
AVL Analysis Interface Module (AIM) User Guide

May 14, 2018

CONTENTS 1

Contents

1 Introduction 1

1.1 AVL AIM Overview . 1

1.2 Assumptions . 2

1.3 Examples . 2

2 AIM Examples 2

3 AIM Attributes 5

4 Geometry Representation and Analysis Intent 6

5 AIM Inputs 6

6 AIM Outputs 7

7 AIM Back Door 10

8 Vortex Lattice Surface 11

8.1 JSON String Dictionary . 11

8.2 Single Value String . 11

9 Vortex Lattice Control Surface 11

9.1 JSON String Dictionary . 12

9.2 Single Value String . 12

1 Introduction

1.1 AVL AIM Overview

The use of lower-dimensional design tools is clearly desirable in a multidisciplinary/multi-fidelity aero design opti-
mization setting. This is the crux of the Computational Aircraft Prototype Syntheses (CAPS) program. In many ways
describing geometry appropriate for AVL (the Athena Vortex Lattice) code is more cumbersome than higher fidelity
codes that require an Outer Mold Line. The goal is to make a CAPS AIM (Analysis Input Module) that directly feeds
input to AVL and extracts the output quantities of interest from AVL's execution. This needs to be consistent with a
build description that is hierarchical and multi-fidelity. That is, the build description that generates the geometric data
at this level can be further enhanced to produce the complete OML of the aircraft design under consideration. As
for the geometric description, AVL requires airfoil section data specified at the appropriate locations that describe
the skeleton of the aircraft. These sections when lofted as groups and finally unioned together builds the OML.
Clearly, intercepting the state of the geometry before these higher-level operations are applied provides the data
appropriate for AVL. This naturally constructs a hierarchical geometric view where a design can progress into higher
fidelities and feedback can be achieved where we can go back to this level of description when need be.

An outline of the AIM's inputs and outputs are provided in AIM Inputs and AIM Outputs, respectively. An alternative
to the AIM's outputs for retrieving sensitivity information is provided in AIM Back Door.

The accepted and expected geometric representation and analysis intentions are detailed in Geometry Representa-
tion and Analysis Intent. Similarly, other geometric attribution that the AIM makes use is provided in AIM Attributes.

Upon running preAnalysis the AIM generates two files, 1) "avlInput.txt" which contains the input information and
control sequence for AVL to execute and 2) "caps.avl" which contains the geometry to be analyzed. To popu-

AVL Analysis Interface Module (AIM) Manual

2 CONTENTS

late output data the AIM expects files, "capsTotalForce.txt", "capsStatbilityDeriv.txt", "capsBodyAxisDeriv.txt", and
"capsHingeMoment.txt" to exist after running AVL (see AIM Outputs for additional information). An example execu-
tion for AVL looks like:

avl caps < avlInput.txt > avlOutput.txt"

1.2 Assumptions

The AVL coordinate system assumption (X – downstream, Y – out the right wing, Z – up) needs to be followed.

Within OpenCSM there are a number of airfoil generation UDPs (User Defined Primitives). These include NACA
4 series, a more general NACA 4/5/6 series generator, Sobieczky's PARSEC parameterization and Kulfan's CST
parameterization. All of these UDPs generate EGADS FaceBodies where the Face's underlying Surface is planar
and the bounds of the Face is a closed set of Edges whose underlying Curves contain the airfoil shape. In all cases,
there is a Node that represents the Leading Edge point and one or two Nodes at the Trailing Edge – one if the
representation is for a sharp TE and the other if the definition is open or blunt. If there are 2 Nodes at the back,
then there are 3 Edges all together and closed, even though the airfoil definition was left open at the TE. All of this
information will be used to automatically fill in the AVL geometry description.

The AVL Sections are automatically generated, one from each FaceBody and the details extracted from the geom-
etry. Xle, Yle, and Zle, are taken from the Node Associated with the Leading Edge. The Chord is computed by
getting the distance between the LE and TE (if there are 3 Edges in the FaceBody the TE point is considered the
mid-position on that third Edge). Ainc is computed by registering the chordal direction of the FaceBody against the
X-Z plane. The airfoil shapes are generated by sampling the Curves and put directly in the input file via the AIRFOIL
keyword after being normalized.

