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Modern Computer Aided Design systems rely on two-dimensional sketches as the basis
for the creation of most three-dimensional geometry. These sketches consist of qualitative
shape information as well as a series of constraints to quantify the exact size and shape
of the various segments, arcs, and splines that comprise the sketch. Example constraints
include overall lengths, symmetries, parallel and/or perpendicular segments, and arc radii.
For a given sketch, there are many sets of constraints that unambiguously define the shape.
Unfortunately, sometimes a user prescribes a set of constraints that do not allow the sketch
to be solved. Providing feedback to the user as to how to change the constraint definitions
to remedy the problem is still a largely-unsolved problem. Herein is described a series of
techniques for helping a user diagnose sketch problems and provide to the user a series of
options that will cause the sketch to be properly solved. The techniques are incorporated
in the OpenCSM solid modeling system. Several sample configurations that use these
techniques are shown, with a description of the user interaction that the system provides.

I. Introduction

In most Computer-Aided Design (CAD) systems, the 2D sketch is the fundamental element that allows
generation of three dimensional models. Sketches are commonly created by starting with general shapes and
then adding constraints that uniquely define an intended sketch. Examples of sketch constraints are lengths
of segments, radii of arcs, intersection angles, parallel segments, etc. In general, the user needs to prescribe
as many constraints as there are free variables associated with the sketch’s line segments, arcs, and splines.
The constraint solver then finds the dimensions that satisfy the constraints.

The idea of sketching has its roots in the first graphic system, which was developed in the mid 1950s
at Massachusetts Institute of Technology in the Lincoln Labs." In 1960, the first step was taken for what
became known as the CAD industry by a project called SKETCHPAD that was developed in the same MIT
laboratory. Over time, the concept of sketching became strongly linked with the idea of “parametrics”.
Since the introduction of parametrics nearly 25 years ago, most sketcher advances have focused on integrating
parametrics while little attention has been given to helping the user understand how to properly constrain
sketches.

Meanwhile, OpenCSM is a software system under development that, among many other features, incor-
porates geometry and sketch solving for multi-disciplinary analysis and optimization platforms.

This paper describes advances in user-directed constraint solving in OpenCSM. But even though the
sketcher advances described here were initially targeted at OpenCSM, they can be adapted for use with
other CAD systems as well.

II. Method of Solving Sketches

A sketch is a two-dimension closed figure composed of line segments, arcs, and splines. Fig. 1 shows a
very simple sketch composed of three line segments and one arc. Superimposed on the figure are several
letters and numbers that describe the constraints that a user may have specified in order to “solve” the
sketch.
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Table 1. Legend for plot labels in OpenCSM

Labels for Constraints
X | TempFix x 1 | length
Y | TempFix y Ir | length relation
C | TempFix C h | horizontal
x | fixed x v | vertical
y | fixed y i | inclination angle
p | perpendicular r | radius arc
t | tangent T | turning angle of arc
¢ | co-linear points ¢ | co-linear center
d | distance relation

Table 1 defines the meaning of the letters in the sketch. The “TempFix” constraints in Table 1 are
temporary constraints that are added by the solver when diagnosing a sketch; they are discussed further in
the next section. One may notice that co-linear points and co-linear centers are both designated with a “c”
on the plot; the difference is that co-linear points puts the “c” at a vertex and co-linear centers puts the “c”
at the center of an arc. The co-linear, distance relation, and length relation constraints are explained and
demonstrated in later examples.

Since almost all of the constraints reference a vertex number, every other vertex number is labeled on
the plot as shown in Fig. 1. Note that all of the line segments and arcs are labeled using its starting vertex,
which is determined by going counterclockwise around the figure.

Final Sketch Constriants
T T T T T T

X axis

Figure 1. Simple sketch to demonstrate problem setup

According to Hoffman and Vermeer, there are four basic methods for solving a system of constraints:
numerically, commonly known as the Newton-Raphson method; symbolically; with a graph-based approach;
or using logical inference and term rewriting.” The numerical method, while iterative, is the the most
common method used due to it’s versatility and is the basis for the technique described herein.

