
CAPS:

Computational Aircraft Prototype Syntheses

Description of the Discretization Data Structure: capsDiscr

Bob Haimes
Aerospace Computational Design Laboratory
Department of Aeronautics & Astronautics

Massachusetts Institute of Technology
haimes@mit.edu

3 June 2016

1 Introduction

The discretization data structure (capsDiscr) is composed of a number of other structures described below.
capsDiscr is the basic mapping between the discretized portions of the geometry and the analytic geometry
found in the Body. In general, there is a single capsDiscr for each capsBound Object and a particular
capsAnalysis Object reflected in a capsVertexSet Object. This gets filled by the AIM via the invocation of
the function aimDiscr. This structure is used for both data transfers (conservative & simple interpolation)
and the computation of parametric sensitivities within CAPS. There are 3 vertex indexing schemes used:

• Global index. This is a tessellation related data referring to the global index in the tessellation.

• Local index. This is again a tessellation related number that is in the space of the tessellation returned
by EG getTessEdge or EG getTessFace.

• Discrete Index. This is the vertex index numbering for the capsDiscr structure itself.

The following data structures are used in the CAPS AIM interface and are defined within the CAPS include
file “capsTypes.h”:

2 capsEleType

/* defines the element discretization type by the number of reference positions

* (for geometry and optionally data) within the element. For example:

* simple tri: nref = 3; ndata = 0; st = {0.0,0.0, 1.0,0.0, 0.0,1.0}

* simple quad: nref = 4; ndata = 0; st = {0.0,0.0, 1.0,0.0, 1.0,1.0, 0.0,1.0}

* internal triangles are used for the in/out predicates and represent linear

* triangles in [u,v] space.

* ndata is the number of data referece positions, which can be zero for simple

* nodal or isoparametric discretizations.

* match points are used for conservative transfers. Must be set when data

* and geometry positions differ, specifically for discontinuous mappings.

* For example:

* neighbors neighbors

* 2 tri-side vertices 4 side vertices

* / \ 0 1 2 / \ 0 1 2

* / \ 1 2 0 5 3 1 2 3

* / \ 2 0 1 / 6 \ 2 3 4

* 0-------1 / \ 3 4 5

* 0----1----2 4 5 0

* neighbors 5 0 1

* 3-------2 quad-side vertices nref = 7

* | | 0 1 2

* | | 1 2 3 6 neighbors

* | | 2 3 0 3---.---2 quad-side vertices

* 0-------1 3 0 1 | | 0 1 2

* 7. 8 .5 1 2 3

* neighbors | | 2 3 0

* 4-------3 side vertices 0---.---1 3 0 1

* | | 0 1 2 4

* | 2 1 2 3

* | | 2 3 4 nref = 9

* 0-------1 3 4 0

* 4 0 1

* nref = 5

*

*/

typedef struct {

int nref; /* number of geometry reference points */

int ndata; /* number of data ref points -- 0 data at ref */

int nmat; /* number of match points (0 -- match at

geometry reference points) */

int ntri; /* number of triangles to represent the elem */

double *gst; /* [s,t] geom reference coordinates in the

element -- 2*nref in length */

double *dst; /* [s,t] data reference coordinates in the

element -- 2*ndata in length */

double *matst; /* [s,t] positions for match points - NULL

when using reference points (2*nmat long) */

int *tris; /* the triangles defined by geom reference indices

(bias 1) -- 3*ntri in length */

} capsEleType;

This data structure defines the positions for nodes that support the spatial discretization of a particular
element type. There should be one for each type of element seen in the discretization of this VertexSet.

2

The element locations are referred to as ‘reference’ positions and have 2 degrees of freedom (which are
traditionally in the range [0.0, 1.0]). This should not be confused with [u, v] which are the parametric
coordinates for a vertex on a Face. To avoid the confusion, these reference positions are referred to as [s, t].

Each element type has a unique suite of ‘reference’ positions (nref). The structure member gst is allocated
to hold 2 times nref doubles, which contain the actual reference coordinates for this element type. If the data
locations are the same as the geometry reference positions (for example in nodal-based discretizations), then
ndata must be zero and dst should be NULL. For “cell-centered” finite-volume (or any other) discretizations
where the data storage locations are not the vertices at the bounds of the element then ndata specifies the
number of these locations in the element. dst must be allocated to hold 2 times ndata doubles, which are
then filled with the data reference coordinates for this element type.

For “conservative” data transfers, an optimization scheme is used balance integrated quantities. The
balancing is done by interpolating at “match points”. Each element type must specify these positions within
the element. If the “match” positions are the geometry reference locations, then nmat must be zero and
matst should be NULL. Otherwise, nmat specifies the number of these “match” locations in the element and
matst must be allocated to hold 2 times nmat doubles, which are then filled with the match point reference
coordinates for this element type.

