol,
 ego *oCrv)
icode = IG_otherCurve(I*8 surface, I*8 iCrv, R*8 tol,
 I*8 oCrv)

Computes and returns the other curve that matches the input curve. If the
input curve is a PCURVE, the output is a 3D CURVE (and vice versa).

surface the SURFACE object used for the conversion
iCrv the input PCURVE or CURVE object
tol is the tolerance to use when fitting the output curve
oCrv the returned approximated resultant curve object

•  isSame
icode = EG_isSame(ego obj1, ego obj2)
icode = IG_isSame(I*8 obj1, I*8 obj2)

Compares two objects for geometric equivalence.

obj1 an object of type CURVE, EDGE, SURFACE or FACE
obj2 an object of the same dimensionality
 50!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Geometry
•  isoCline

icode = EG_isoCline(ego surface, int iUV, double value,
 ego *oCrv)
icode = IG_isoCline(I*8 surface, I*4 iUV, R*8 value,
 I*8 oCrv)

Computes from the input Surface and returns the isocline curve.

surface the SURFACE object used for the source
iUV the type of isocline: UISO (0) constant U or VISO (1) constant V
value the value used for the isocline
oCrv the returned resultant curve object

•  convertToBSpline

icode = EG_convertToBSpline(ego geom, ego *bspline)
icode = IG_convertToBSpline(I*8 geom, I*8 bspline)

Computes and returns the BSpline representation of the input geometric object.

geom can be a CURVE, EDGE, SURFACE or FACE
bspline the returned approximated resultant BSPLINE object

51!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  getTopology

icode = EG_getTopology(ego object, ego *ref, int *oclass,
 int *mtype, double *data, int *nchild,
 ego **pchldrn, int **psens)
icode = IG_getTopology(I*8 object, I*8 ref, I*4 oclass,
 I*4 mtype, R*8 data, I*4 nchild,
 CPTR pchldrn, CPTR psens)

Returns information about the topological object:
ref is the reference geometry object (if none this is returned as NULL)
oclass is NODE, EGDE, LOOP, FACE, SHELL, BODY or MODEL
mtype for EDGE is TWONODE, ONENODE or DEGENERATE
 for LOOP is OPEN or CLOSED
 for FACE is either SFORWARD or SREVERSE
 for SHELL is OPEN or CLOSED
 BODY is either WIREBODY, FACEBODY, SHEETBODY or SOLIDBODY
data will retrieve at most 4 doubles:
 for NODE this contains the [x,y,z] location
 EDGE is the t-min and t-max (the parametric bounds)
 FACE returns the [u,v] box (the limits first for u then for v)
nchild number of children (lesser) topological objects
pchldrn is a returned pointer to the block of children objects.
 FORTRAN only note: this pointer is freeable.
psens is the returned pointer to a block of integer senses for the children.

52!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  makeTopology

icode = EG_makeTopology(ego context, ego ref, int oclass,
 int mtype, double *data, int nchild,
 ego *chldrn, int *senses, ego *topo)
icode = IG_makeTopology(I*8 context, I*8 ref, I*4 oclass,
 I*4 mtype, R*8 data, I*4 nchild,
 I*8 chldrn, I*4 senses, I*8 topo)

Creates and returns a topological object:
context the CONTEXT object used to place the result
ref reference geometry object required for EDGEs and FACEs (optional for LOOP)
oclass is either NODE, EGDE, LOOP, FACE, SHELL, BODY or MODEL
mtype for EDGE is TWONODE, ONENODE or DEGENERATE
 for LOOP is OPEN or CLOSED
 for FACE is either SFORWARD or SREVERSE
 for SHELL is OPEN or CLOSED
 BODY is either WIREBODY, FACEBODY, SHEETBODY or SOLIDBODY
data may be NULL except for:
 NODE which contains the [x,y,z] location
 EDGE is the t-min and t-max (the parametric bounds)
nchild number of children (lesser) topological objects
chldrn a vector of children objects (nchild in length)
 if LOOP and has reference SURFACE, then 2*nchild in length (PCURVES follow)
senses a vector of integer senses for the children (required for FACES & LOOPs only)
topo the resultant returned topological object
 53!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology

•  makeFace
icode = EG_makeFace(ego object, int mtype, double *data,
 ego *face)
icode = IG_makeFace(I*8 object, I*4 mtype, R*8 data,
 I*8 face)

Creates a simple FACE from a LOOP or a SURFACE. Also can be
used to hollow a single LOOPed existing FACE. This function
creates any required NODEs, EDGEs and LOOPs.

object either a LOOP (for a planar cap), a SURFACE with [u,v] bounds, or
 a FACE to be hollowed out

mtype is either SFORWARD or SREVERSE
 for LOOPs you may want to look at the orientation using getArea,

 ignored when the input object is a FACE
data may be NULL for LOOPs, but must be the limits for a SURFACE