The Newton-Raphson method is set up to drive a set of residuals, R, (each of which is derived from
a user-specified constraint) to zero by adjusting the sketch’s free variables. For the sketch in Fig. 1, the
variables are the x and y vertex locations as well as the arc curvature C.
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The number of variables in the system dictates the number of defining constraint equations that are
necessary to uniquely solve the sketch and locate the vertex coordinates. This example has nine variables
and therefore nine residual equations are necessary to define the sketch.

Table 2. Residual Equations to Define Example

Residual Equations

Ri=y2—u (horizontal)
Ry =24 — 13 (vertical)
R3 = x3 — 29 (vertical)
Ry=x21—1 (fixed at 1)
Ry =y1 —1 (fixed at 1)
Rs =tangent(x2,¥ys2,0,x3,ys3,C3, 24, ys) (tangent)
Rr = /(y2 — y3)? + (w2 —x3)? — 4 (length is 4)
Ry =/(y2 —y1)? + (w2 —21)? — 4 (length is 4)
Ry =tangent(xs,y3,C3,24,94,0,21,91) — 5 (Perpendicular)

The residual equations in Table 2 are all arranged so that when the sketch is solved and the constraints are
satisfied the residuals will vanish. Note that the tangent function is a function defined in OpenCSM, where
given the vertices and the curvatures of adjacent segments, it returns the dihedral angle at the intermediate
vertex. If tangent returns zero, the segments are tangent at this vertex; if &7 is returned, the segments are
perpendicular.

The Newton method uses a Jacobian matrix that is defined by
system as shown in Eq. (2).

gf: . The problem is set up using a matrix

i 8R1 8R1 631 1
(9121 6:62 (90?.,, Axl Rl
ORy  ORy OR; Ay Ry
o0z Oxo T Oy, . = - . (2)
OR, DRy ORy, Az B
L Ox1 Oxo T Oz, |

The individual entries in the Jacobian matrix are solved by linearizing about a point (the initial or
current guess) and applying finite difference expressions. Direct evaluation of the derivatives by symbolic
differentiation of the constraint formulae is possible, but has been found to be of little benefit in the current
work. To solve the system of equations using an iterative method, the Ax vector is updated with each
iteration, driving the R vector to zero. The iterations stop and the matrix is considered solved when the
maximum value in the R vector is less than the given tolerance, which is 1072 in the OpenCSM sketcher.

The advantage of the matrix setup in Eq. (2) is that it allows for any problem to be solved if defined
properly. For the current example problem, the matrix is well defined and solves to generate the sketch
shown in Fig. 1 with the constraints appropriately labeled.

The numerical method is used to find sketch solutions because, given a well defined system and quality
initial guess, the method will always find a solution. The chief disadvantages to this system are its depen-
dence on initial conditions and the fact that an iterative method can be time consuming. Despite these
disadvantages, the numerical approach is used due to its ability to solve any well defined system, no matter
how large.

III. Diagnosing Sketch Problems

For further demonstrations of commercial CAD software and the OpenCSM sketcher, the sketch shown in
Fig. 2 will be used. This sketch was specifically designed to test different sketchers and demonstrate concepts.
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This sketch is defined by eight vertices and the curvature of three arcs making a total of 19 variables as
shown in Eq. (3).
ol =[xy y1 @2 Y2 T3 Y3 T4 Ya T5 Ys T Yo 7 Y7 vs Ys C1 C2 CT] (3)
This sketch uses length relations which are constraints used to relate various lengths. In this test sketch
a “length relation” is used to define that segment 4-5 is three times the length of segment 6-7. The label
appears only on the first segment in the relation as shown (later) in Fig. 5.
The fully defined system results in the sketch shown in Fig. 2.

Test Sketch

Figure 2. Custom sketch designed to test system features with segments labeled for reference.

The constraints used to define this sketch are given in Table 3. While Fig. 2 may not seem complicated,
there are many different ways to define the constraints for the sketch to get a fully constrained system,
which is the ultimate goal. The constraints shown in the table are just one of various ways to fully define
the desired sketch, which will be explored in detail later.

