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This paper examines the desirability and the challenges of incorporating high-fidelity
geometry definition into the Multidisciplinary Design, Analysis and Optimization (MDAO)
process earlier than currently practiced. A major objective is the ability to enable geometry
definition for low-fidelity as well as high-fidelity analyses, in order to support the entire
MDAO process from conceptual to detail design in a seamless manner. Another objective is
the ability to support different disciplines such as both structural and aerodynamic analyses
from the same geometry definition. Finally, there are the goals of ease of use and support
for automation to minimize unnecessary or repetitive human effort.

It is argued that Constructive Solid Geometry (CSG) is the natural foundation for
attaining these goals. Two different current user-level approaches which employ CSG at
low level are considered: 1) CAD systems and their “feature” based view of construction,
and 2) Bottom-Up methods which generate solid “components”. Although Bottom-Up
methods do not have the turn-key features of commercial CAD systems, it is clear that
their flexibility and potential open nature is an advantage in the long term, especially if
geometric design-gradient information is required for optimization.

To realize the MDAO objectives via the Bottom-Up approach, a new software suite,
the Electronic Geometry Aircraft Design System (EGADS), has been developed. It is a
relatively simple and compact Open-Source Object-Based API built on top of the extensive
OpenCASCADE solid-modeling kernel. EGADS routines implement relatively high-level
operations which insulate the user from OpenCASCADE’s size and complexity, and for
maximum flexibility can be driven by either C, C++, or FORTRAN user applications.
The basic features and constructs of EGADS are described, and an example application is
presented to demonstrate its capabilities and effectiveness.

I. Introduction

A. Background

Aircraft conceptual design traditionally performs mission analysis, sizing, and configuration down-select
of candidate designs via empirical or low-fidelity physics analyses. The geometry parameters at this

stage can, in practice, define the overall shape or even the outer mold-line (OML) of the aircraft to a
degree sufficient for low-order aerodynamic analyses such as Vortex-Lattice or Panel Methods, or for simple
structural analyses such as Simple Bending/Torsion Beam Theory. But they do not have the ability to
generate completely realizable (3D and closed) geometry needed to fully define the aircraft or components
for high-fidelity CFD analyses, FEA analyses, or rapid-prototyping systems. An archetypical example of
this kind of Conceptual Design software is the Program for Aircraft Synthesis Studies (PASS).1 Its modules
include low-fidelity models for aerodynamics, structures, weights, propulsion, stability and noise evaluated
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over mission segments that include takeoff, climb, cruise, approach, and landing. PASS does include a set
of high-level geometry design variables describing the wing planform, empennage planform, and general
fuselage features, but these cannot generate watertight geometric models.

The OML is typically considered early in traditional aircraft design, and the details of other subsystems,
in particular structural layouts, are not examined until later design phases. As reported by Jouannet,2 the
configuration’s OML geometry design can be impacted by these subsystems, which may not be discovered
until high-fidelity analysis is done in later development phases. This often results in engineering work-arounds
which consume performance margins and increase cost, and hence should be avoided if possible.

Further complications tend to arise whenever the geometry definition is scattered over many different
analysis methods, which can span different disciplines as well as different fidelity levels within a discipline. For
example, a Vortex-Lattice method for initial aero analysis requires only surface planform outlines and airfoil
camberlines, while a Panel method for intermediate aero analysis requires the overall OML. Simple beam
analysis versus higher-order beam or FEA analyses likewise require different levels of geometry definition.
The complication arises from the likelihood that geometry adjustments from redesign based on one method
is likely to be inconsistent with the other geometry definitions, which ultimately must be resolved by human
intervention in some typically ad-hoc manner.

B. Motivation for Early High-Fidelity Geometry

One solution to the various difficulties and complications introduced above is to form a 3D closed model of the
aircraft earlier, even as early as the conceptual design phase, and interrogate this to generate geometry inputs
for all analyses. As outlined by Lazzara3 many advantages arise from such an early 3D model implementation.
If a 3D model incorporates a low- and high-fidelity parameterization that is consistent with needed geometry
requirements, then higher fidelity analysis becomes possible alongside low-fidelity tools. For conceptual
design, this leads to a greater confidence in calculated performance metrics for configuration down-select.
Also, there is no need to continuously create higher-level geometry versions as the design matures, because
this high-level geometry already exists. Attempts at developing a framework that accomplishes this have
been made by Amadori et al., but relatively few others.4

The use of a 3D model as a central geometry source is illustrated in Figure 1, where four geometric
representations are shown to potentially satisfy low-fidelity mission analysis (abstract design description),
low- and high-fidelity aerodynamics analysis (wireframe model and surface mesh), and high-fidelity structural
analysis (surface mesh on structural components). In this light, the 3D model is at the center of a design
framework (where it should be) and all analyses become consistent via this parent geometry.

Figure 1. A fully-realizable, high-fidelity, 3D model geometry can be the source of different lower-fidelity
geometric representations which are applicable for multidisciplinary and/or multi-fidelity analysis.

This concept of Multi-fidelity Geometry was introduced by Lazzara3 in the context of producing various
OML realizations, and was further extended by Lazzara et al.5 to include structural layouts. The latter
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extension is natural because the outer mold-line directly constrains the structural layout configurations. By
generating structural components using construction methods employed on the OML, the same properties
of malleability, robustness, and flexibility are expected to exist throughout the entire process.

Once the structural components are generated, a validation of proper design motion is required to ensure
that design space bounds are observed. A baseline model test case which displays regeneration robustness
is shown in Figure 2(a). The structural design layout consists of two spars, fore and aft, with ten evenly
spaced ribs along the wing semi-span. The associated assembly datum references were made between the
spar and wing surface, followed by references between the ribs and spars.

Regeneration of the baseline model is made after moving the wing tip forward, as seen in Figure 2(b). The
previously aft-swept wing planform thus becomes a forward-swept wing planform. Successful regeneration
occurs, where the spar design motion matched that of the leading/trailing edge guide curves, thereby also
exhibiting a change in sweep angle; rib components also underwent the correct design motion and reach the
expected final orientation. Since the spars and ribs reside within the wing design space, regeneration of the
geometry associated with the structural layout is possible when representing a different region of the wing
design space. Unsuccessful regeneration would occur if the structural layout design space were defined to
extend beyond the design space bounds of the OML; evidence of such problems would appear as surface-
crossings, intended design motions beyond datum reference limits, and other geometry configurations that
break the assembly integrity.