 (4 values), the hollow/offset distance and fillet radius (zero is for
 no fillets) for a FACE input object (2 values)

face the resultant returned topological FACE object (a return of
 EGADS_OUTSIDE is the indication that offset distance was too
 large to produce any cutouts, and this result is the input object)

54!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology

•  makeSolidBody
icode = EG_makeSolidBody(ego context, int stype,
 double *data, ego *body)
icode = IG_makeSolidBody(I*8 context, I*4 stype,
 R*8 data, I*8 body)

Creates a simple SOLIDBODY. Can be either a box, cylinder, sphere,
cone, or torus.

context the CONTEXT object used to place the result
stype 1-box, 2-sphere, 3-cone, 4-cylinder, or 5-torus
data depends on stype:
 box (6): [x,y,z] then [dx,dy,dz] for size of box
 sphere (4): [x,y,z] of center then radius
 cone (7): apex [x,y,z], base center [x,y,z], then radius
 cylinder (7): 2 axis points and the radius
 torus (8): [x,y,z] of center, direction of rotation, then
 major radius and minor radius
body the resultant returned topological BODY object

55!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  getBodyTopos

icode = EG_getBodyTopos(ego body, ego *ref, int oclass,
 int *ntopo, ego **ptopos)
icode = IG_getBodyTopos(I*8 body, I*8 ref, I*4 oclass,
 I*4 ntopo, CPTR ptopos)

Returns topologically connected objects:

body body container object
ref reference topological object or NULL. Sets the context for the returned objects

 (i.e. all objects of a class [oclass] in the tree looking towards that class from ref)
 NULL starts from the BODY (for example all NODEs in the BODY)
oclass is NODE, EGDE, LOOP, FACE or SHELL -- must not be the same class as ref
ntopo the returned number of requested topological objects
ptopos is a returned pointer to the block of objects (freeable)

•  indexBodyTopo
index = EG_indexBodyTopo(ego body, ego *obj)
index = IG_indexBodyTopo(I*8 body, I*8 obj)

Returns the index (bias 1) of the topological object in the Body:

body body container object
obj is the topological object in the Body

56!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  getArea

icode = EG_getArea(ego object, double *data, double *area)
icode = IG_getArea(I*8 object, R*8 data, R*8 area)

Computes the surface area from a LOOP, a SURFACE or a FACE.
When a LOOP is used a planar surface is fit and the resultant area
can be negative if the orientation of the fit is opposite of the LOOP.

object either a LOOP (for a planar cap), a SURFACE with [u,v] bounds
 or a FACE
data may be NULL except must contain the limits for a SURFACE
area the resultant surface area returned

•  getBoundingBox
icode = EG_getBoundingBox(ego object, double *box)
icode = IG_getBoundingBox(I*8 object, R*8 box)

Computes the Cartesian bounding box around the object:

object any topological object
box 6 doubles reflecting the [x,y,z] min and [x,y,z] max

57!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  getMassProperties

icode = EG_getMassProperties(ego topo, double *data)
icode = IG_getMassProperties(I*8 topo, R*8 data)

Computes and returns the physical and inertial properties of a
topological object.

topo the object, can be EDGE, FACE, SHELL, BODY or MODEL
data the data returned (must be declared to at least 14 doubles):
 volume, surface area (length for EDGE)
 center of gravity (3)
 inertia matrix at CoG (9)

•  isEquivalent
icode = EG_isEquivalent(ego topo1, ego topo2)
icode = IG_isEquivalent(I*8 topo1, I*8 topo2)

Compares two topological objects for equivalence. Note: topological
objects in different bodies will have different object pointers.

topo1 a topological object
topo2 a topological object of the same class

58!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  inTopology

icode = EG_inTopology(ego topo, double *xyz)
icode = IG_inTopology(I*8 topo, R*8 xyz)

Computes whether the point is on or contained within the object. Works
with EDGEs and FACEs by projection. SHELLs must be CLOSED.

topo the object, can be EDGE, FACE, SHELL or SOLIDBODY
xyz the coordinate location to check
icode the result or error code

•  inFace
icode = EG_inFace(ego face, double *uv)
icode = IG_inFace(I*8 face, R*8 uv)

Computes the result of the [u,v] location in the valid part of the FACE.

face the FACE object
uv the parametric location to check
icode the result or error code

59!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology

•  getEdgeUV
icode = EG_getEdgeUV(ego face, ego edge, int sense,
 double t, double *uv)
icode = IG_getEdgeUV(I*8 face, I*8 edge, I*4 sense,
 R*8 t, R*8 uv)

Computes on the EDGE/PCURVE to get the appropriate [u,v] on the
FACE.

face the FACE object
edge the EDGE object
sense can be 0, but must be specified if the EDGE is found the the FACE
 twice. This uniquely specifies which position to use when the FACE
 closes on itself.
t the parametric value to use for the evaluation
uv the resulting [u,v] evaluated at t.