Table 3. Constraints to define the sketch in Fig. 2 with Jacobian matrix row locations

Constraints
Row 1: Fixed Point x at 1 | Row 11: Horizontal 3-4
Row 2: Fixed Point y at 1 | Row 12: Overall Length

Row 3: Horizontal 8-1 Row 13: Overall Height

Row 4: Perpendicular at 1 | Row 14: Length of segment 5-6

Row 5: Tangent at 2 Row 15: Length Relation of segments 4-5 & 6-7
Row 6: Tangent at 3 Row 16: Turning Angle of Arc 1

Row 7: Perpendicular at 5 | Row 17: Inclination Angle of 6-7
Row 8: Perpendicular at 6 | Row 18: Length of Radius Arc 7
Row 9: Tangent at 7 Row 19: Length of Radius Arc 1
Row 10: Tangent at 8

A sketch can be classified into one of four different states; fully defined, over-constrained, under-constrained
or improperly constrained. A fully defined system has the proper number of constraints and is solvable, as in
no singularities exist, resulting in one unambiguous solution for the sketch. An over-constrained system has
too many constraints and those constraints may or may not properly define a sketch. An under-constrained
system does not have enough constraints to uniquely define the sketch and constraints must be added. An
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improperly constrained system has the correct number of constraints but there may be conflicting constraints
that cause a singularity, and certain coordinates to be unsolvable. Each of these cases is described below.

III.A. Case 1: Under-Constrained

Most CAD systems will identify the state of the constraints on a given sketch. The commercial systems also
have limitations for the types of constraints that can be added; therefore there is a slight difference in how
the sketch is defined in ProEngineer” and how it was previously defined for OpenCSM. Overall length and
height constraints are not available in this commercial package. Also, to use a length relation one of the
lengths must be defined, unlike what was used in the OpenCSM sketch solver.

When identifying the state of the constraint system, ProEngineer takes a unique approach. ProEngineer
actually prevents a sketch from ever begin under-constrained due to its intent manager. As objects (lines,
arcs, etc.) are added to a sketch, “weak” constraints are added, which are purely dimensional constraints,
creating and maintaining a fully defined sketch. The user adds constraints to the system to create the
desired object and as constraints are added the weak auto-added constraints are removed. While this keeps
the system in a solvable state for a complex sketch, the dimensions added are typically not what the user
would actually want to define and there is no feedback as to what other constraints could be added. Using
our test shape in ProEngineer, the fully defined sketch looks like that in Fig. 3. When we remove the length
of segment 8-1 (the bottom horizontal segment) a new dimension is added to the shape shown in Fig. 4.

Figure 3. Fully defined sketch in ProEngineer with all user defined constraints.

Auto — Added Constraint

\

Figure 4. Fully defined sketch in ProEngineer when length constraint is removed, “weak” constraint added by the
system.

In OpenCSM’s sketcher, the sketch is diagnosed and fixed based upon user feedback rather than auto-
matically patched as in ProEngineer. The system first identifies where the singularity is located by row
reducing the Jacobian matrix. For a well defined system the row reduction will yield the identity matrix,
but for under-constrained systems there will be at least one zero column. The location of the singularity,
identified by a zero column, shows which parameter is undefined.

The OpenCSM sketcher temporarily adds a fixed point for the missing parameter, and checks the matrix
again. This iterative approach is used since it is possible, and common, to have multiple problems in a
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system of constraints. If there were only one problem with the matrix, the temporary constraints would
not be necessary. Once all of the singularities have been replaced with temporarily fixed points, the solver
checks all of the constraints in Table 4, one-by-one for replacements that would be meaningful to the user.

Table 4. Constraints Options to Add to a sketch

Vertex Constraints | Segment Constraints
Fixed x Length
Fixed y Horizontal
Perpendicular Vertical
Tangent Radius

Turning Angle

Some of these constraints require values, such as length, radius and turning angle; for these the initial
guess from the user-drawn sketch is used as the value for the constraint. For perpendicularity, the constraint
may be for either convex or concave intersections. In all of these instances, the value automatically generated
that used to validate the constraint is presented to the user and then the user is asked to provide a value.
The internal value used by the sketcher is only offering guidance to the user to help choose an appropriate
value. If the user enters a value that is too different from what the sketcher tested with, it is possible the
matrix will develop a singularity and cause the Newton solver to diverge; see the Implementation Issues
section for more details.