(a) (b)

Figure 2. (a) A baseline configuration used in the regeneration robustness tests. (b) Results from an initial
regeneration robustness test, showing the intended design motion for the structural layout after changing the
wing from an aft-swept to forward-swept configuration (from Lazzara et al.5).

The rest of the paper discusses two approaches that can be used to realize this multidiscipline/multi-
fidelity geometric handling where the 3D closed model plays a central role.

II. A CAD-based Approach

A. File Formats and Geometry Access

The usual connection between high-fidelity analysis codes and geometry is performed by a grid generator.
The logical choice to transmit geometry to the grid generator is through standard file formats. The IGES file
format contains data that is defined as disjoint and unconnected surfaces and curves, with no explicit notion of
topology (the hierarchical connectivity of these entities). However, 3D meshing software ultimately requires
such topological information to realize a closed “watertight” model. Much effort is therefore needed to take
the IGES data, trim the curves and surfaces, and then deduce the topology. This process is particularly
onerous when the source of the geometry is a CAD system or a Solids-based geometry kernel. In this case
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the part’s description in the kernel is probably closed with defined topology, so it’s unfortunate that in the
translation to IGES for file transmission this important topology information is needlessly lost.

The STEP file format supports topology as well as geometry. This is therefore the preferable file type
to use for the transmission of closed models. Surprisingly, this format is seldom used in practice. This
may be due to the fact that constructing a STEP reader is complex and requires a complete solid modeling
geometry kernel to deal with the data. Also, transferring data via STEP is not without its own set of
problems. Specifically, each CAD system or geometry kernel uses a different mathematical formulation to
represent the same types of surfaces, and also have different tolerances for closure. After reading a solid
part, one may find that the model is now open, again requiring some form of patching.

An alternative approach to geometric file transmission is to couple directly to the kernel, or the source of
the geometry. A direct vendor neutral API allows an analysis builder to access the geometric data without
programming directly for each system. CAPRI (Computational Analysis PRogramming Interface)6 is an
example of such an API which also provides a solution to the CAD dependency issue. Coupling to any
supported CAD package or geometry kernel is both unified and simplified by using the CAPRI definition of
geometry (with topology) where native access to the geometry and the topological data is granted through
its API.

One clear advantage to this approach is that the geometry never needs to be translated and hence remains
simpler and closed. Another advantage is that writing and maintaining the grid generator (coupled to the
CAD system) can be done once through the API. All of the major CAD vendors are then automatically
supported.

B. Boundary Representations

Boundary Representations (BReps) are the standard data model that holds both the geometric and topolog-
ical entities that supports the concept of a “solid”, as well as other non-manifold aggregations. See Table 1
for a fairly complete topological view. BReps have a tolerance that determines the meaning of “closure”
for connected entities. This means that the Nodes that bound an Edge are probably not on the underlying
curve. Specifically, Edges that bound a Face (through the Loops) do not necessarily sit on the supporting
surface. However, for a valid closed solid all that is required is that the bounding objects (Nodes/Edges)
be within a specified tolerance of the higher dimensioned entity (Edges/Faces). Therefore, for any precision
higher than the tolerance, gaps and overlaps may exist in the geometry definition. This tolerance is generally
much larger than those associated with double precision floating-point arithmetic.

To deal with gaps and overlaps without a program halt which then requires intervention, most BRep-
based applications must “fix” the geometry. This usually entails translating the geometric definition to
another simpler representation where the bounding entities fall closer to the higher-dimensional object. This
type of translation has a variety of side effects, including:

• Inconsistency: Not querying the same geometry. Since the geometry has changed, the representation
is different than in the source system.

• Errors: By changing the geometry, unquantified errors are introduced into the process.

• Complexity: At times additional Faces are required to close the model. There is no way to predict
how many of these “sliver faces” may need to be introduced; moreover, slivers can cause significant
problems for grid generators.

• Not automatic: There are always situations that cannot be healed in a hands-off manner. The
requirement of user intervention is problematic for any fully automated process such as design opti-
mization.

CAPRI’s perspective is that the geometry in the CAD system is truth and should not be modified (though
CAPRI may modify the topology). Therefore fixing (or “healing”) the CAD’s model is no longer a required
part of the analysis procedure.
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C. An Associative Triangulation

An API that only gives the programmer access to the BRep is a fairly difficult starting point for 3D meshing.
The burden of deciphering the data and attempting to generate a discrete representation of the surfaces
required for mesh generation is quite high. Fortunately, many grid generation systems used in CFD and
other disciplines can use Stereo Lithography (STL) files as input. Combining a discretized view of the BRep
as well as its geometry and topology can provide a complete, and easier to use, access point. A tessellation
of the object that contains not only the mesh coordinates and supporting triangle indices but other data,
such as the underlying surface parameters for each point, as well as the connectivity of the triangles, assists
in traversing through and dissecting a complex part.

Although CAPRI’s tessellations could be used as the starting point for computational analysis, that is
not their intent. CAPRI sees only geometry, and it cannot anticipate the smoothness, resolution, or other
requirements of the downstream applications. The triangulations approximate the geometry only, and some
processing of the tessellation is expected in order to refine the triangulation to a state suitable for the physical
problem being investigated. The triangulation can be enhanced through either physical or parameter space
manipulation, using point “snap” and (u, v) surface evaluation routines provided by the CAPRI API.7 The
triangulation technique used within CAPRI displays the following characteristics:8,9

• Robust. It is imperative that the scheme work for all possible topologies and provide a tessellation
that can be used.

• Correct. The triangulation is of no use if it is not true to the BRep model. The tessellation must be
logically correct; i.e. provide a valid triangulation in the parameter space (u, v) of the individual surface.
It must also be geometrically correct; i.e. depict a surface triangulation that truly approximates the
geometry. This involves ensuring all facets have a consistent orientation with no creases or abrupt
changes in triangle normals. Correctness in both physical and parameter space allows CAPRI based
application enhancement schemes to operate in either or both.

• Adjustable. To minimize the post-processing of CAPRI’s tessellation for a specific discipline or
analysis, some a priori adjustment of the resultant quality is available. It must be noted however, that
any criteria may not be met (especially near the bounds of an object in the BRep) due to issues of
closure and modelling accuracy. This goal may conflict with the more important characteristic of being
watertight and having a smooth surface representation.

