
AEROSPACE COMPUTATIONAL DESIGN LABORATORY

wv: A General

Web-based 3D Viewer

Bob Haimes (haimes@mit.edu)
Aerospace Computational Design Laboratory

Department of Aeronautics & Astronautics

Massachusetts Institute of Technology

For ESP at Rev 1.13

May 2018

mailto:haimes@mit.edu

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objective

The objective of this work is to

generate a visual tool targeted for

the 3D needs found within the

MDAO process. A WebBrowser-

based approach is considered, in

that it provides the broadest possible

platform for deployment.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Outline

• System Architecture

– Browser / WebGL / WebSockets

– Server or Data Generator(s)

• Data Model

– VBO based

– Primitives

– Graphic Objects

• Functionality at the Viewer

– IO Handling

– Rendering / GUI Loop

• Binary Data Packets

• GUI Call-backs

• Procedural-based Server-side API

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture

Goal: Effective 3D component that

can support the viewing of:

• Geometry

• Meshing

• Scientific Visualization Tools (including

transient data)

• Multi-dimensional Design Space Examination

• Other 3D needs

Contains no GUI but the hooks (in the form of

JavaScript call-backs) to graft a customized

UI specifically designed for the task at hand.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture -- Viewer

Efficient Browser Implementation

• Must support WebGL (& JavaScript)

• Use of WebSockets (part of HTML5)
– Asynchronicity

– Segregation of data-streams (via protocols)

– Data handling consistent with WebGL

• Extensive use of Vertex Buffer Objects (VBOs)

• IO from the server
– Packed messages -- few network packets that are

unpacked into typed JavaScript Arrays at the Browser

– Binary -- known common types, allows avoiding the costs
of serialization / deserialization (WebSocket binary)

– Techniques to provide data to the GUI (WebSocket text)

• IO to the server
– Nothing from the Viewer by default

– Only data from the customized GUI (WebSocket text)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture -- Server

Data Generation and Handling

• Web server (or acts as one -- libwebsockets)

• Visualization state must be maintained (note:

Viewer is stateless except for viewMatrix

& current plotting attributes)

• VBO components generated and sent

• IO to the Viewer

– Aggregated VBOs with metadata

– What is sent is based on changes from the GUI or

from transient data

– Data for the GUI portion of the Viewer

• IO from the Viewer

– Only data from the customized GUI

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- VBO Components

• Vertices
– Coordinates (3 by float -- Float32Array)

– length

• Indices (optional)
– The index into the Vertex Array (unsigned short -- Uint16Array)

– length (can be different from Vertex length)

• Colors (optional)
– RGBs associated with the Vertices(3 by unsigned byte --

Uint8Array)

– Must be same length as Vertices

• Normals (optional, used for Triangles or Decorated
Lines)

– The normal pointing vector for lighting (3 by float --
Float32Array) or Decorated Triangles and normals (no stripes)

– Must be same length as Vertices (Triangles)

Note: the unsigned short of Indices limits the size of the
VBO used, so larger data needs to be striped.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- VBO Types

• Points
– Vertices [Colors & Indices]

• Lines (2 vertices per -- disjoint segments)
– Vertices [Colors & Indices]

– Optional Normals for Decorations (i.e. 3D Arrows)

• Triangles (3 vertices per -- also disjoint)
– Vertices [Normals, Colors & Indices]

Notes:

1. Constant element coloring of Lines/Triangles requires

non-indexed VBOs and the duplication of color

information (per vertex)

2. Facetted lighting requires similar treatment with Normals

3. Any non-planar set of Triangles requires Normals VBO

component

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Primitives

• Locations (GPType 0 -- 0D)
– Collections of one or more Points

– Foreground Color

– Size (in pixels)

– Coloring & Transparency Flags

• Disjoint Lines (GPType 1 -- 1D)
– Optional collected Indexed Points into the Lines Vertex Array

– Collections of one or more Lines

– Line Color

– Foreground Color for Decorations

– Back-facing Color for Decorations

– Line Width (in pixels)

– Point Color

– Point size (in pixels)

– Coloring & Transparency Flags

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Primitives

• Disjoint Triangles (GPType 2 -- 2D)
– Optional collected Indexed Points into the Triangles Vertex Array

– Optional collected Indexed Lines into the Triangles Vertex Array

– Collections of one or more Triangles

– Foreground Color

– Back-facing Color

– Planar Normal (if planar)

– Line Color

– Line Width (in pixels)

– Point Color

– Point size (in pixels)

– Coloring, Transparency, Orientation & Point/Line Flags

Note: Simple two-sided (ambient & diffuse) lighting is applied

by default (modification to wv_render.js is required for

other lighting models)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Objects