To demonstrate the feedback from the sketcher, two constraints were removed from those in Table 3.
The constraints removed were perpendicularly at vertex 6 (the inside corner near the left of the figure) and
horizontal segment 3-4 (at the top). Removing these constraints results in an under-defined sketch that
cannot solve for the location of yg and the curvature C2 as shown in Fig. 5.
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Figure 5. Temporary Constraints added the define the Sketch

After these temporary constraints are added, all of the possible options to replace the temporarily fixed
ye are presented to the user to choose which one to add to the system. There are nine possible options for
this case which are shown in Fig. 6.

For this example, the user selects to add concave perpendicularity at vertex 6, which is the constraint
that was removed from the original fully defined system; any of the nine options presented to the user would
allow the sketch to be solved. Since two constraints were removed from the system, there is still another
temporary constraint that needs to be replaced with one that is more in line with the user’s design intent.
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Figure 6. Constraint replacement options for the temporary fixed ys.

There are 15 options to replace the temporarily fixed C2 point; they are shown in Fig. 7.

Original Sketch

y axis
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0 | | | | |
5 F 2 o 2 4
¥ axis

Figure 7. Constraint replacement options for the temporary fixed C2.

Choosing the option that segment 3-4 is horizontal will result in the same set of constraints that were
originally used and the same figure. As before, any of the 15 options would result in a fully defined sketch.

The advantage of this system is that constraints added are temporary and merely a step to identify all
the problems with the current sketch system and are replaced with constraints of the user’s choice. The
processes of replacing the temporary constraints for an under-defined sketch is the same process that is used
to fix an improperly constrained system (to be described later).

III.B. Case 2: Over-Constrained

Over-constrained sketches are the only state that all commercial CAD systems tested acknowledge and offer
some advice to repair. In AutoCAD when adding a new constraint that will over-constrain the system, a
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window appears and informs the user that adding that constraint will over-constrain the system and therefore
it cannot be added as shown in Fig. 8. AutoCAD offers no assistance in how to fix the problem, but only
informs the user of that a problem exists.

Geometric Constraints l&]

The constraint cannot be applied. It conflicts with
existing constraints or would over-constrain the
geometry.

Press OK to reselect different objects or cancel the command.

[7] Do not show this message again [ ok 1 ’ Cancel

Figure 8. Feedback provided to the user by AutoCAD for an over constrained system.

From the message shown, AutoCAD does not distinguish between improper and over-constrained systems.
This could make a fully defined sketch difficult to obtain if it is not apparent what all of the constraints should
be. The other challenge is that AutoCAD does not allow certain constraints (such as a perpendicularity
constraint at vertex 1 in Fig. 2). To bypass this, the next logical constraint would be setting the center of arc
1 to be co-linear with segment 8-1. The co-linearity constraint, in conjunction with the other constraints,
would maintain a perpendicular intersection at that vertex. Regretfully, that is not an option in AutoCAD
either, demonstrating a situation where offering suggestions for how to fully constrain a sketch would be
helpful to the user.

ProEngineer provides a little more information, posting a window with choices that identifies the con-
straints that would conflict with the one being added and allows the user to choose which one to remove as
shown in Fig. 9.

ysis Info Applications Tools Window Help

= L [ o= ) 5 e G B | i Resolve Sketch ==
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in(s) confiict. Select one to delete or convert. Select one to delete or convert |
1 Dimension 573 = 150.00

2 Dimension  5d59 = 30.000 ,
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4 Constraint Orthogonal | 3
5 Constraint Horizontal

Undo Delete || Dim=Ref || Explain |
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Figure 9. Feedback provided to the user by ProEngineer for an over constrained system.