• No geometric translation. To truly facilitate hands-off grid generation, anything that requires user
intervention must be avoided. All data maintained within CAPRI is consistent with the BRep. An
alternative or translated representation is not used, because then the result will be something different
than resides within the source system.

• Watertight. Triangulated solids are closed and conformal, which allows for meshing without “fixing”
geometry. For the tessellation of a BRep, this means that all Edge (trimming) curves terminate at
consistent coordinates of the bounding Nodes and a single discretization for Edge curves be used on
both surfaces sharing the common Edge. Each triangle side in the tessellation is shared by exactly two
triangles, and the star of each vertex is surrounded and bounded by a single closed loop of sides. The
triangulation is everywhere locally manifold. In a manifold triangulation, there are no voids, cracks or
overlaps of any triangles that make up the solid.

D. Modifying Geometry for Design

Most all CAD systems support the Master-Model concept of representing an object (note that this is also
referred to as “Parametric” or “Feature-based” CAD). The Master-Model describes the sequence of opera-
tions to build the geometry (usually) of a solid model. At its most basic level, it is an ordered list of extrude,
revolve, merge, subtract and intersection operations. CAD systems support more meaningful abstractions,
such as blends, lofts, fillets, drilled holes and bosses which encompasses Constructive Solid Geometry (CSG).
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When the CAD model is regenerated, the operation list is interpreted by the CAD system to sequentially
build the geometry of the part. This gives the operator the ability to construct a family of parts (or assem-
blies) by building a single instance. Many of the operations used in the construction can be controlled by
parameters that may be adjusted. By changing these values, a new member of the family can be built by
simply following the prescription outlined in the Master-Model definition.

The recipe may be simple, like a serial collection of primitive operations, but can also be complex, where
operations are performed on previously or temporarily constructed geometry. The representation of this
construction in most CAD systems is the form of a tree, usually referred to as the “Feature Tree”. By
supporting this method of construction, a direct API can provide both simple and powerful access to the
CAD system. This approach is clearly outside the static view traditionally held of geometry. That is, this
kind of access and control is not possible from any type of file transfer.

Within CAPRI, this tree is presented to the programmer in the form of “branches”. Each of these entities
has an index to identify where in the tree the reference is made. All indices are relative (that is they can
occur anywhere in the tree – the assignment is usually given during initial parsing of the CAD internal
structures). There is a special branch always given the index zero, the root of the tree. Therefore, the
entire tree may be traversed starting at the root and moving toward the end of each branch. The branches
terminate at leaves (branches that do not contain any children). To aid in traversing the tree toward the
root the parent branch is always available. Unlike simple binary trees, a branch in CAPRI’s Feature Tree
may contain zero or more children.

Some branches may be marked “suppressible” – these features may be turned off, in a sense removing
that branch (and any children of the branch) from the regeneration. This is powerful in that it allows for
defeaturing the model, so that it may be made appropriate for the type of analysis at hand. For example: if
fasteners are too small for a fluid flow calculation, they may be easily suppressed (if the Master-Model was
constructed with this in mind). After part regeneration the resultant geometry would be simplified and the
details associated with the fasteners would not be expressed.

Parameters are those components of the Master-Model that contain values (and should not be confused
with the geometric parameterization). CAPRI exposes all parameters found in the model, but the program-
mer can only modify those that are adjustable (non-driven). This is a separate list from the Feature Tree,
but references back to the associated branches where the values are used or defined. Parameters may be
single or multi-valued and can be Booleans, integers, floating-points or strings.

This CAD perspective on parametric building of parts and assemblies is fine for driving the part using
simple parameters but is problematic for shape design. For example, simple parameters may be used to define
the planform of an aircraft, but are difficult to use to define the airfoil shape of the wing and tail components.
The CAD operator would need to expose the curve/surface definition at a very fine and detailed level (i.e.
knot and/or control points as the parameters) to allow for the exact specification of shapes. CAPRI avoids
placing this burden on the CAD designer by exposing certain curves as multi-valued “parameters”. These
curves are obtained from independent sketched features in the model that later are used in solid generation as
the basis for rotation, extrusion, blending and/or lofting. The curves can be modified, and when regenerated,
the new part expresses the changed shape(s). This functionality is critical for shape design in general and
specifically for aerodynamic shape design.

E. Parametric Sensitivities

The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Typ-
ically, this is accomplished by differentiating the respective tools by hand, by using automatic differentiation
tools, or by the use of complex variables. However, the geometric sensitivity derivatives are elusive when the
geometry is defined by complex and often proprietary CAD software. With proprietary systems, software
source code is unavailable and therefore differentiation of the source is not possible.

Other techniques have employed finite-differencing of distinct CAD model instances to define sensitivity
derivatives. These methods are not only costly, but involve an assortment of challenges related to the proper
definition of step size on finite precision computers. The cost is primarily associated with the potentially
large number of instances (one for each geometric design variable) of the model that needs to be generated

6



for finite-differencing. A challenge is that the topology of each instance needs to remain the same. If a vertex
appears or disappears in one instance then the change in its position from a previous instance is not defined.

An interesting observation is that the individual instance of a Master-Model is the subject of analysis,
while it is the Master-Model together with its parametric sensitivities that are the subject of optimization.10

Each instance of the Master-Model results in a BRep. The BRep includes the model’s topology which
collects the geometric entities into their topological equivalent and provides the connectivity information. The
topology is directly related to both the design intent of the Feature Tree and the construction methods of the
underlying CAD system. Topological entities are driven explicitly by the design parameters or implicitly by
construction operations. Therefore, analysis and optimization depends on information in the Master-Model
parameter space as well as the BRep topology and gradient-based optimization requires the sensitivity of
the model topology to the driving parameters.

To directly utilize the Master-Model within a gradient-based optimization context, one could imagine
differentiating through the CAD system to directly obtain the geometric sensitivity to the parameters.
However, this is not possible for reasons cited above. An alternative approach is presented by Jones11 which
makes direct use of the hierarchical associativity of the CAD features in a BRep to trace their evolution and
thereby track sensitivity to design parameters.