It should be noted that general construction in either OpenCSM or even EGADS will be supported as long as
the topology described above is used. But care should be taken when constructing the airfoil shape so that a
discontinuity (i.e., simply C0) is not generated at the Node representing the Leading Edge. This can be done by
splining the entire shape as one and then intersecting the single Edge to place the LE Node.

The rest of the information and options required to fill out the AVL geometry input file (xxx.avl) will be found in the
attributes attached to the FaceBody itself. The conventions used will be described in the next section.

Also note that this first implementation is not intended to provide complete control over AVL. In particular, there is
no mention above of the BODY, DESIGN, CLAF, or CDCL AVL keywords.

1.3 Examples

An example problem using the AVL AIM may be found at AIM Examples, which contains example ∗.csm input files
and pyCAPS scripts designed to make use of the AVL AIM. These example scripts make extensive use of the AIM
Attributes, AIM Inputs, and AIM Outputs.

2 AIM Examples

This example contains a set of ∗.csm and pyCAPS (∗.py) inputs that uses the AVL AIM. A user should have knowl-
edge on the generation of parametric geometry in Engineering Sketch Pad (ESP) before attempting to integrate
with any AIM. Specifically, this example makes use of Design Parameters, Set Parameters, User Defined Primitive
(UDP) and attributes in ESP.

The follow code details the process in a ∗.csm file that generates three airfoil sections to create a wing. Note to
execute in serveCSM a dictionary file must be included "serveCSM -dict $ESP_ROOT/include/intent.dict avlDoc←↩
Example1.csm"

First step is to define the analysis intent that the geometry is intended support.

attribute capsIntent LINEARAERO

Next we will define the design parameters to define the wing cross section and planform.

AVL Analysis Interface Module (AIM) Manual

2 AIM Examples 3

despmtr thick 0.12 frac of local chord
despmtr camber 0.04 frac of loacl chord
despmtr area 10.0 Planform area of the full span wing
despmtr aspect 6.00 Span^2/Area
despmtr taper 0.60 TipChord/RootChord
despmtr sweep 20.0 1/4 Chord Sweep
despmtr washout -5.00 deg (negative is down at tip)
despmtr dihedral 4.00 deg

The design parameters will then be used to set parameters for use internally to create geometry.

set span sqrt(aspect*area)
set croot 2*area/span/(1+taper)
set ctip croot*taper
set dxtip (croot-ctip)/4+span/2*tand(sweep)
set dztip span/2*tand(dihedral)

Finally, the airfoils are created using the User Defined Primitive (UDP) naca. The inputs used for this example to the
UDP are Thickness and Camber. Cross sections are in the X-Y plane and are rotated to the X-Z plane. Reference
quantities must exist on any body, otherwise AVL defaults to 1.0 for Area, Span, Chord and 0.0 for X,Y,Z moment
References

left tip
udprim naca Thickness thick Camber camber
attribute capsGroup $Wing
attribute capsReferenceArea area
attribute capsReferenceSpan span
attribute capsReferenceChord croot
attribute capsReferenceX croot/4
scale ctip
rotatex 90 0 0
rotatey washout 0 ctip/4
translate dxtip -span/2 dztip

root
udprim naca Thickness thick Camber camber
attribute capsGroup $Wing
rotatex 90 0 0
scale croot

right tip
udprim naca Thickness thick Camber camber
attribute capsGroup $Wing
scale ctip
rotatex 90 0 0
rotatey washout 0 ctip/4
translate dxtip span/2 dztip

An example pyCAPS script that uses the above csm file to run AVL is as follows.