Fixing a sketch to be better constrained in ProEngineer is certainly more user friendly; however this still
does not help for all situations. Occasionally every constraint is presented as an option and that may not
actually be helpful for the user. SolidWorks" looks at an over-constrained sketch and offers either a manual
repair or a diagnostic tool. The manual repair is similar to ProEngineer in that it simply offers a list of
the conflicting constraints. The diagnostic tool is more complex and takes time to use. The diagnostic tool
removes conflicting constraints and offers solutions to fix the sketch to be properly constrained. This is also
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one of the functions of the OpenCSM sketcher developed and presented here. Fig. 10 shows an example of
the feedback provided to the user.
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Figure 10. Feedback provided to the user by SolidWorks for an over constrained system.

The diagnostic tool in SolidWorks presents all of the options to fix the sketch, and after making a
selection, the sketch is fully defined. Note, that while in the diagnostic tool the sketch is under-defined
until the user makes a selection. The OpenCSM sketcher developed takes this feedback one step further by
ranking the solutions based on the sensitivity of the sketch and presents the options that would generate the
least difference in the final sketch from the original guess, as discussed further in the sensitivity section.

The sketch solver identifies redundant constraint options and presents them to the user by highlighting
the constraints in red on the figure. The user can then choose which constraints to remove from the system
to produce a fully defined system. The next section uses an example that demonstrates the over-constrained
feedback.

III.C. Case 3: Improperly Constrained

Diagnosing an improperly constrained system uses a combination of the under- and over-constrained methods.
First the coordinates that are undetermined need to be identified, which is done in the same manner as
for an under-constrained problem. To add a temporary constraint to the problem the sketch becomes
over-constrained and the temporary constraint must replace one of the current constraints in the system.
Identifying where the temporary constraint can be added is executed in the same way as for an over-
constrained system. Once the system of constraints has the proper number of constraints and all coordinates
are able to be determined, the sketch solver can start the process of replacing the temporary constraints as
before.

Neither ProEngineer, AutoCAD nor SolidWorks provided any feedback for an improperly constrained
system other than a dialog box that would not allow a conflicting constraint to be added. The problem
with this is that occasionally some constraints are more important than others and constraints are not
necessarily added by the user in order of importance. In commercial CAD systems, without information
about conflicting constraints, a user can either try to figure out where problem is or start over and hope for
better results.

Using the sketch shown in Fig. 2 and modifying the constraints to get an improperly constrained problem
the sketch solver can be demonstrated. Replacing the perpendicularity constraint at vertex 6 (the inside
corner near the left of the figure) with a set value for the radius of arc 2 (the larger top arc on the right)
creates redundant information. The yg location cannot be determine with this system of equations, so a
temporary constraint has to be added. However, an improperly constrained system has the proper number
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of constraints. In order to add a temporary constraint to the system of equations, an equation has to be
removed. Fig. 11 shows the options for constraints that could be replaced with a temporarily fixed point.
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Figure 11. Replaced constraint highlighted in red with a temporary constraint to fix ys.
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Figure 12. Options to replace the temporary fixed ys constraint.

For this particular situation, only one option was available to remove constraints. Once all of the necessary
temporary fixed point constraints are added to the system, the sketch solver looks for options to replace the
temporary constraint as before, shown in Fig. 12. The current set up results in eight options to replace the
temporary constraint.

Any of these can be picked to get a fully-constrained system. The options are presented to the user as
an ordered list, with the options that cause the least deviation from the original guess listed first.
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IV. Examples and Implementation issues

The sketch defined in Fig. 2 has been used to demonstrate the various types of feedback that the sketch
solver will provide in different situations. The sketch solver has also been tested using more complicated, real-
world sketches. The sketch in Fig. 13 is an adaptation of a part from Engineering Graphics’ and reproduced
using the OpenCSM sketcher.

Final Sketch Constriants
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Figure 13. Engineering part example.

Not all sketch constraints were clearly identified in the engineering drawing, and the solver was used to
help determine a few of the final constraints that were necessary to fully define the system.