F. Seamless Geometry Evolution Between Design Stages

The traditional design process starts from a conception stage where no actual geometry may be specified, to
a final design where the part is fully realized down to the finest details. In a multidisciplinary design setting,
one discipline may set some “parameters” before passing its information along to the next. Only when there
is the requirement for more detailed analysis needing commensurate geometric properties will the design be
fleshed out.

It should now be clear that if the design process changes from this traditional situation to one where
the designer predefines the part’s intent and possible expression (through a Master-Model definition) the
following becomes feasible:

• Consistency. Each phase in the design process uses the same suite (or a subset of the suite) of
parameters. Any parameter value change that produces a different geometry can be viewed by another
stage in the process without writing and reading the geometry in files. The CAD part, regenerated
with a particular set of parameter values and Feature Tree suppression states, uniquely describes the
geometry.

• Data Repository. The CAD system and Product Data Management (PDM) and/or Product Lifetime
Management (PLM) software can be used to track and maintain the design. Also, because the design
is in the CAD system from the beginning, issues of manufacturability can be easily addressed early on
and unrealistic expressions kept out of the design space.

• Defeaturing for Design Progression. If the Master-Model is built in a manner that reflects the
design process, then traversing the stages in the process is just a matter of adjusting the Feature Tree.
During preliminary design where the resultant geometry may be simple (or nonexistent) most of the
branches of the tree are suppressed. As the design approaches the final intent, more and more of the
details of the part are expressed by unsuppressing the branches. This will also require setting various
parameters as their effects become active.

• Defeaturing for different disciplines. Suppressing branches of the Feature Tree can also be used
to match the fidelity of the geometry to the analysis being performed. For example, if CFD is being
used and the meshing scheme cannot handle fillets, then the fillets can be suppressed. This is a much
simpler and more rigorous approach than trying to modify the fully expressed part after the fact (and
it can be done automatically).
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• Parameter sweeps. With the parameters defined in a meaningful manner, parameter studies can
become as simple as setting a new value, having the CAD system regenerate the geometry and then
analyzing the new instance. A complete design space can be mapped out from the complete set (or
subset) of the parameters. This means that the process of automated design can be tracked and some
insight gained into the design by visually tracing the selection of parameter values.

• Feedback. Traditional serial design settings, where one discipline performs its design and passes the
results to the next, lacks the ability to easily recover from a conflict between the current discipline
and the state of the geometry. This usually requires restarting the entire process. For example,
aerodynamics designs a wing that does not contain enough space to support the structures. With an
integrated continuous view of design and the appropriate parameterization, the shape can be modified
at any time so that the aerodynamics team does not need to be explicitly involved in redesigning the
wing.

In order for the proposed approach to be successful, the designer/CAD Operator must understand the
nuances of the CAD package in use to robustly define Features that will persist across the family of parts.
The parts must be put together with care, to ensure that the appropriate dimensions in the model are driven
by meaningful parameters. Also, Features must be used in such as way as to allow later suppression and
modifications to the CAD model as the design matures.

This also suggests a situation where a CAD model can be built up from a superset of the same geometric
parameters as output by the class of codes which includes PASS. The execution of these mission-based con-
ceptual design tools can be used to initially populate the parameter values and allow for a 3D realization of
the concept ready for analysis. This also completely bypasses the traditional artist rendering and the CAD
model can be used to visually communicate the design.

The CAD model should be constructed so that Master-Model effectively captures the decomposed intent
of the design, starting with the most basic definition through to the finest manufacturing details. To achieve
an even higher level of modularity and to more fully capture the design intent, complex parts should be
modeled inside an assembly, especially for aerodynamically constrained applications. This is how the models
seen is Figure 2 were constructed.

III. Conceptual-Design Geometry Tools

It is not uncommon to find customized tools that build up individual 3D components when sizing geometry
in aircraft Conceptual Design. These tools are parametric and usually allow for rapid and interactive control
of shapes (in comparison to a CAD regeneration). These Conceptual-Design Geometry Tools (CDGT), when
used for building traditional air vehicles, typically have templates for components like fuselages, wings, tails,
nacelles, etc., which can be scaled and positioned as needed to form the configuration.

It is difficult to replace Conceptual-Design Geometry Tools with CAD systems for a number of reasons.
These include:

• Cost of CAD licenses. CAD systems are large scale complex software environments. Not only are
the software licenses expensive, but the training costs for the learning of parametric CAD are often
far greater. And in many cases, the application of CAD for some relatively simple conceptual tasks is
akin to using a sledge hammer to drive in a brad.

• Incompatible parameterization. Not all parametric CAD systems are created equal, and the suite
of features differ for each. It requires a great deal of specific CAD training to be able to compose
the series of operations driven by the parameter set to form a particular design. In some instances
it may not be possible to fully realize the desired parameterization due to a feature mismatch or a
fundamental difference in construction or modification of geometry. A prime example of this would be
Free Form Deformation.

8



• Specialized construction. The lofting procedures needed to generate a wing in a particular way
may not exist in a particular CAD system. For example, the airfoils stacked to form a tapered wing
can be either scaled and then interpolated, or alternatively interpolated and then scaled. The two
procedures are not equivalent. And even with either approach, different interpolations can be used.
Generally, splines are used in CAD systems for interpolation. However, there are other basis functions
that could be used. For example, the use of Berstein Polynomials to parameterize airfoil shapes has
been suggested by Kulfan.12 Furthermore, the standard geometry file formats do not support these
unusual geometry types. So to perform specialized constructions it would be necessary to convert (by
additional fitting or approximating) to types such a BSplines or NURBS for transmittal to other parts
of the MDAO process.

• No interactivity of parametric changes. Under some circumstances it is desirable to see updates
of parameter changes in an interactive manner. The speed for any complex geometric build based on
solid modeling cannot compete with simple surface manipulation.