60!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  sewFaces

icode = EG_sewFaces(int nObject, ego *objects, double tol,
 int flag, ego *model)
icode = IG_sewFaces(I*4 nObject, I*8 objects, R*8 tol,
 int flag, I*8 model)

Creates a MODEL from a collection of Objects. The Objects can be either
FACEBODYs and/or FACEs. After the sewing operation, any unconnected
Objects are returned as FACEBODYs.

nObject the number of Objects in the list
objects list of FACEBODY and/or FACEs to sew together (nObject in length)
toler tolerance used for the operation (0.0 - use Face tolerances)
flag 0 - manifold, 1 - allow non-manifold results
model the resultant MODEL object

•  getTolerance
icode = EG_getTolerance(ego object, double *tol)
icode = IG_getTolerance(I*8 object, R*8 tol)

Returns the internal tolerance defined for the object.

object topological object (all except MODEL)
tol the tolerance used to define closure

61!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  replaceFaces

icode = EG_replaceFaces(ego body, int nFace, ego *faces,
 ego *result)
icode = IG_replaceFaces(I*8 body, I*4 nFace, I*8 faces,
 I*8 result)

Creates a new SHEETBODY or SOLIDBODY from an input SHEETBODY or
SOLIDBODY and a list of FACEs to modify. The FACEs are input in pairs
where the first must be an Object in the BODY and the second either a
new FACE or NULL. The NULL replacement flags removal of the FACE
in the BODY.

body body container object
 Note: SOLIDBODYs must have a single (outer) SHELL

nFace the number of FACE pairs in the list
faces list of FACE pairs, where the first must be a FACE in the BODY and

 second is either the FACE to use as a replacement or a NULL which
 indicates that the FACE is to be removed from the BODY
 2*nFace in length

result the resultant BODY object, either a SHEETBODY or a SOLIDBODY
 (where the input was a SOLIDBODY and all FACEs are replaced in a
 way that the LOOPs match up)

 62!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology
•  matchBodyFaces

icode = EG_matchBodyFaces(ego body1, ego body2,
 int *nMatch, int **matches)
icode = IG_matchBodyFaces(I*8 body1, I*8 body2,
 I*4 nMatch, CPTR matches)

Examines the FACEs in one BODY against all of the FACEs in another. If
the FACE bounding boxes, number of LOOPs, number of NODEs, the
NODE locations, the number of EDGEs and the EDGE bounding boxes
as well as the EDGE arc lengths match it is assumed that the FACEs
match. A list of pairs of indices are returned.

body1 first body container object
body2 second body container object
nMatch the number of matched FACE pairs in the list
matches pointer to a list of FACE pairs, returned as NULL if nMatch is zero,

 otherwise it is a pointer to 2*nMatch integers, where each pair
 is the matching indices in the respective bodies (freeable)

Note: This is useful for the situation where there are glancing FACEs and a

UNION operation fails (or would fail). Simply find the matching FACEs
and do not include them in a call to EG_sewFaces.

 63!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Topology / Tessellation
•  mapBody

icode = EG_mapBody(ego src, ego dst, char *fAttr,
 ego *mapped)
icode = IG_mapBody(I*8 src, I*8 dst, C** fAttr,
 I*8 mapped)

Checks for topological equivalence between the the BODY src and the
BODY dst. If necessary, produces a mapping (indices in src which map
to dst) and places these as attributes on the resultant BODY mapped
(named .nMap, .eMap and .fMap). Also may modify BSplines
associated with FACEs.

src source body object (not WIREBODY)
dst destination body object
fAttr the FACE attribute used to map FACEs
mapped the mapped resultant BODY object copied from dst

 If NULL and icode == EGADS_SUCCESS, dst is equivalent and can
 be used directly in EG_mapTessBody

Note: It is the responsibility of the caller to have uniquely attributed all FACEs in

both src and dst to aid in the mapping for all but FACEBODYs.