This sketch also provides an opportunity to discuss what a “distance relation” is, especially since it is
commonly used when describing mechanical parts. A distance relation is a constraint from a vertex to a
line. For example, in Fig. 13 vertex 3 is 3.30 inches from the right hand side of the figure. This is labeled
with a “d” at the vertex. Similar to a length relation, only the first vertex in the relation is labeled.

The biggest challenge with this new system was with the singularity issue. Ultimately the state of the
sketch is dependent on the Jacobian matrix that results from the constraints and initial or current guess. A
singular Jacobian matrix is an indication of one of two problems: either a bad guess or improper constraint
equations. Initial guesses are obtained when the user draws the figure on the screen by placing points in
space. Therefore a reasonable initial guess is obtained for the vertex locations. When adding constraints to
the system, the initial guess may create a problem that is worked around by choosing intelligent constraints.
The main function of the sketcher is that it identifies and diagnoses improper constraint equations that cause
singularities as discussed in the previous sections.

At first, one might predict that if a matrix has a singularity it will be apparent when the matrix is initially
set up. However, due to the iterative process inherent in Newton’s method, a singularity may “appear” after
a few iterations. For example, the initial guess may have a difference in the y values at each end of a
horizontal segment, and as the sketch is solved, this difference gets smaller as the horizontal constraint is
satisfied. If there is also a length constraint on that same segment it is possible that the y coordinate at
either end of the segment could be become undefined as the horizontal constraint is satisfied.

This same problem is considered when replacing temporary constraints. If the sketch solver is trying to
determine a y value and the segment is nearly horizontal, the length of the segment will result in a singularity
after a few iterations. This is due to the fact that the length of a horizontal segment is only dependent on
the x values at each end of the segment. That would be a poor constraint choice, so the sketch solver does
not test length under these circumstances.

The problem of singularities “appearing” in a matrix as some of the constraints are satisfied makes simply
looking at the Jacobian not enough to determine if adding that constraint would be a reasonable option.
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To prevent options that would present a problem in the final sketch, the matrix is fully solved with each
constraint test in order to determine the validity of a constraint being tested.

The capabilities of the sketcher in OpenCSM are vast and provide valuable feedback to the user to help
create and maintain a fully defined sketch. As mentioned before, checking all of the constraint options can
be a time consuming process. In addition to only checking reasonable options that would not produce a
singularity, intuitively bad constraints are also skipped. For example, length of a segment is checked for linear
segments, but if the segment is an arc, length is skipped. Similarly, radius and turning angle constraints are
only checked for arcs since those wouldn’t apply to a linear segment.

V. Sensitivities

In addition to finding and correcting singularity issues, there is also the matter of sensitivities. Occasion-
ally during the design process a user may want to know more than just what the solution is. The sensitivity
of each point to a perturbation in one of the constraints can be valuable information when trying to optimize
a shape to meet some other engineering goal. For example, looking again at the test sketch in Fig. 2 the
user may want to slightly change the overall length to meet an aerodynamic goal. When one constraint is
changed there is an effect on the entire system and some points are affected more than others.

Understanding how each vertex is impacted by the different constraints can give the designer valuable
information about where changes can be made with minimal impact in other areas. A sensitivity matrix can
be simply determined using finite differencing as shown in Eq. (4).

oz, Ox1 Oz, |
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oR, OR, "' OR, A (4)
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|9R, 9Rs '°° R,

8372 o $2(9.02> — .%'2(900) (5)
oL 9.02 — 9.00

Inspection of individual elements of this matrix can clarify how the sensitivity matrix is formed. For
example, in Eq. (5) L is the overall length which is 9 units and then perturbed to be 9.02 units to find the
sensitivity of the x coordinate at the second vertex to the overall length constraint. Each element of the
sensitivity matrix is found using the same process. The transpose of the full sensitivity matrix is shown in
Table 5 where each constraint equation was perturbed by %. The rows of the transposed matrix represent
the constraint equations as described in Table 3 and the columns are the z and y locations of each point and
then the three arc curvatures.