Conceptual-Design Geometry Tools can be placed into two general classes based upon their underlying
geometric control:

1. Use of Home Grown geometry. For simplicity and pointwise data accessibility, these tools are
frequently limited to wire-frame or other simpler representations. Even if the geometry is represented
by a series of BSpline patches that can be closed, usually no connectivity information is transmitted or
even available. No component/component intersections are explicitly required. If multiple components
are displayed simultaneously, the graphics engine performs the intersection and provides a display (but
not the geometry) that appears correctly trimmed. Geometric output from these tools may use the
IGES file format if the constructed geometry types are supported by the standard. Examples of this
class include RAGE13 and VSP.14

2. Use of an existing geometry kernel. This class of tools typically allows output from the kernel in
the form of standard file formats, such as IGES or STEP. In cases where the underlying kernel is based
on solid modeling, the resulting geometry is (curiously) not closed. This is an unnecessary limitation
that makes the use of these tools in high-fidelity analysis not that much better than those discussed
above. Examples are AML15 and AMSketcher.16

Because the geometry from Conceptual-Design Geometry Tools is not appropriate for high-fidelity 3D
analyses, a gap still exists between these tools and the analysis suites used in MDAO environments. With
the historical legacy (and confidence) in these tools, and the difficulty or reluctance to move to CAD, the
following question is raised:

How can we take the best of the CAD-based continuous solution and move the Conceptual-
Design Geometry Tools towards high-fidelity Multidisciplinary Design, Analysis and Optimiza-
tion?
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IV. Bottom-Up and CSG Construction

Parametric CAD has a foundation based on Constructive Solid Geometry (CSG) concepts. In this way
parts of arbitrary complexity can be generated as collections of simply abstracted operations (“features”),
and at any step the resultant geometry is suitable for high-fidelity analysis. Furthermore, 3D meshes can
be generated in an automated manner making this kind of geometry generation suitable for design settings.
These favorable characteristics stem primarily from the use of solid models.

Incorporating CSG into the aircraft Conceptual-Design Geometry Tools so that solid models are produced
is clearly a step that will allow CDGTs to be more easily connected with high-fidelity analysis. And once
a Solid is produced, then the same types of CSG operations can be applied to the results of these tools to
increase the level of geometric complexity that is a requirement of later stages of design. The process of
producing a solid model from its constituent geometric entities is referred to as Bottom-Up construction.
This can appear to be a tedious process where most of the effort is in the construction of Topology that
uniquely defines the connectivity and hierarchy of the model. Only a few Topological entities actually hold
geometric entities.

Clearly a system that provides the ability to perform Bottom-Up and CSG styles of geometric modeling
would allow for CAD-like builds but also foster the ability to include customized construction. In the case
of the Conceptual-Design Geometry Tools, having a bridge to solid modeling, will allow for these parametric
tools to be a fully functional part of the larger high-fidelity MDAO environment. The concept is simple;
build up Solid-based components as early as possible and then use CSG methods to assemble and integrate.
The procedure envisioned involves some programming (either augmenting the Conceptual-Design Geometry
Tools themselves or adding a filter that turns the output into a solid model). The obvious choice is an
Application Programming Interface (API) that can be accessed by a number of programming languages
(that are the same as those used by the CDGTs).

This is not unlike the geometry perspective used for the DaVinci Software17 of CREATE-AV DoD Project.
But what is suggested in this paper is a general geometry API that is generated specifically for the creation
of Solids-based geometry, which remains closed during subsequent CSG operations. Unfortunately, the
construction of a Solid Modeling geometry kernel is a daunting task, but clearly a prerequisite. This problem
can be mitigated by the use of OpenCASCADE,18 a fully functional Open-Source Solid modeling geometry
kernel, that has the following characteristics:

• Support for manifold and non-manifold geometry.

• Has the ability to perform Bottom-Up construction.

• Has both CSG operations and other abstract feature-like construction methods.

• Can read and write IGES, STEP and native file formats.

• Is a fully Object-Oriented C++ API with about 17,000 methods in 2+ million lines of code!

The last point is an obvious problem. Both the C++ nature of OpenCASCADE and the level of pro-
gramming complexity with the huge suite of methods makes the use of OpenCASCADE rather a difficult
undertaking. Its lack of documentation adds to the enormous task of understanding this large, but capable
software suite.

All of these issues provide the motivation for the design and the development of the software subsystem
named EGADS (the Electronic Geometry Aircraft Design System). This procedural-based API is:

• Object-Based built on top of OpenCASCADE.

• Has full support for current platforms (hardware & software). In particular, 32 and 64 bit versions
are available for LINUX, MAC OSX and Windows machines. Other architectures are possible if
OpenCASCADE can be ported.

• Open Source (LGPL v2.1) license so that it can obtain wide usage with few impediments.

• Has FORTRAN, C and C++ bindings.
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A. EGADS Objects

It is a challenge to construct an object-based API that can be accessed by a number of procedural program-
ming languages including FORTRAN. This is done in EGADS by providing the base object as a pointer to
data that should not be decoded (dereferenced) except by the direct use of the API itself.

1. Blind Pointers

Internally the objects are made from bookkeeping-like information and the actual data that makes up the
object. An ego (EGADS Object) is this blind pointer to the object data. For the FORTRAN bindings this
is cast to a 64bit integer, which must be used as an INTEGER*8 variable. This allows for the C/C++ and
FORTRAN API signatures to be almost identical. The data pointed to from an ego (minus the bookkeeping)
consists of:

• Object type: One of 3 types of Geometry, 2 forms of Tessellation, Transform or the many kinds of
Topology.

• Member type. Depends on the object type, for example for a Curve Object it can be LINE, CIRCLE,
and etc.

• Object data. The specific information based on the object and member types.

• Optional Attributes.

2. Attributes on Objects

The ability to place useful information on any object within the system is critical for any system that
requires associativity. Attribution allows for ownership to follow the object (or fragments of the object)
through operations performed on the data objects. There can be any number of attributes attached to an
object. Within EGADS an attribute consists of:

• Name. A unique character string identifying the attribute. There can only be a single attribute on an
object with the name.

• Type. This refers to the kind of data assigned to the attribute. An attribute can only have one type:
either Integer, Real or String.

• Length. This is the amount of data attached to the attribute. Character strings have an obvious length
(the size of the string). Integer and Real attributes can have any (positive) number of entries.

• Value(s).

The scope of an attribute depends on the class of the owning object. Only those attributes on Topology will
be persistent across EGADS sessions. And this will only take place if the Model data is written out in the
native EGADS manner (i.e., not using IGES, STEP or OpenCASCADE file formats).

B. Geometry Objects

All BReps in EGADS are built from 0D (points in space), 2 types of 1D and 2D parameterized geometric
entities. Points are not explicitly called out but become a part of the Topological entity called a Node.
Curves and Surfaces are explicit Objects in EGADS which provides the services of evaluation and inverse
evaluation (or “snaps”) to the object in order to move between the physical and geometry’s parameterized
view.