64!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  makeTessGeom
icode = EG_makeTessGeom(ego geom, double *limits, int *sizes,
 ego *tess)
icode = IG_makeTessGeom(I*8 geom, R*8 limits, I*4 sizes,
 I*8 tess)

Creates a discretization object from a geometry-based Object.

geom the input object, may be a CURVE or SURFACE
limits the bounds of the tessellation (like range)
sizes a set of 2 integers that specifies the size and dimensionality of the
 data. The second is assumed zero for a CURVE and in this case
 the first integer is the length of the number of evenly spaced (in t)
 points created. The second integer must be nonzero for SURFACEs
 and this then specifies the density of the [u,v] map of coordinates
 produced (again evenly spaced in the parametric space). If a value of
 sizes is negative, then the fill is reversed for that coordinate.
tess the resultant TESSELLATION object

65!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  getTessGeom
icode = EG_getTessGeom(ego tess, int *sizes, double **pxyz)
icode = IG_getTessGeom(I*8 tess, I*4 sizes, CPTR pxyz)

Retrieves the data associated with the discretization of a geometry-based
Object.

tess the TESSELLATION object
sizes a returned set of 2 integers that specifies the size and dimensionality
 of the data. If the second is zero, then it is from a CURVE and
 the first integer is the length of the number of [x,y,z] triads. If the
 second integer is nonzero then the input data reflects a 2D map of
 coordinates.
pxyz the returned pointer to the suite of coordinate data.

66!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  makeTessBody
icode = EG_makeTessBody(ego body, double *parms, ego *tess)
icode = IG_makeTessBody(I*8 body, R*8 parms, I*8 tess)

Creates a discretization object from a Topological BODY Object.

body the input object, may be any Body type.
parms a set of 3 parameters that drive the EDGE discretization and the

 FACE triangulation. The first is the maximum length of an EDGE
 segment or triangle side (in physical space). A zero is flag that allows
 for any length. The second is a curvature-based value that looks
 locally at the deviation between the centroid of the discrete object and
 the underlying geometry. Any deviation larger than the input value will
 cause the tessellation to be enhanced in those regions. The third is
 the maximum interior dihedral angle (in degrees) between triangle
 facets (or Edge segment tangents for a WIREBODY tessellation),
 note that a zero ignores this phase.

tess the resultant TESSELLATION object where each EDGE in the BODY
 is discretized and each FACE is triangulated.

67!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation
•  remakeTess

icode = EG_remakeTess(ego tess, int nobj, ego *facedg, double *parms)
icode = IG_remakeTess(I*8 tess, I*4 nobj, I*8 facedg, R*8 parms)

Redoes the discretization for specified objects from within a BODY TESSELLATION.

tess the TESSELLATION object to modify.
nobj number of objects in the face/edge list.
facedg list of FACE and/or EDGE objects from within the BODY used to

 create the TESSELLATION object. First all specified Edges are
 rediscretized. Then any listed Face and the Faces touched by the
 retessellated Edges are retriangulated. Note that Quad Patches
 associated with Faces whose Edges were redone will be removed.

parms a set of 3 parameters that drive the EDGE discretization and the
 FACE triangulation. The first is the maximum length of an EDGE
 segment or triangle side (in physical space). A zero is flag that allows
 for any length. The second is a curvature-based value that looks
 locally at the deviation between the centroid of the discrete object and
 the underlying geometry. Any deviation larger than the input value will
 cause the tessellation to be enhanced in those regions. The third is
 the maximum interior dihedral angle (in degrees) between triangle
 facets (or Edge segment tangents for a WIREBODY tessellation),
 note that a zero ignores this phase.

68!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  mapTessBody
icode = EG_mapTessBody(ego tess, ego body, ego *mapTess)
icode = IG_mapTessBody(I*8 tess, I*8 body, I*8 mapTess)

Maps the input discretization object to another BODY Object. The
topologies of the BODY that created the input tessellation must
match the topology of the body argument (the use of EG_mapBody
can be used to assist).

tess the input BODY TESSELLATION object
body the BODY object (with a matching Topology) used to map the

 tessellation.
mapTess the resultant TESSELLATION object. The triangulation is

 simply copied but the uv and xyz positions reflect the input
 body (above).

Note: Invoking EG_moveEdgeVert, EG_deleteEdgeVert and/or

EG_insertEdgeVerts in the source tessellation before calling this
routine invalidates the ability of EG_mapTessBody to perform its
function.

69!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation
•  locateTessBody

icode = EG_locateTessBody(ego tess, int npts, int *ifaces,
 double *uvs, int *itris, double *results)
icode = IG_locateTessBody(I*8 tess, I*4 npts, I*4 ifaces,
 R*8 uvs, I*4 itris, R*8 results)

Provides the triangle and the vertex weights for each of the input requests or
the evaluated positions in a mapped tessellation

tess the input BODY TESSELLATION object
npts the number of input requests
ifaces the face indices for each request – minus index refers to the use of a

 mapped Face index from EG_mapBody and EG_mapTessBody
 (npts in length)

uvs the UV positions in the face for each request (2*npts in length)
itris the resultant 1-bias triangle index (npts in length)

 if input as NULL then this function will perform mapped evaluations
results the vertex weights in the triangle that refer to the requested position

 (any negative weight indicates that the point was extrapolated) -or-
 the evaluated position based on the input uvs (when itris is NULL)
 (3*npts in length)