From the sensitivity matrix the impact that each constraint has on each defining coordinate of the system
is clear. For example, looking at the first row of the transposed sensitivity matrix we can see that only the x
coordinates are affected by a perturbation in the first constraint (fixed x1). This observation is both logical
and trivial. However the last constraint (fixed radius of arc 1) has a little or no impact on the = coordinates
on the other side of the sketch, which is not intuitively obvious but is easily apparent via the sensitivity
matrix.

The sensitivity information is used within the sketcher to rank order the solutions by putting the solutions
that keep all vertices closest to the initial guess first. For a complicated sketch it may not be apparent which
constraint replacement would be the best for the system and which will be the closest to the user’s intent,
so rank ordering the solutions can help a user decide which constraint to add.

VI. Summary

Sketches are the building blocks of modern geometry generation techniques and understanding how to
properly constrain them has proven challenging. Providing users with information about where a sketch has
constraint problems will help users to build sketches in a more efficient manner. Understanding sensitivities
can help engineers make more informed optimization decisions regarding geometry and constraint options.
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Table 5. Transpose of sensitivity matrix

x1 yi x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 C1 c2 c7
Con1: -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 0 0 0
Con2: 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 -1.0 0 0 0
Con3: -13.3 7.8 0 0 -7.1 3.3 -13.7 0 -26.6 0-16.4 5.8 -16.4 5.8 -13.1 7.8 0 -5.2 -1.0
Con4: -33.6 0 0 0 -20.0 5.7 -39.0 0 -33.6 0 -33.6 0 -33.6 0 -33.6 0 0 -14.0 0
Con5: 1.1 0 0 0 0 o 1.4 o 1.1 o 1.1 o 1.1 o 1.1 0 0o 1.0 0
Con6: 25.8 0 0 0 0 0 67.2 0 25.8 0 25.8 0 25.8 0 25.8 0 0 -46.0 0
Con7: 0 0 0 0 0 0 0 0 -8.7 0 -1.6 -0.9 -1.6 -0.9 0 0 0 0 0
Con8: 0 0 0 0 0 0 0 0 9.5 0 2.3 1.3 1.6 0.9 0 0 0 0 0
Con9: (Y] 0 (Y] 0 0 (Y] 0 0 0.0 0 0.1 0.1 0.1 0.1 0.2 0.1 0 0 1.0
Con10: 5.7 0 0 0 0 0 0 0 9.6 0 2.4 -4.2 2.4 -4.2 0 -5.5 0 0 44.0
Conil: 0.0 0 0 0 0 0o 1.4 0 43 25 1.1 0.6 1.1 0.6 0.0 0 0 -1.0 0
Con12: 1.0 0 0 0 0 0 0 0 1.0 0 1.0 0o 1.0 0o 1.0 0 0 0 0
Con13: -0.3 0 0 0 0 o 0.3 -1.0 -2.0 -1.0 -0.7 -0.3 -0.7 -0.3 -0.3 0 0 0 0
Conl4: 0 0 (o] 0 0 (Y] 0 0 2.0 0 0.9 -0.7 0.4 0.2 0 (] 0 0 (Y]
Coni5: 0 0 0 0 0 (o] 0 0 0 0 -0.3 -0.2 -0.3 -0.2 0 0 (Y] 0 0
Con16: -2.1 0 0 0 -1.3 -0.8 -3.0 0 -2.1 0 -2.1 0 -2.1 0 -2.1 0o 1.0 -1.0 0
Con17: 0 0 0 0 0 0 0 0 -11.4 0 -3.4 -0.4 -2.8 0.0 -0.2 -0.1 0 0 -1.0
Con18: -1.0 0 0 0 0 0 0 0 2.7 0 0.3 -1.4 0.3 -1.4 -0.5 -1.9 0 0 0
Con19: -0.3 0 (o] 0 -0.5 -0.9 -0.7 0 -0.3 0 -0.3 0 -0.3 0 -0.3 0 0 0 (o]

This sketch solver is being implemented in OpenCSM as part of the Engineering Sketch Pad (ESP)
Sketcher. While the technique was designed with OpenCSM implementation in mind, there is no reason the
sketch solver could not be adapted for use with other CAD systems.
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