First the pyCAPS and os module needs to be imported.

import pyCAPS

import os

Note if your Python major version is less than 3 (i.e. Python 2.7). The following statement should also be included
so that print statements work correctly.

from __future__ import print_function

Once the modules have been loaded the problem needs to be initiated.

myProblem = pyCAPS.capsProblem()

Next the ∗.csm file is loaded and design parameter is changed - area in the geometry. Any despmtr from the avl←↩
Wing.csm file is available inside the pyCAPS script. They are: thick, camber, area, aspect, taper, sweep, washout,
dihedral...

myGeometry = myProblem.loadCAPS("./csmData/avlWing.csm")

myGeometry.setGeometryVal("area", 10.0)

AVL Analysis Interface Module (AIM) Manual

4 CONTENTS

The AVL AIM is then loaded with the capsIntent set to LINEARAERO (this is consistent with the intent specified
above in the ∗.csm file.

myAnalysis = myProblem.loadAIM(aim = "avlAIM",
analysisDir = "AVLAnalysisTest",
capsIntent = "LINEARAERO")

After the AIM is loaded the Mach number and angle of attack are set, though all AIM Inputs are available.

myAnalysis.setAnalysisVal("Mach", 0.5)
myAnalysis.setAnalysisVal("Alpha", 1.0)
myAnalysis.setAnalysisVal("Beta", 0.0)

wing = {"groupName" : "Wing", # Notice Wing is the value for the capsGroup attribute
"numChord" : 8,
"spaceChord" : 1.0,
"numSpan" : 12,
"spaceSpan" : 1.0}

myAnalysis.setAnalysisVal("AVL_Surface", [("Wing", wing)])

Once all the inputs have been set, preAnalysis needs to be executed. During this operation, all the necessary files
to run AVL are generated and placed in the analysis working directory (analysisDir)

myAnalysis.preAnalysis()

An OS system call is then made from Python to execute AVL.

print ("Running AVL")
currentDirectory = os.getcwd() # Get our current working directory
os.chdir(myAnalysis.analysisDir) # Move into test directory

os.system("avl caps < avlInput.txt > avlOutput.txt");

os.chdir(currentDirectory) # Move back to working directory

A call to postAnalysis is then made to check to see if AVL executed successfully and the expected files were
generated.

myAnalysis.postAnalysis()

Similar to the AIM inputs, after the execution of AVL and postAnalysis any of the AIM's output variables (AIM
Outputs) are readily available; for example,

print ("CXtot ", myAnalysis.getAnalysisOutVal("CXtot"))
print ("CYtot ", myAnalysis.getAnalysisOutVal("CYtot"))
print ("CZtot ", myAnalysis.getAnalysisOutVal("CZtot"))
print ("Cltot ", myAnalysis.getAnalysisOutVal("Cltot"))
print ("Cmtot ", myAnalysis.getAnalysisOutVal("Cmtot"))
print ("Cntot ", myAnalysis.getAnalysisOutVal("Cntot"))
print ("Cl’tot ", myAnalysis.getAnalysisOutVal("Cl’tot"))
print ("Cn’tot ", myAnalysis.getAnalysisOutVal("Cn’tot"))
print ("CLtot ", myAnalysis.getAnalysisOutVal("CLtot"))
print ("CDtot ", myAnalysis.getAnalysisOutVal("CDtot"))
print ("CDvis ", myAnalysis.getAnalysisOutVal("CDvis"))
print ("CLff ", myAnalysis.getAnalysisOutVal("CLff"))
print ("CYff ", myAnalysis.getAnalysisOutVal("CYff"))
print ("CDind ", myAnalysis.getAnalysisOutVal("CDind"))
print ("CDff ", myAnalysis.getAnalysisOutVal("CDff"))
print ("e ", myAnalysis.getAnalysisOutVal("e"))

results in

CXtot -0.00033
CYtot 1e-05
CZtot -0.30016
Cltot -0.0
Cmtot -0.19468
Cntot -1e-05
Cl’tot -0.0

AVL Analysis Interface Module (AIM) Manual

3 AIM Attributes 5

Cn’tot -1e-05
CLtot 0.30011
CDtot 0.00557
CDvis 0.0
CLff 0.29968
CYff 0.0
CDind 0.00557
CDff 0.00492
e 0.9691

Additionally, besides making a call to the AIM outputs, sensitivity values may be obtained in the following manner,

sensitivity = myAnalysis.getSensitivity("Alpha", "CLtot")