70!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  getTessEdge
icode = EG_getTessEdge(ego tess, int eIndex, int *len,
 double **pxyz, double **pt)
icode = IG_getTessEdge(I*8 tess, I*4 eIndex, I*4 len,
 CPTR pxyz, CPRT pt)

Retrieves the data associated with the discretization of an EDGE from a
Body-based Tessellation Object.

tess the TESSELLATION object
eIndex the EDGE index (1 bias). The EDGE Objects and number of EDGEs

 can be retrieved via EG_getBodyTopos and/or EG_indexBodyTopo.
 A minus refers to the use of a mapped (+) Edge index from applying
 the functions EG_mapBody and EG_mapTessBody.

len the returned number of vertices in the EDGE discretization
pxyz the returned pointer to the set of coordinate data.
pt the returned pointer to the parameter values associated with each

 vertex.

71!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation
•  getTessFace

icode = EG_getTessFace(ego tess, int fIndex, int *len, double **pxyz,
 double **puv, int **ptype, int **pindex,
 int *ntri, int **ptris, int **ptric)
icode = IG_getTessFace(I*8 tess, I*4 fIndex, I*4 len, CPTR pxyz,
 CPRT puv, CPRT ptype, CPRT pindex,
 I*4 ntri, CPTR ptris, CPRT ptric)

Retrieves the data associated with the discretization of a FACE from a
Body-based Tessellation Object.

tess the TESSELLATION object
fIndex the FACE index (1 bias). The FACE Objects and number of FACEs

 can be retrieved via EG_getBodyTopos and/or EG_indexBody.
 A minus refers to the use of a mapped (+) Face index (if it exists).

len the returned number of vertices in the triangulation
pxyz the returned pointer to the set of coordinate data for each vertex
puv returned pointer to the parameter values associated with each vertex
ptype returned pointer to the vertex type (-1 - internal, 0 - NODE, >0 EDGE)
pindex returned pointer to vertex index (-1 internal)
ntri returned number of triangles
ptris returned pointer to triangle indices (1 bias)
ptric returned pointer to neighbor information
 72!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  getTessQuads
icode = EG_getTessQuads(ego tess, int *len, int **pindices)
icode = IG_getTessQuads(I*8 tess, I*4 len, CPTR pindices)

Returns a list of FACE indices found in the Body-based Tessellation Object that
has been successfully Quadded.

tess the TESSELLATION object
len the returned number of FACEs with Quad patches
pindices the returned pointer the FACE indices (1 bias). The FACE Objects

 themselves can be retrieved via getBodyTopos. This pointer is
 freeable.

73!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  makeQuads
icode = EG_makeQuads(ego tess, double *parms, int fIndex)
icode = IG_makeQuads(I*8 tess, R*8 parms, I*4 fIndex)

Creates Quadrilateral Patches for the indicated FACE and updates the
Body-based Tessellation Object.

tess the TESSELLATION object
parms a set of 3 parameters that drive the Quadrilateral patching for the

 FACE. Any may be set to zero to indicate the use of the default
 value:
 parms[0] EDGE matching tolerance expressed as the deviation
 from an aligned dot product [default: 0.05]
 parms[1] Maximum quad side ratio point count to allow
 [default: 3.0]
 parms[2] Number of smoothing loops [default: 0.0]

fIndex the FACE index (1 bias)

74!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation
•  getQuads

icode = EG_getQuads(ego tess, int fIndex, int *len,
 double **pxyz, double **puv, int **ptype,
 int **pindex, int *npatch)
icode = IG_getQuads(I*8 tess, I*4 fIndex, I*4 len,
 CPTR pxyz, CPRT puv, CPRT ptype,
 CPRT pindex, I*4 npatch)

Retrieves the data associated with the Quad-patching of a FACE from a
Body-based Tessellation Object.

tess the TESSELLATION object
fIndex the FACE index (1 bias). The FACE Objects and number of FACEs

 can be retrieved via getBodyTopos.
len the returned number of vertices in the patching
pxyz the returned pointer to the set of coordinate data for each vertex
puv returned pointer to the parameter values associated with each vertex
ptype returned pointer to the vertex type (-1 - internal, 0 - NODE, >0 EDGE)
pindex returned pointer to vertex index (-1 internal)
npatch returned number of patches

75!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation
•  getPatch

icode = EG_getPatch(ego tess, int fIndex, int pIndex, int *n1,
 int *n2, int **pvindex, int **pbounds)
icode = IG_getPatch(I*8 tess, I*4 fIndex, I*4 pIndex, I*4 n1,
 I*4 n2, CPRT pvindex, CPRT pbounds)

Retrieves the data associated with the Patch of a FACE from a Body-based
Tessellation Object.

tess the TESSELLATION object
fIndex the FACE index (1 bias). The FACE Objects and number of FACEs

 can be retrieved via getBodyTopos.
pIndex the patch index (1-npatch from EG_getQuads)
n1 the returned patch size in the first direction (indexed by i)
n2 the returned patch size in the second direction (indexed by j)
pvindex the returned pointer to n1*n2 indices that define the patch
pbounds returned pointer to the neighbor bounding information for the patch

 (2*(n1-1)+2*(n2-1) in length). The first represents the segments at the
 base (j at base and increasing in i), the next is at the right (with i
 at max and j increasing). The third is the top (with j at max and i
 decreasing) and finally the left (i at min and j decreasing).