• Graphic Object
– ID -- Unique character string assigned by the server

– GPType

– Number of Striped Primitives in the Collection

– GPType specific metadata

– Graphic Primitive data

• VBO Internal Reference
– ID string

– Stripe # 24bits

– One of Point, Line, Triangle Data (3) byte

– One of Vertices, Indices, Colors, Normals (4) byte

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer

IO Handling

– Initialize (connect to server)

– Handshake to ensure compatibility

• Arrays generated by “unpacking” received
VBOs (with metadata) via binary protocol

• Handle any GUI related data (text protocol) via
the call-back ServerMessage

• Continue until End-of-Frame marker

• Inform Rendering Loop that there is new data
and accept no new data until released

Asynchronously performed by WebSocket
event handling

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer

Rendering / GUI Loop

– Initialize (generate canvas on WebGL context)

– Execute GUI setup call-back InitUI

1. Setup scene

– Blank canvas and depth buffer

– Adjust viewMatrix (UpdateView call-back)

2. Render any Graphics Objects

3. Add custom renderings by call-back UpdateCanvas

4. Execute GUI call-back UpdateUI

5. Do we have an End-of-Frame marker?

– If no -- has anything changed in the GUI?

▪ No -- Wait then goto 4

▪ Yes -- goto 1

6. Handshake with IO Handling, update the Graphics
Objects & release the IO hold

7. goto 1

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer

Rendering Model

• WebGL requires fragment & vertex shaders

• Lighting & texture mapping done in the shaders

• The supplied shaders support:
– Two-sided lighting

– Ambient & Diffuse lighting model

– Back-face coloring

– Constant and/or linearly interpolated color-space mapping

– Simple transparency

– Picking

– Bumping of lines forward (in screen Z)

• Any other requirements will involve modifying

the shaders (which can be found in wv-
render.js)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

• Individual data collections should be aggregated

to reduce network latencies -- large packets

• All data is tightly packed and VBO “ready”

• Data collections begin with an Opcode (1 byte):
– 0 -- end of packet (but not End-of-Frame)

– 1 -- new Graphic Object

– 2 -- delete Graphic Object

– 3 -- new Data for Graphic Object

– 4 -- update Data in Graphic Object

– 7 -- End-of-Frame Marker (must be last in total packet)

– 8 -- Initialize Packet

• All data is aligned on 4-byte boundaries

– Colors are unsigned byte

– Indices are unsigned short

– The ID is a string

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

• Each collection starts with:
– Opcode (MSB)

– Stripe # or Number of Stripes (3 bytes -- LSB)

– Complete for Opcode 0 & 7

• Next 32 bits (all but Opcode 0, 7 & 8):
– GPType (1 byte -- MSB)

– vflag -- bits can be summed (1 btye):

– Vertices 1

– Indices 2

– Colors 4

– Normals 8

– Point Indices 16

– Line Indices 32

– ID character Length (integer factor of 4) (2 bytes -- LSB)

• ID Character string (number of bytes above)

Opcode 2 (delete) requires no more data

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

• Opcode 1 (new Graphic Object)

– Plotting Attributes (bit flag -- int):
1 - Render On

2 - Transparent

4 - Color Interpolation

8 - Show orientation

16 - Plot Points

32 - Plot Lines

– Point size (float)

– Point color (3*float)

[Done for Point Objects]

– Line width (float)

– Line color (3*float)

– Foreground constant color (3*float)

– Background color (3*float)

[Done for Line Objects]

– Constant Normal (3*float)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

• Opcode 3 (new data) & 4 (update data)

– Number of data elements for the Graphic
Primitive stripe (int):
• Total number of primitive words is found by

multiplying by 3 for Vertices (xyz), Colors (rgb) &
Normals

• Applying “sizeof()” to the above provides the
total byte length (plus any required padding)

– The VBO data (type based on bit in vflag)

– Repeated for each bit in vflag in LSB order
(Opcode 3), i.e. vertices always first

Notes:
– Opcode 4 can only have a single bit in vflag set

– Data types shorter than 32 bits must be padded
at the end so that the next read can be 4-byte
aligned

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

• Opcode 8 (Initialize) -- 56 bytes long

– Opcode field (4*bytes)

– Field of View (float)

– zNear (float)

– zFar (float)

– Eye location (3*float)

– Focus position (3*float)

– Up direction (3*float)

– End-of-Frame (4*bytes)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

• Opcode 9 (Color Key Definition)

– Opcode field (4*bytes), Stripe # is the number of
characters in title – nLen (integer factor of 4)