The avlAIM supports the control surface modeling functionality inside AVL. Trailing edge control surfaces can be
added to the above example by making use of the vlmControlName attribute (see AIM Attributes regarding the
attribution specifics). To add a RightFlap and LeftFlap to the previous example ∗.csm file the naca UDP entries
are augmented with the following attributes.

left tip
udprim naca Thickness thick Camber camber
attribute vlmControl_LeftFlap 80 # Hinge line is at 80% of the chord
...

root
udprim naca Thickness thick Camber camber
attribute vlmControl_LeftFlap 80 # Hinge line is at 80% of the chord
attribute vlmControl_RightFlap 80 # Hinge line is at 80% of the chord
...

right tip
udprim naca Thickness thick Camber camber
attribute vlmControl_RightFlap 80 # Hinge line is at 80% of the chord
...

Note how the root airfoil contains two attributes for both the left and right flaps.

In the pyCAPS script the AIM Inputs, AVL_Control, must be defined.

flap = {"controlGain" : 0.5,
"deflectionAngle" : 10.0}

myAnalysis.setAnalysisVal("AVL_Control", [("LeftFlap", flap), ("RightFlap", flap)])

Notice how the information defined in the flap variable is assigned to the vlmControlName portion of the attributes
added to the ∗.csm file.

3 AIM Attributes

The following list of attributes drives the AVL geometric definition. Each FaceBody which relates to AVL Sections
will be marked up in an appropriate manner to drive the input file construction. Many attributes are required and
those that are optional are marked so in the description:

• capsIntent This attribute is a CAPS requirement to indicate the analysis intent the geometry representation
supports. Options are: ALL, LINEARAERO

• capsReferenceArea [Optional: Default 1.0] This attribute may exist on any Body. Its value will be used as
the SREF entry in the AVL input.

• capsReferenceChord [Optional: Default 1.0] This attribute may exist on any Body. Its value will be used as
the CREF entry in the AVL input.

• capsReferenceSpan [Optional: Default 1.0] This attribute may exist on any Body. Its value will be used as
the BREF entry in the AVL input.

• capsReferenceX [Optional: Default 0.0] This attribute may exist on any Body. Its value will be used as the
Xref entry in the AVL input.

AVL Analysis Interface Module (AIM) Manual

6 CONTENTS

• capsReferenceY [Optional: Default 0.0] This attribute may exist on any Body. Its value will be used as the
Yref entry in the AVL input.

• capsReferenceZ [Optional: Default 0.0] This attribute may exist on any Body. Its value will be used as the
Zref entry in the AVL input.

• capsGroup This string attribute labels the FaceBody as to which AVL Surface the section is assigned. This
should be something like: Main_Wing, Horizontal_Tail, etc. This informs the AVL AIM to collect all FaceBodies
that match this attribute into a single AVL Surface.

• vlmControlName This string attribute attaches a control surface to the FaceBody. The hinge location is
defined as the double value between 0 or 1.0. The range as percentage from 0 to 100 will also work. The
name of the control surface is the string information after vlmControl (or vlmControl_). For Example, to
define a control surface named Aileron the following are identical (attribute vlmControlAileron 0.8 or attribute
vlmControl_Aileron 80) . Multiple vlmControl attributes, with different names, can be defined on a single
FaceBody.

By default control surfaces with percentages less than 0.5 (< 50%) are considered leading edge flaps,
while values greater than or equal to 0.5 (>= 50%) are considered trailing edge flaps. This behavior may be
overwritten when setting up the control surface in "AVL_Control" (see AIM Inputs) with the keyword "leOrTe"
(see Vortex Lattice Control Surface for additional details).

• avlNumSpan This attribute may be set on any given airfoil cross-section to overwrite the number of spanwise
horseshoe vortices placed on the surface (globally set - see keyword "numSpan" in Vortex Lattice Surface)
between two sections. Note, that the AIM internally sorts the sections in ascending y (or z) order, so care
should be taken to select the correct section for the desired intent.