76!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation
•  moveEdgeVert

icode = EG_moveEdgeVert(ego tess, int eIndex, int vIndex, double t)
icode = IG_moveEdgeVert(I*8 tess, I*4 eIndex, I*4 vIndex, R*8 t)

Moves the position of an EDGE vertex in a Body-based Tessellation Object. Will
invalidate the Quad patches on any FACEs touching the EDGE.

 tess the TESSELLATION object (not on WIREBODIES)
 eIndex the EDGE index (1 bias).
 vIndex the Vertex index in the EDGE (2 - nVert-1)
 t the new parameter value on the EDGE for the point

•  deleteEdgeVert
icode = EG_deleteEdgeVert(ego tess, int eIndex, int vIndex, int dir)
icode = IG_deleteEdgeVert(I*8 tess, I*4 eIndex, I*4 vIndex, I*4 dir)

Deletes an EDGE vertex from a Body-based Tessellation Object. Will invalidate
the Quad patches on any FACEs touching the EDGE.

 tess the TESSELLATION object (not on WIREBODIES)
 eIndex the EDGE index (1 bias).
 vIndex the Vertex index in the EDGE to delete (2 - nVert-1)
 dir the direction to collapse any triangles (either -1 or 1)

 77!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Tessellation

•  insertEdgeVerts
icode = EG_insertEdgeVerts(ego tess, int eIndex, int vIndex,
 int len, double *ts)
icode = IG_insertEdgeVerts(I*8 tess, I*4 eIndex, I*4 vIndex,
 I*4 len, R*8 ts)

Inserts vertices into the EDGE discretization of a Body-based Tessellation
Object. This will invalidate the Quad patches on any FACEs touching
the EDGE.

tess the TESSELLATION object (not on WIREBODIES)
eIndex the EDGE index (1 bias).
vIndex the Vertex index in the EDGE to insert the points after (1 - nVert-1)
len the number of points to insert
ts the t values for the new points. Must be monotonically increasing and

 be greater than the t of vIndex and less than the t of vIndex+1.

78!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  solidBoolean

icode = EG_solidBoolean(ego src, ego tool, int oper,
 ego *model)
icode = IG_solidBoolean(I*8 src, I*8 tool, I*4 oper,
 I*8 model)

Performs the Solid Boolean Operations (SBOs) on the source BODY
Object (that has the type SOLIDBODY). The tool object types depend
on the operation. This supports Intersection, Subtraction and Union.

src the source SOLIDBODY object
tool the tool object:

 either a SOLIDBODY for all operators -or-
 a FACE/FACEBODY for Subtraction

oper 1-Subtraction, 2-Intersection and 3-Fusion
model the resultant MODEL object (this is because there may be multiple
 bodies from either the subtraction or intersection operation).

Note: This may be called with src being a MODEL. In this case tool may be a

SOLIDBODY for Intersection or a FACE/FACEBODY for Fusion. The input
MODEL may contain anything, but must not have duplicate topology.

79!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  intersection

icode = EG_intersection(ego src, ego tool, int *nEdge,
 ego **pFacEdg, ego *model)
icode = IG_intersection(I*8 src, I*8 tool, I*4 nEdge,
 CPTR pFacEdg, I*8 model)

Intersects the source BODY Object (that has the type SOLIDBODY,
SHEETBODY or FACEBODY) with a surface or surfaces. The tool
object contains the intersecting geometry in the form of a
FACEBODY, SHEETBODY, SOLIDBODY or a single FACE.

src the source BODY object
tool the FACE/FACEBODY/SHEETBODY/SOLIDBODY tool object
nEdge the number of EDGE objects created
pFacEdg pointer to FACE/EDGE object pairs - 2*nEdge in len (freeable)

 can be NULL (if you don’t need this data - the EDGEs are in model)
model the resultant MODEL object which contains the set of WIREBODY

 BODY objects (this is because there may be multiple LOOPS as
 a result of the operation).

NOTE: The EDGE objects contained within the LOOPS have the attributes
 of the FACE in src responsible for that EDGE.