– # of Colors – nCol (int)

– The title (nLen*bytes)

– Scale for bottom (float)

– Scale for top (float)

– rgb Colors (3*nCol*float)

• Examples of IO routines:

– Reading in wv-socket.js

– Writing in wsServer/wv.c

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

GUI Call-back Signatures

• function InitUI()
– Invoked once to initialize the UI variables and state

• function UpdateUI()
– Called in the rendering loop so that the state of the UI

can be adjusted

– Note: if the state is modified directly in an event handler
the rendering for that frame may be corrupted

• function UpdateView()
– Allows for the adjustment of the viewMatrix before the

scene is rendered again

• function UpdateCanvas(gl)
– Allows for the customization of what is rendered by

additional WebGL calls

– gl is the WebGL context

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

GUI Call-back Signatures

• function Reshape(gl)

– Checks if the canvas has been resized or moved

– If so, reestablishes the WebGL viewport in gl

• function ServerMessage(text)

– Called when an ASCII text message has been received

from the server (UI text protocol)

– Note: this is invoked from a WebSocket event handler

Usage examples can be found in SimpleUI.js

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Other Useful Functions

• wvServerDown()

– a required call-back function that is invoked when the

server has closed down

– this can be because the server has aborted or the

server was taken down gracefully

• wv.socketUt.send(text)

– wv (wv globals), socketUt (UI text interface)

– Send the string text to the server using WebSockets

– Communicates GUI information to the server

– Can be used from within any call-back (except

wvServerDown)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Registering GUI Call-backs

• wv.setCallback(cbName, cbFn)

– This sets the specified call-back to the function

cbFn (which has a signature as described in the

previous slides)

– cbName can be one of the following strings:

“InitUI”, “UpdateCanvas”, “UpdateUI”,

“UpdateView”, “ServerMessage”, or “Reshape”.

Any other string is an error.

– There are useful defaults for both “UpdateView”

and “Reshape” (see wv-cbManage.js). All other

call-backs should be specified for a fully functional

UI.

Example usage can be found in wv.js

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

wv Status

• Viewer
– Tested against:

• Google Chrome

• Mozilla FireFox (& SeaMonkey)

• Apple Safari (at Rev 6.0 or higher)

– Greater than 18 MegaTriangles per second for large
VBOs on a MacBook Pro i7 2.8MHz 15" Mid-2010
(Chrome about 20% slower than SeaMonkey)

• Server-like Implementation
– Python options:

• pywebsockets

• ws4py

• gevent-websocket

– Use of libwebsockets open source project
(http://git.warmcat.com/cgi-bin/cgit/libwebsockets)

• C API to specify data and allow for GUI IO

• Used to generate the Procedural-based Server-side API

http://git.warmcat.com/cgi-bin/cgit/libwebsockets

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• createContext

wvContext *context =

wv_createContext(int bias, float fov, float zNear,

float zFar, float *eye, float *center,

float *up)

call iv_createContext(I*4 bias, R*4 fov, R*4 zNear,

R*4 zFar, R*4 eye, R*4 center,

R*4 up, I*8 context)

Initializes a WebViewer Context.

bias the offset used for indexing (usually either 0 or 1)

fov the field of view for the perspective (angles)

zNear the Z value for the clipping plane closest to the observer

zFar the Z value for the clipping plane farthest from the observer

eye the position of the observer (X,Y,Z)

center the focus for the viewing matrix

up a normalized vector referring to positive Y

context the returned WebViewer context

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• startServer

status = wv_startServer(int port, char *dev, char *path,

char *key, int opts, wvContext *context)

status = iv_startServer(I*4 port, C** dev, C** path,

C** key, I*4 opts, I*8 context)

Starts a server thread on the WebViewer Context. The calling
thread of execution continues. Use statusServer to
determine the state of the connections.

port the socket port to use for communication

dev the network interface device name (can be NULL)

path the path to locate certificate (if secure transmissions are used)

key the file path for the private key (if secure transmissions are used)

opts 0, or 1 (Defeat the client mask)

context the WebViewer context (from createContext)

status the server instance/return status (negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• statusServer

status = wv_statusServer(int server)

status = iv_statusServer(I*4 server)

Checks the state of the server connections.

server the server instance (from startServer)

status the state (negative is an error):

0 - all clients have disconnected

1 - active

• cleanupServers

wv_cleanupServers()

call iv_cleanupServers()

Cleans up all memory associated with this API. Should be used as
the last function in this suite.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• setData

status = wv_setData(int dtype, int len, void *data,

int VBOcomp, wvData *item)

status = iv_setData(I*4 dtype, I*4 len, ANY data,

I*4 VBOcomp, I*8 item)