The number of triangles that the element is broken up into is specified by ntri. The member tris should
be allocated to hold 3 times ntri ints. tris is filled with the geometry reference indices (bias 1) to represent
the triangles that cover the element. Note that there should be consistency in vertex ordering so that all
triangles have their normals pointing properly.

3 capsElement

/*

* defines the element discretization for geometric and optionally data

* positions.

*/

typedef struct {

int bIndex; /* the Body index (bias 1) */

int tIndex; /* the element type index (bias 1) */

int eIndex; /* element owning index -- dim 1 Edge, 2 Face */

int *gIndices; /* local indices (bias 1) geom ref positions,

tess index -- 2*nref in length */

int *dIndices; /* the vertex indices (bias 1) for data ref

positions -- ndata in length or NULL */

union {

int tq[2]; /* tri or quad (bias 1) for ntri <= 2 */

int *poly; /* the multiple indices (bias 1) for ntri > 2 */

} eTris; /* triangle indices that make up the element */

} capsElement;

This structure defines a single element based on its type, owner and indices (from the capsDiscr structure
and the associated EGADS Tessellation Object). bIndex is the index into the bodies returned by the AIM
utility function aim getBodies (bias 1). tIndex is the index into the capsEleType structure (bias 1). eIndex
is the element owning index based on dim of capsDiscr (either an Edge or Face).

The number of “geometric” indices is defined by the nref member referrered to by tIndex, where the
number of “data” indices comes from ndata. gIndices is allocated to twice nref ints in length and filled with
index pairs. The first is the index into this discretization numbering (bias 1), where the numbers must be
between 1 and nPoints of the capsDiscr structure. The tessellation vertex index is the local index into the
associated EGADS Tessellation Object referred to by eIndex.

If ndata is nonzero, then dIndices is allocated to ndata ints in length and filled with indices into the data
reference information (verts) of the capsDiscr structure (bias 1).

eTris must be (allocated for ntri > 2 and) filled with the triangle index/indices of the tessellation that
make up the element. They need to be ordered as defined in tris of the capsEleType structure.

3

4 capsDiscr

/* defines a discretized collection of Elements

*

* specifies the connectivity based on a collection of Element Types and the

* elements referencing the types.

*/

typedef struct {

int dim; /* dimensionality [1-3] */

int instance; /* analysis instance */

void *aInfo; /* AIM info */

/* below handled by the AIMs: */

int nPoints; /* number of entries in the point definition */

int *mapping; /* tessellation indices to the discrete space

2*nPoints in len (body, global tess index) */

int nVerts; /* number of data ref positions or unconnected */

double *verts; /* data ref (3*nVerts) -- NULL if same as geom */

int *celem; /* element containing vert (nVerts in len) or NULL */

int nTypes; /* number of Element Types */

capsEleType *types; /* the Element Types (nTypes in length) */

int nElems; /* number of Elements */

capsElement *elems; /* the Elements (nElems in length) */

int nDtris; /* number of triangles to plot data */

int *dtris; /* NULL for NULL verts -- indices into verts */

void *ptrm; /* pointer for optional AIM use */

} capsDiscr;

A capsDiscr is the fundamental data structure that defines a connected VertexSet in CAPS. It gets filled by
the AIM plugin during the call to the function aimDiscr. The AIM utility function aim getBodies should be
used to get all appropriate Bodies for the AIM (based on “capsFidelity”). Each Face (if dim is 2) or Edge (if
dim is 1) should be examined for the EGADS attribute “capsBound” and match it to the incoming transfer
name. All matching Faces/Edges should be used to fill in this data structure.

All physical positions (except for those in verts) are found in the associated EGADS Tessellation Object,
which should be created in the AIM and set in CAPS by invoking aim setTess.

The first 3 members (dim, instance and ainfo) are filled by CAPS before the invocation of aimDiscr.
The number of geometric reference points (nPoints) is the total number of vertices that support this

discretization. The association between these points and the EGADS tessellation Object is done by the
mapping member.

The number of vertices used in the data positions is defined by the member nVerts which can be zero. If
nVerts is nonzero then nVerts entries must be allocated for the member verts and this must be filled with the
XYZ positions associated with the appropriate data reference positions defined as part of the elements. The
member celem refers to the index of the element containing the position and must be allocated consistent
with verts.

The number of elements types is set by the member nTypes and the types themselves are defined by a
pointer to the allocated block of memory types which contains nTypes of capsEleType.

The number of elements found in this discretization is defined by the member nElems. The member
elems will be filled with the (geometric) element definitions and optionally data representations (if ndata for
the element is not zero).

The number of triangles associated with plotting data reference information is set by the member nDtris.
The actual triangles are defined in dtris, which should be 3 times nDtris in length. The values stored are
the indices into the verts member (bias 1).

The member ptrm is set aside for the plugin author and can be used to hold on to any data needed to
communicate with and between the AIM routines.

4