80!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  imprintBody

icode = EG_imprintBody(ego src, int nEdge,
 ego *facEdg, ego *result)
icode = IG_imprintBody(I*8 src, I*4 nEdge,
 I*8 facEdg, I*8 result)

Imprints EDGEs on the source BODY Object (that has the type
SOLIDBODY, SHEETBODY or FACEBODY). The EDGEs are paired
with the FACEs in the source that will be scribed with the EDGE.

src the source BODY object
nEdge the number of EDGE objects to imprint
facEdg list of FACE/EDGE object pairs to scribe - 2*nEdge in len

 can be the output from intersect
result the resultant BODY object (with the same type as the input source

 object)

81!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  filletBody

icode = EG_filletBody(ego src, int nEdge, ego *edges,
 double radius, ego *result, int **maps)
icode = IG_filletBody(I*8 src, I*4 nEdge, I*8 edges,
 R*8 radius, I*8 result, CPTR maps)

Fillets the EDGEs on the source BODY Object (that has the type
SOLIDBODY or SHEETBODY).

src the source BODY object
nEdge the number of EDGE objects to fillet
edges list of EDGE objects to fillet – nEdge in len
radius the radius of the fillets created
result the resultant BODY object (with the same type as the input source

 object)
maps list of Face mappings (in the result) which includes operations and an

 index to src where the Face originated – 2*nFaces in result in length
 (freeable)

82!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  chamferBody

icode = EG_chamferBody(ego src, int nEdge, ego *edges,
 ego *faces, double dis1,
 double dis2, ego *result, int **maps)

icode = IG_chamferBody(I*8 src, I*4 nEdge, I*8 edges,
 I*8 faces, R*8 dis1,
 R*8 dis2, I*8 result, CPTR maps)

Chamfers the EDGEs on the source BODY Object (that has the type
SOLIDBODY or SHEETBODY).

src the source BODY object
nEdge the number of EDGE objects to chamfer
edges list of EDGE objects to chamfer - nEdge in len
faces list of FACE objects to measure dis1 from - nEdge in len
dis1 the distance from the FACE object to chamfer
dis2 the distance from the other FACE to chamfer
result the resultant BODY object (with the same type as the input source

 object)
maps list of Face mappings (in the result) which includes operations and an

 index to src where the Face originated – 2*nFaces in result in length
 (freeable)

 83!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  hollowBody

icode = EG_hollowBody(ego src, int nFace, ego *faces,
 double off, int join, ego *result,
 int **maps)

icode = IG_hollowBody(I*8 src, I*4 nFace, I*8 faces,
 R*8 off, I*4 join, I*8 result,
 CPTR maps)

A hollowed solid is built from an initial SOLIDBODY Object and a set of
FACEs that initially bound the solid. These FACEs are removed and
the remaining FACEs become the walls of the hollowed solid with the
specified thickness. If there are no FACEs specified then the Body is
offset by the specified distance (which can be negative).

src the source BODY object
nFace the number of FACE objects to remove (0 performs an Offset)
faces list of FACE objects to remove - nFace in len
off the wall thickness (offset) of the hollowed result
join 0 - fillet-like corners, 1 - expanded corners
result the resultant SOLIDBODY object
maps list of Face mappings (in the result) which includes operations and an

 index to src where the Face originated – 2*nFaces in result in length
 (freeable)

 84!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  rotate

icode = EG_rotate(ego src, double angle, double *axis,
 ego *result)
icode = IG_rotate(I*8 src, R*8 angle, R*8 axis,
 I*8 result)

Rotates the source Object about the axis through the angle specified. If
the Object is either a LOOP or WIREBODY the result is a
SHEETBODY. If the source is either a FACE or FACEBODY then the
returned Object is a SOLIDBODY.

src the source Object
angle the angle to rotate the object through [0-360 Degrees]
axis a point (on the axis) and a direction (6 in length)
result the resultant BODY object (type is one greater than the input source

 object)

85!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  extrude

icode = EG_extrude(ego src, double length, double *dir,
 ego *result)
icode = IG_extrude(I*8 src, R*8 length, R*8 dir,
 I*8 result)

Extrudes the source Object through the distance specified. If the Object
is either a LOOP or WIREBODY the result is a SHEETBODY. If the
source is either a FACE or FACEBODY then the returned Object is a
SOLIDBODY.

src the source Object
length the distance to extrude
dir the vector that is the extrude direction (3 in length)
result the resultant BODY object (type is one greater than the input source

 object)

86!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  sweep

icode = EG_sweep(ego src, ego spine, int mode, ego *result)
icode = IG_sweep(I*8 src, I*8 spine, I*4 mode, I*8 result)

Sweeps the source Object through the “spine” specified. The spine
can be either an EDGE, LOOP or WIREBODY. If the source
Object is either a LOOP or WIREBODY the result is a
SHEETBODY. If the source is either a FACE or FACEBODY
then the returned Object is a SOLIDBODY.