• Curves.
3D curve representations driven by a single running parameter (t). Supported member types include
LINE, CIRCLE, ELLIPSE, PARABOLA, HYPERBOLA, OFFSET, BEZIER and NURBS (of which
BSplines are a subset).
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• PCurves (or Parameter Curves).
Curves that sit on a specific surface also based on a single parameter (in this case (u, v) = f(t)). When
used for an Edge the parameter range of t must match up with that of the 3D Curve and the (u, v)
support defines the trace of the 3D Curve on the surface. The supported member types are the same
as for the Curves.

• Surfaces.
3D surface representations defined by 2 geometric parameters: (x, y, z) = f(u, v). Supported member
types include PLANAR, SPHERICAL, CONICAL, CYLINDRICAL, TOROIDAL, REVOLUTION,
EXTRUSION, OFFSET, BEZIER and NURBS (which includes BSpline surfaces).

C. Topology Objects

When building the BRep up from primitives, the topological entities are created from the bottom of Table 1
up towards the top (one level at a time). When parsing existing topology (and attached geometry) the table
is traversed from the appropriate level downward.

EGADS Topological Object OpenCASCADE term Geometric Object

Model Compound Shape

Body Solid (or lesser Shape)

Shell

Face Surface

Loop Wire * see note

Edge Curve

Node Vertex [point]

Table 1. EGADS Topological Entities. *note: Loops may be geometry-free or have associated PCurves (one
for each Edge) and the surface where the PCurves reside.

In general, topological entities (egos) lower in Table 1 bound those entities directly above which produces
an unambiguous hierarchy:

• Nodes.
The simplest entity which is the topological equivalent to a point in 3 space.

• Edges.
Most Edges have an underlying 3D curve which is bounded by 2 Nodes. The first Node is at tmin and
the last is at tmax. An Edge can be the member type DEGENERATE which refers to a collapse of a
surface’s parameterization, ONENODE where the 2 Nodes refers to the same entity and the normal
TWONODE type.

• Loops.
Without a surface reference a Loop is an ordered collection of Edges with corresponding senses. In
this case no Edges may be DEGENERATE.
A Loop with a surface reference also contains PCurves, each associated with the Edge listed. The
PCurve provides the mapping from the Edge’s t to (u, v) on the surface. Here DEGENERATE Edges
mark placeholders so that the PCurve can properly bound the surface’s parametric mapping. It should
be noted that a Edge can be found in a Loop twice (once in the positive orientation and the other
negative). This occurs for closed surfaces such as cylinders. For this situation there are two different
PCurves, each representing the different limits of the periodic nature of the surface.
The Loop may be of the OPEN or CLOSED (when it ends at the Node where it started) member type.
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• Faces.
Faces refer to a surface which is bounded by one or more CLOSED Loops. There must be one outer
Loop and all the others are inner Loops (or holes). The reference geometry of the Loops must match
the Face’s surface. Attributes on Faces are robustly tracked through all high-level (Feature-based)
construction. For example when using the Solid Boolean Operators, the resultant BRep(s) have the
Face attributes from the source bodies. If all Faces were marked in the input BReps, then all Faces in
the output will also be marked.

• Shells.
Shells are simply a collection of orientated Faces. This represents the CLOSED type if all Edges found
in the Face’s Loops are accounted for twice (unless DEGENERATE).

• Bodies.
This represents a functional aggregation of entities that can be used as the group. This is usually the
terminal condition for Bottom-Up construction. There are four member types:

1. WireBody – A single Loop which can be OPEN or CLOSED. These can be used as input to
Extrude, Revolve and Lofting operations where the result is a SheetBody.

2. FaceBody – A single Face (which can be viewed as a subset of an OPEN SheetBody). These can
be used as input to Extrude, Revolve and Lofting operations where the result is a SolidBody.

3. SheetBody – A single Shell that can be OPEN or CLOSED.

4. SolidBody – One or more CLOSED Shells. There is always a single outer Shell with any number
of inner Shells that represent the removal of material from the interior of the Solid.

All but the SolidBody refer to non-manifold BReps.

• Models.
This is the top-level EGADS container which can hold any number of Bodies. This is what the system
reads and writes to disk (which includes the import and export of IGES and STEP file formats).
In order to deal with fully connected non-manifold entities in the “Body” context describe above,
it is appropriate to have multiple Bodies within a single Model that share Topological objects. For
example a SolidBody that reflects the OML of a aircraft could share the wing trailing-edge Edges with
a SheetBody that represents the wake surface. There is an EGADS function that allows for the testing
of equivalency of objects so that the wake surface could, in a sense, be reconnected to the manifold
representation of the aircraft.

D. EGADS Tessellation & Tessellation Objects

The CAPRI approach that provides a rich and associative tessellation of a BRep coupled to the geometry is
mimicked in EGADS. When generating a discrete representation of a Body, this allows for a view of trimmed
geometry that is topologically closed though may be open at machine precision. A Tessellation object can be
generated for any Body with the same adjustable parameters as used in CAPRI. The resultant discretization
can be examined a Face at a time. The triangulation of trimmed surfaces includes a single discretization of
the Edges (for both Faces that are trimmed). Therefore, for SolidBodies when the Face triangulations are
put together they form a completely closed manifold triangulation.

To support analyses that may need a quadrilateral discretization of the Body (for example: panel codes),
EGADS provides non-automatic techniques to place patches on the BRep. A template scheme is used (like
the method in CAPRI for Anisotropic Triangulating9) that patches a single Looped Face where 3 or 4 sides
can be identified. The point counts on opposing sides are used (from the Body tessellation) to select the
template and then filled with as many as 17 larger unstructured quadrilateral patches. These are then
subdivided in a regular manner based on the point counts of the exposed sides. This is not automatic
because there are situations that can not be templated due to an odd number of points on the larger Loop.
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EGADS provides functions that allow for the movement, addition and removal of Edge discretization points
so that the quad-patching can provide surface meshing commensurate with the task at hand.

Unlike CAPRI (which does not support Bottom-Up construction) there is the ability to generate tessel-
lations for Geometry alone. This untrimmed discretization is useful for viewing the data in EGADS so that
orientation and extent can be examined in order to support BRep building.

E. Sample API Functions

There are approximately 60 functions currently in EGADS (which provides a marked contrast to the number
of OpenCASCADE methods). The following is obviously not the complete set. These C-like prototypes are
intended to give the reader a sense of the API.