4 Geometry Representation and Analysis Intent

The geometric representation for the AVL AIM requires that "body(ies)" [or cross-sections], be a face body(ies)
(FACEBODY) with the attribute capsIntent being set to LINEARAERO (intents of ALL also accepted).

5 AIM Inputs

The following list outlines the AVL inputs along with their default value available through the AIM interface.

• Mach = 0.0
Mach number.

• Alpha = NULL
Angle of attack [degree]. Either CL or Alpha must be defined but not both.

• Beta = 0.0
Sideslip angle [degree].

• RollRate = 0.0
Non-dimensional roll rate.

• PitchRate = 0.0
Non-dimensional pitch rate.

• YawRate = 0.0
Non-dimensional yaw rate.

• CDp = 0.0
A fixed value of profile drag to be added to all simulations.

• AVL_Surface = NULL
See Vortex Lattice Surface for additional details.

AVL Analysis Interface Module (AIM) Manual

6 AIM Outputs 7

• AVL_Control = NULL
See Vortex Lattice Control Surface for additional details.

• CL = NULL
Coefficient of Lift. AVL will solve for Angle of Attack. Either CL or Alpha must be defined but not both.

• Moment_Center = NULL, [0.0, 0.0, 0.0]
Array values correspond to the Xref, Yref, and Zref variables. Alternatively, the geometry (body) attributes
"capsReferenceX", "capsReferenceY", and "capsReferenceZ" may be used to specify the X-, Y-, and Z-
reference centers, respectively (note: values set through the AIM input will supersede the attribution values).

6 AIM Outputs

Optional outputs that echo the inputs. These are parsed from the resulting output and can be used as a sanity
check.

• Alpha = Angle of attack.

• Beta = Sideslip angle.

• Mach = Mach number.

• pb/2V = Non-dimensional roll rate.

• qc/2V = Non-dimensional pitch rate.

• rb/2V = Non-dimensional yaw rate.

• p'b/2V = Non-dimensional roll acceleration.

• r'b/2V = Non-dimensional yaw acceleration.

Calculated outputs. See AVL documentation for a description of each quantity.

• CXtot

• CYtot

• CZtot

• Cltot

• Cmtot

• Cntot

• Cl'tot

• Cn'tot

• CLtot

• CDtot

• CDvis

• CLff

• CYff

• CDind

• CDff

• e

AVL Analysis Interface Module (AIM) Manual

8 CONTENTS

Stability-axis derivatives - Alpha:

• CLa = z' force, CL, with respect to alpha.

• CYa = y force, CY, with respect to alpha.

• Cl'a = x' moment, Cl', with respect to alpha.

• Cma = y moment, Cm, with respect to alpha.

• Cn'a = z' moment, Cn', with respect to alpha.

Stability-axis derivatives - Beta:

• CLb = z' force, CL, with respect to beta.

• CYb = y force, CY, with respect to beta.

• Cl'b = x' moment, Cl', with respect to beta.

• Cmb = y moment, Cm, with respect to beta.

• Cn'b = z' moment, Cn', with respect to beta.

Stability-axis derivatives - Roll rate, p':

• CLp = z' force, CL, with respect to roll rate, p'.

• CYp = y force, CY, with respect to roll rate, p'.

• Cl'p = x' moment, Cl', with respect to roll rate, p'.

• Cmp = y moment, Cm, with respect to roll rate, p'.

• Cn'p = z' moment, Cn', with respect to roll rate, p'.

Stability-axis derivatives - Pitch rate, q':

• CLq = z' force, CL, with respect to pitch rate, q'.

• CYq = y force, CY, with respect to pitch rate, q'.

• Cl'q = x' moment, Cl', with respect to pitch rate, q'.

• Cmq = y moment, Cm, with respect to pitch rate, q'.

• Cn'q = z' moment, Cn', with respect to pitch rate, q'.

Stability-axis derivatives - Yaw rate, r':

• CLr = z' force, CL, with respect to yaw rate, r'.

• CYr = y force, CY, with respect to yaw rate, r'.