src the source Object
spine the Object used as guide curve segment(s) to sweep the

 source through
mode sweep mode:

 0 - CorrectedFrenet 5 - GuideAC
 1 - Fixed 6 - GuidePlan
 2 - Frenet 7 - GuideACWithContact
 3 - ConstantNormal 8 - GuidePlanWithContact
 4 - Darboux 9 - DiscreteTrihedron

result the resultant BODY object (type is one greater than the input
 source Object)

87!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions

•  loft
icode = EG_loft(int nSection, ego *sections,
 int options, ego *result)
icode = IG_loft(I*4 nSection, I*8 sections,
 I*4 options, I*8 result)

Lofts the input Objects to create a BODY Object (that has the type
SOLIDBODY or SHEETBODY).

nSection the number of Sections in the Loft Operation
sections list of WIREBODY or LOOP objects to Loft - nSection in len

 the first and last can be NODEs
options bit flag that controls the loft:

 1 - SOLIDBODY result (default is SHEETBODY)
 2 - Ruled (linear) Loft (default is smooth)

result the resultant BODY object

Note: This function may be deprecated in the future. Please use either

EG_blend or EG_ruled.

88!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions
•  blend

icode = EG_blend(int nSection, ego *sections, double *rc1,
 double *rcN, ego *result)
icode = IG_blend(I*4 nSection, I*8 sections, R*8 rc1,
 R*8 rcN, I*8 result)

Simply lofts the input Objects to create a BODY Object (that has the type
SOLIDBODY or SHEETBODY). All sections must have the same
number of Edges (except for NODEs) and the Edge order in each
(defined in a CCW manner) is used to specify the loft connectivity.

nSection the number of Sections in the Blend Operation
sections list of WIREBODY or LOOP objects to Blend - nSection in len

 the first and last can be NODEs and/or FACEs (only one LOOP),
 the orientation of FACE is used to complement the lofted surfaces,
 if the first and last are NODEs and/or FACEs the result will be
 a SOLIDBODY otherwise a SHEETBODY will be constructed

rc1 specifies treatment* at the first section (or NULL for no treatment)
rcN specifies treatment* at the last section (or NULL for no treatment)
result the resultant BODY object

* NODE -- elliptical treatment (8 in length): radius of curvature1, unit direction,
rc2, orthogonal direction; other sections -- setting tangency (4 in length):
magnitude, unit direction

89!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- High-Level Functions

•  ruled
icode = EG_ruled(int nSection, ego *sections, ego *result)
icode = IG_ruled(I*4 nSection, I*8 sections, I*8 result)

Produces a BODY Object (that has the type SOLIDBODY or SHEETBODY)
that goes through the sections by ruled surfaces between each. All
sections must have the same number of Edges (except for NODEs) and
the Edge order in each is used to specify the connectivity.

nSection the number of Sections in the Ruled Operation
Sections A list of NODE, WIREBODY, LOOP and/or FACE objects to operate

 upon - nSection in len,
 Any FACE objects must contain only a single LOOP,
 Only the first and last sections can be NODEs,
 If the first and last sections are NODEs and/or FACEs and all

 WIREBODY and LOOP objects are closed, the result will be
 a SOLIDBODY otherwise a SHEETBODY will be constructed

result the resultant BODY object

Note: for both blend and ruled all Loops must have their Edges ordered in

a counterclockwise manner.

90!

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

API -- Return Codes
#define EGADS_ATTRERR -29
#define EGADS_TOPOCNT -28
#define EGADS_OCSEGFLT -27 /* OpenCASCADE Seg Fault */
#define EGADS_BADSCALE -26
#define EGADS_NOTORTHO -25
#define EGADS_DEGEN -24
#define EGADS_CONSTERR -23 /* construction error */
#define EGADS_TOPOERR -22
#define EGADS_GEOMERR -21
#define EGADS_NOTBODY -20
#define EGADS_WRITERR -19
#define EGADS_NOTMODEL -18
#define EGADS_NOLOAD -17
#define EGADS_RANGERR -16
#define EGADS_NOTGEOM -15
#define EGADS_NOTTESS -14
#define EGADS_EMPTY -13
#define EGADS_NOTTOPO -12
#define EGADS_REFERCE -11
#define EGADS_NOTXFORM -10
#define EGADS_NOTCNTX -9
#define EGADS_MIXCNTX -8
#define EGADS_NODATA -7
#define EGADS_NONAME -6
#define EGADS_INDEXERR -5
#define EGADS_MALLOC -4
#define EGADS_NOTOBJ -3
#define EGADS_NULLOBJ -2
#define EGADS_NOTFOUND -1
#define EGADS_SUCCESS 0
#define EGADS_OUTSIDE 1 /* also -- not the same */

91!