1. Open

Creates and returns an EGADS Context object. This special object contains the context in which subsequent
EGADS functions can operate. There can be multiple contexts in a single session.

icode = EG_open(ego *context)

2. Load Model

Loads and returns a Model object from disk and puts it in the specified EGADS context.

icode = EG_loadModel(ego context, int flags, char *name, ego *model)

flags: 0 - Split periodics

1 - Dont split closed and periodic entities

name: Load by extension:

igs/iges

stp/step

brep (for native OpenCASCADE files)

egads (for native files with persistent Attributes, split ignored)

3. Get Information on a Topological Object

icode = EG_getTopology(ego object, ego *ref, int *oclass, int *mtype, double *data,

int *nchild, ego **pchldrn, int **psenses)

ref: is the reference geometry object (if none this is returned as NULL)

oclass: is Node, Edge, Loop, Face, Shell, Body or Model

mtype: for Edge is TWONODE, ONENODE or DEGENERATE

for Loop is OPEN or CLOSED

for Face is either SFORWARD or SREVERSE

for Shell is OPEN or CLOSED

Body is either WireBody, FaceBody, SheetBody or SolidBody

data: will retrieve at most 4 doubles:

for Node this contains the [x,y,z] location

Edge is the t-start and t-end (the parametric bounds)

Face returns the [u,v] box (the limits first for u then for v)

nchild: number of children (lesser) topological objects

pchldrn: is a returned pointer to the block of children objects.

psenses: is the returned pointer to a block of integer senses for the children.
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4. Create a Topological Object

icode = EG_makeTopology(ego context, ego ref, int oclass, int mtype, double *data,

int nchild, ego *chldrn, int *senses, ego *object)

ref: is the reference geometry object (if none this should be NULL)

oclass: is Node, Edge, Loop, Face, Shell, Body or Model

mtype: for Edge is TWONODE, ONENODE or DEGENERATE

for Loop is OPEN or CLOSED

for Face is either SFORWARD or SREVERSE

for Shell is OPEN or CLOSED

Body is either WireBody, FaceBody, SheetBody or SolidBody

data: may be NULL except for:

Node this must contain the [x,y,z] location

Edge is the t-start and t-end (the parametric bounds)

nchild: number of children (lesser) topological objects

chldrn: the block of children objects.

senses: the block of integer senses for the children.

5. Create a Geometric Object

icode = EG_makeGeometry(ego context, int oclass, int mtype, ego rGeom,

int *pinfo, double *prv, ego *geom)

context: the Context object used to place the result

oclass: PCurve, Curve or Surface

mtype: PCurve/Curve

LINE, CIRCLE, ELLIPSE, PARABOLA, HYPERBOLA, TRIMMED,

BEZIER, BSPLINE, OFFSET

Surface

PLANE, SPHERICAL, CYLINDER, REVOLUTION, TORIODAL,

TRIMMED, BEZIER, BSPLINE, OFFSET, CONICAL, EXTRUSION

rGeom: is the reference geometry object (if none use NULL)

pinfo: is a pointer to the block of integer information. Required for

either BEZIER or BSPLINE.

prv: is the pointer to a block of double precision reals. The

content and length depends on the oclass/mtype.

geom: is the resultant new geometry object

6. Fit or Approximate Geometry

Computes and returns the resultant object created by approximating a BSpline. If the tolerance is zero for
a surface then the data is fit.

icode = EG_approximate(ego context, int mDeg, double tol, int *sizes, double *xyz,

ego *geo)

context: the Context object used to place the result

mDeg: is the maximum degree used for the approximation [3-8]

Note: fits are always cubic.

tol: is the tolerance to use for the BSpline approximation procedure

sizes: a vector of 2 integers that specifies the size and dimensionality of

the data. If the second is zero, then a curve is assumed and the first
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integer is the length of the number of [x,y,z] triads. If the second

integer is nonzero then the input data reflects a 2D map of coordinates.

xyz: the data to fit (3 times the number of points in length)

geo: the returned approximated (or fit) BSpline resultant object

7. Make a Face

Creates a simple Face from a Loop or a surface. This also creates any required Node(s), Edge(s) and Loop(s).

icode = EG_makeFace(ego object, int mtype, double *data, ego *face)

object: either a Loop (for a planar cap) or a surface with [u,v] bounds

mtype: is the desired orientation of the Face

data: may be NULL for Loops but must be the limits for an input surface

face: the resultant returned topological FACE object

8. Solid Boolean Operator

Performs the Solid Boolean Operations (SBOs) on the source Body Object (that has the type SolidBody).
The tool object types depend on the operation.

icode = EG_solidBoolean(ego src, ego tool, int oper, ego *model)

src: the source SolidBody object

tool: the tool object: either a SolidBody for all operators -or-

a Face/FaceBody for Subtraction

oper: Subtraction, Intersection or Union

model: the resultant Model object (this is because there may be multiple

bodies from either the subtraction or intersection operation).

9. Save Model

Saves an EGADS Model object to disk.

icode = EG_saveModel(ego model, char *name)

name: Save by extension:

stp/step

brep (for native OpenCASCADE files)

egads (for native files with persistent Attributes)

10. Close

Closes and destroys all data associated with an EGADS Context.

icode = EG_close(ego context)
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V. Example Build using EGADS

After a traditional conceptual design phase, a typical output is a basic 3-view and a few cross-sections,
together with tables of key physical parameters. An example is shown in Figure 3.

Figure 3. Three-view of MIT’s D8.5 (“double bubble”) series concept for NASA’s N+3 program.19 The aircraft
is a Boeing 737-800 replacement, with dramatic fuel-burn reductions from new technology and especially from
a new fuselage configuration concept.

In order to communicate the concept to others the next step in the traditional design setting is to pass
the concept on to a artist to have a rendering of the aircraft produced. An example is depicted in Figure 4.

Figure 4. Artist’s Rendering of MIT’s D8.5 concept aircraft.

For performing panel method calculations on the D8 aircraft, a basic wire-frame definition was generated
by using a home-grown Conceptual-Design Geometry tool based on stacking airfoils and fuselage cross-
sections, and using suitable linear or bi-cubic interpolation to generate the x, y, z wire-frame point. Figure 5
displays each wire-frame component in a different color. It should be noted that the aft engine nacelles have
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been removed to simplify the construction of this wire-frame model.