• Cl'r = x' moment, Cl', with respect to yaw rate, r'.

• Cmr = y moment, Cm, with respect to yaw rate, r'.

• Cn'r = z' moment, Cn', with respect to yaw rate, r'.

Body-axis derivatives - Axial velocity, u:

• CXu = x force, CX, with respect to axial velocity, u.

• CYu = y force, CY, with respect to axial velocity, u.

AVL Analysis Interface Module (AIM) Manual

6 AIM Outputs 9

• CZu = z force, CZ, with respect to axial velocity, u.

• Clu = x moment, Cl, with respect to axial velocity, u.

• Cmu = y moment, Cm, with respect to axial velocity, u.

• Cnu = z moment, Cn, with respect to axial velocity, u.

Body-axis derivatives - Sideslip velocity, v:

• CXv = x force, CX, with respect to sideslip velocity, v.

• CYv = y force, CY, with respect to sideslip velocity, v.

• CZv = z force, CZ, with respect to sideslip velocity, v.

• Clv = x moment, Cl, with respect to sideslip velocity, v.

• Cmv = y moment, Cm, with respect to sideslip velocity, v.

• Cnv = z moment, Cn, with respect to sideslip velocity, v.

Body-axis derivatives - Normal velocity, w:

• CXw = x force, CX, with respect to normal velocity, w.

• CYw = y force, CY, with respect to normal velocity, w.

• CZw = z force, CZ, with respect to normal velocity, w.

• Clw = x moment, Cl, with respect to normal velocity, w.

• Cmw = y moment, Cm, with respect to normal velocity, w.

• Cnw = z moment, Cn, with respect to normal velocity, w.

Body-axis derivatives - Roll rate, p:

• CXp = x force, CX, with respect to roll rate, p.

• CYp = y force, CY, with respect to roll rate, p.

• CZp = z force, CZ, with respect to roll rate, p.

• Clp = x moment, Cl, with respect to roll rate, p.

• Cmp = y moment, Cm, with respect to roll rate, p.

• Cnp = z moment, Cn, with respect to roll rate, p.

Body-axis derivatives - Pitch rate, q:

• CXq = x force, CX, with respect to pitch rate, q.

• CYq = y force, CY, with respect to pitch rate, q.

• CZq = z force, CZ, with respect to pitch rate, q.

• Clq = x moment, Cl, with respect to pitch rate, q.

• Cmq = y moment, Cm, with respect to pitch rate, q.

• Cnq = z moment, Cn, with respect to pitch rate, q.

Body-axis derivatives - Yaw rate, r:

AVL Analysis Interface Module (AIM) Manual

10 CONTENTS

• CXr = x force, CX, with respect to yaw rate, r.

• CYr = y force, CY, with respect to yaw rate, r.

• CZr = z force, CZ, with respect to yaw rate, r.

• Clr = x moment, Cl, with respect to yaw rate, r.

• Cmr = y moment, Cm, with respect to yaw rate, r.

• Cnr = z moment, Cn, with respect to yaw rate, r.

Controls:

• ControlStability = a (or an array) of tuple(s) with a structure of ("Control Surface Name", "JSON Dictionary")
for all control surfaces in the stability axis frame. The JSON dictionary has the form = {"CLtot":value,"CYtot"←↩
:value,"Cl'tot":value,"Cmtot":value,"Cn'tot":value}

• ControlBody = a (or an array) of tuple(s) with a structure of ("Control Surface Name", "JSON Dictionary")
for all control surfaces in the body axis frame. The JSON dictionary has the form = {"CXtot":value,"CYtot"←↩
:value,"CZtot":value,"Cltot":value,"Cmtot":value,"Cntot":value}

• HingeMoment = a (or an array) of tuple(s) with a structure of ("Control Surface Name", "HingeMoment")

7 AIM Back Door

The back door function of this AIM may be used as an alternative to retrieve sensitivity information produced by the
AIM. The JSONin string should be of the following form '{"mode": "sensitivity", "inputVar": "Name of Input Variable",
"outputVar": "Name of Output Variable"}', while the JSONout string will look like '{"sensitivity": value}'. Important:
the JSONout string is freeable! Invalid combinations of input and output variables returns a CAPS_MISMATCH
error code.

Acceptable values for the "Name of Input Variable" are as follows (definitions are consistent, where appropriate,
with AIM Inputs):

• "Alpha"

• "Beta"

• "RollRate"

• "PitchRate"

• "YawRate"

• "AxialVelocity"

• "SideslipVelocity"

• "NormalVelocity"

• "AVL_Control:Name_of_Control_Surface", where Name_of_Control_Surface should be replaced with name
of the desired control surface

Acceptable values for the "Name of Output Variable" are as follows (definitions are consistent with AIM Outputs):

• "CLtot"

• "CYtot"

• "Cl'tot"

• "Cmtot"

AVL Analysis Interface Module (AIM) Manual

8 Vortex Lattice Surface 11

• "Cn'tot"

• "CXtot"

• "CZtot"

• "Cltot"

• "Cntot"

8 Vortex Lattice Surface

Structure for the Vortex Lattice Surface tuple = ("Name of Surface", "Value"). "Name of surface defines the name of
the surface in which the data should be applied. The "Value" can either be a JSON String dictionary (see Section
JSON String Dictionary) or a single string keyword string (see Section Single Value String).

8.1 JSON String Dictionary

If "Value" is a JSON string dictionary (eg. "Value" = {"numChord": 5, "spaceChord": 1.0, "numSpan": 10, "space←↩
Span": 0.5}) the following keywords (= default values) may be used:

• groupName = "(no default)"
Single or list of capsGroup names used to define the surface (e.g. "Name1" or ["Name1","Name2",...]. If no
groupName variable is provided an attempted will be made to use the tuple name instead;

• noKeyword = "(no default)"
"No" type. Options: NOWAKE, NOALBE, NOLOAD.

• numChord = 10
The number of chordwise horseshoe vortices placed on the surface.

• spaceChord = 0.0
The chordwise vortex spacing parameter.

• numSpan = 10
The number of spanwise horseshoe vortices placed on the surface.

• spaceSpan = 0.0
The spanwise vortex spacing parameter.

• yMirror = False
Mirror surface about the y-direction.

8.2 Single Value String

If "Value" is a single string the following options maybe used:

• (NONE Currently)

9 Vortex Lattice Control Surface

Structure for the Vortex Lattice Control Surface tuple = ("Name of Control Surface", "Value"). "Name of control
surface defines the name of the control surface in which the data should be applied. The "Value" must be a JSON
String dictionary (see Section JSON String Dictionary).

AVL Analysis Interface Module (AIM) Manual

12 CONTENTS

9.1 JSON String Dictionary

If "Value" is a JSON string dictionary (e.g. "Value" = {"deflectionAngle": 10.0}) the following keywords (= default
values) may be used:

• deflectionAngle = 0.0
Deflection angle of the control surface.

• leOrTe = (no default)
Is the control surface a leading (= 0) or trailing (> 0) edge effector? Overrides the assumed default value set
by the geometry: If the percentage along the airfoil chord is < 50% a leading edge flap is assumed, while >=
50% indicates a trailing edge flap.

• controlGain = 1.0
Control deflection gain, units: degrees deflection / control variable

• hingeLine = [0.0 0.0 0.0]
Alternative vector giving hinge axis about which surface rotates

• deflectionDup = 0
Sign of deflection for duplicated surface

9.2 Single Value String

If "Value" is a single string, the following options maybe used:

• (NONE Currently)

AVL Analysis Interface Module (AIM) Manual

	1 Introduction
	1.1 AVL AIM Overview
	1.2 Assumptions
	1.3 Examples

	2 AIM Examples
	3 AIM Attributes
	4 Geometry Representation and Analysis Intent
	5 AIM Inputs
	6 AIM Outputs
	7 AIM Back Door
	8 Vortex Lattice Surface
	8.1 JSON String Dictionary
	8.2 Single Value String

	9 Vortex Lattice Control Surface
	9.1 JSON String Dictionary
	9.2 Single Value String