Figure 5. Wire-frame of 1/2 of the D8 model used for panel calculations.

Low-order panel methods in particular are extremely insensitive to geometry quality, and most can easily
tolerate defects such as poor resolution, ill-defined curvatures, and even lack of tip endcaps, with little effect
on the overall forces and moments. Hence, the simple wire-frame geometry is quite adequate for initial panel
calculations to do basic checkout of the design. In particular, wing spanload distributions and induced drag,
shear and bending moment diagrams, and also the stability and control characteristics can all be estimated
at this stage.

Figure 6. Wind tunnel model of the D8 concept aircraft. Note that the engines have not been realized in this
geometry.

A typical next step in development of the OML and initial structure sizing is to use high-fidelity Navier-
Stokes CFD methods, commercial FEA methods, or wind tunnel models constructed via CNC or other
numerical fabrication methods. A wind tunnel model of the D8 concept is shown in Figure 6. For these design
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phases the wire-frame definition and the artist’s rendering model are generally inadequate. A watertight
geometry model is required instead, and here is one instance where EGADS can come into play.

The same wire-frame input (as seen in Figure 5) was used to directly generate a series of solid components
using a small number of EGADS calls. The EG approximate function was used to make smooth BSpline
surfaces from the wire-frames for all of the components. Faces were directly constructed from these surfaces by
the EG makeFace function and the components were closed by Bottom-Up construction calls (EG makeFace,
EG makeGeometry and EG makeTopology). All were fused together by applying the union Solid Boolean
Operator (EG solidBoolean) producing a single solid appropriate to 3D high fidelity analysis. The SolidBody
representing 1/2 of the D8 can be seen in Figure 7.

Figure 7. EGADS solid model produced from the data provided from the wire-frame components shown in
Figure 5.

Figure 7 displays a triangulation of the middle panel of the fuselage and quadrilaterals for the wing
(in green). The tessellation is watertight even with this mixed discrete representation because the Edge
discretization is consistently used for either the triangulation and/or the quadrilaterals. This solid model
can now be imported into many diffferent Navier-Stokes solvers, FEA packages, CAM systems, or applications
using STL files such as 3D printers.

VI. Conclusions

The construction of geometry is usually the most overlooked part of any MDAO setting (whether for
aircraft design or other manufacturing tasks). This is an odd situation, because in most cases the ultimate
goal is a best shape that fits the mission. This paper discusses two modes of model construction for design.
Each has strengths and weaknesses.

A. CAD-based Model Construction

Using a CAD system requires the purchase of large-scaled licensed software. These systems have quite a
steep learning curve in order for an operator to become effective at the use of their capabilities. Though all
current systems are parametric and can use CSG constructs, they all have the ability to generate geometry in a
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legacy mode akin to drafting. Most CAD operators one finds in larger aerospace manufacturing environments
have not transitioned from drafting to parametric CAD. So it must be noted that the use of these CAD
models (from this drafting mode of construction) is wholly inconsistent with automated design. There are
no parameters that could define a design space and the rebuild of geometry is therefore not automatically
possible.

The use of parametric CAD requires a very different mindset that that of drafting. It is analogous to
object-oriented programming and requires thinking about the construction as the series of CSG operations
or “features”. The parameters are defined by parts of the procedure that dimension or size the extent of the
operation. In general, a proficient parametric CAD operator can put a part together in much less time than
the individual performing drafting. This is because the details of the sizing and shape of the component can
be deferred, all that is required is that the part be flexible and malleable and can regenerate under the range
of parameters of interest.

It is best if the CAD designer/operator knows how the part (or assembly) will be used and by which
analysis suites. In this way the geometry can be made appropriate for each discipline. Preparing the
geometry for pre-processing can be easily accomplished by featuring/defeaturing the build tree and the use
of the Solid Boolean Operators (for example, to define the fluid domain if given the OML). In practice this
is rarely done. Generating geometric models that can be used in this manner is currently viewed as an art.
There is little training for using Parametric CAD in MDAO and no best practices guides.

Using CAD from as early as the Conceptual Design phase has, as its most important advantage, the ability
to construct a seamless design process that can be used through manufacturing. It provides a technique where
the design intent can be found in a single place (the CAD parts). No translations of importation of geometry
is necessary (which would potentially loose the parametric nature of the component). PLM or PDM systems
can be used to track design and manufacturing decisions throughout the lifetime of the design.

B. EGADS Model Construction

EGADS provides a solid modeling geometry kernel that supports both Bottom-Up construction as well
as the ability to perform Constructive Solid Geometry operations. This is the proper foundation for the
construction of closed 3D geometry (a prerequisite for high fidelity analysis). The API has been designed for
integration within the suite of tools that are used specifically for generating geometry for conceptual aircraft
design (but may be more generally useful). The integration can be fairly simple by taking the parametrically
built components (i.e., wings, fuselages, tails, nacelles, and etc.), using the Bottom-Up functions to construct
the topology to close the model. At this point the component could be written out (in a file format that
supports solids) or used by the higher-level CSG operations (such as the Solid Boolean Operator – Union,
filet, and etc.) to continue the construction.

Because EGADS supports writing geometry out in the STEP file format, the model(s) can be used
directly by CAD systems via the import of this file type. In this case there would be no loss of geometric
data or fidelity but the design intent is lost. Here the parameters and the construction recipe exist only in the
Conceptual-Design Geometry Tool and would need to be re-executed under a design change. Clearly, taking
this direction generates a process that is more fragmented (in terms of geometry usage) and therefore more
difficult to manage. It should also be noted that if parametric sensitivities are required by the optimization
portion of the MDAO process, then having the build defined in multiple places makes the calculation of this
matrix much more difficult than it is when the design intent is self-contained.

Going this route, one needs to always be cognizant of how much customized software is being generated.
There is an extraordinary amount of work required to build up the software infrastructure able to construct
the kind of assembly-based parametric model (as seen in Figure 2(b)) so that aircraft structural layout prop-
erly morphs during parametric changes. It never makes sense to expend the kind of resources it would take
to basically write a CAD system.

The work in EGADS continues as it becomes one of a number of ways to manage geometry within the
OpenMDAO framework.20 This allows for a open-source geometry solution that embeds geometry at the
center of the MDAO process.
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