Sets the data associated with an item to be used with addGPrim
and modGPrim. Striping is internally performed where necessary.

dtype the type of the data array (see wsss.h or wsserver.inc)

len the number of elements in the data array (Vertices, Normals,
and Colors require 3 words per element)

data the data array of type dtype

VBOcomp the type of the VBO component (see wsss.h or wsserver.inc)

item the output placement for the item

status the return status (negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• adjustVerts

wv_adjustVerts(wvData *item, float *focus)

call iv_adjustVerts(I*8 item, R*4 focus)

Allows for the adjustment of the vertex coordinates so they fit into
screen coordinates (not clipped away).

item the Vertices component (from setData)

focus a vector of length 4 that is used to adjust the coordinates

the first is subtracted from the X coordinate

the second is subtracted from the Y coordinate

the third is subtracted from the Z coordinate

the forth is used to normalize (divide) all coordinates

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• addGPrim

status = wv_addGPrim(wvContext *context, char *name, int gtype,

int attrs, int nItems, wvData *items)

status = iv_addGPrim(I*8 context, C** name, I*4 gtype,

I*4 attrs, I*4 nItems, I*8 items)

Creates and adds this Graphics Primitive to the scene graph
associated with this context.

context the WebViewer context (from createContext)

name unique (in the scene graph) name of the primitive

gtype the graphics primitive type: Point, Line, Triangle

(see wsss.h or wsserver.inc)

attrs the initial plotting attributes (see wsss.h or wsserver.inc)

nItems the number of components used to define the primitive

items the components (from setData)

status the index created for the primitive (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• modGPrim

status = wv_modGPrim(wvContext *context, int index,

int nItems, wvData *items)

status = iv_modGPrim(I*8 context, I*4 index,

I*4 nItems, I*8 items)

Modifies an existing Graphics Primitive in scene graph associated
with this context.

context the WebViewer context (from createContext)

index the index created for the primitive (from addGPrim)

nItems the number of components to modify in the primitive

items the components (from setData)

status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• addArrowHeads

status = wv_addArrowHeads(wvContext *context, int index,

float size, int nHeads, int *heads)

status = iv_addArrowHeads(I*8 context, I*4 index,

R*4 size, I*4 nHeads, I*4 heads)

Add Arrow Head decorations (in the foreground color) to an existing
Line Graphics Primitive associated with this context.

context the WebViewer context (from createContext)

index the index created for the primitive (from addGPrim)

size the size of the arrow head

if adjustVerts is in use, the size should be divided by focus[3]

nHead the number of head definitions

heads the head definitions (index into the line segments -- if negative

the head position (and direction) is associated with the first

point in the segment, otherwise it is the second position. This is

always bias 1.

status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• setKey

status = wv_setKey(wvContext *context, int nCol, float *colors,

float beg, float end, char *title)

status = iv_setKey(I*8 context, I*4 nCol, R*4 colors,

R*4 beg, R*4 end, C** title)

Specifies the color key that gets drawn at the browser.

context the WebViewer context (from createContext)

nCol the number of colors found in the key – a 0 removes the key

colors the colors for each entry (rgb) – nCol*3 in length

beg the key value for the first color

end the key value for the last color

title the text written above the colors in the key

status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• removeGPrim

wv_removeGPrim(wvContext *context, int index)

call iv_removeGPrim(I*8 context, I*4 index)

Removes an existing Graphics Primitive in scene graph
associated with this context.

context the WebViewer context (from createContext)

index the index created for the primitive (from addGPrim)

• removeAll

wv_removeAll(wvContext *context)

call iv_removeAll(I*8 context)

Removes all Graphics Primitive from the scene graph associated
with this context.

context the WebViewer context (from createContext)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• indexGPrim

status = wv_indexGPrim(wvContext *context, char *name)

status = iv_indexGPrim(I*8 context, C** name)

Finds the index given the name for an existing Graphics Primitive
in scene graph associated with this context.

context the WebViewer context (from createContext)

name the name of the GPrim in the scene graph

status the index (where a negative value is an error)

• printGPrim

wv_printGPrim(wvContext *context, int index)

call iv_printGPrim(I*8 context, I*4 index)

Prints the Graphics Primitive to standard output.

context the WebViewer context (from createContext)

index the index created for the primitive (from addGPrim)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• nClientServer

status = wv_nClientServer(int server)

status = iv_nClientServer(I*4 server)

Returns the number of clients connected to the server.

server the server instance (from startServer)

status the number of clients (negative is an error)

• activeInterfaces

status = wv_activeInterfaces(int server, int *nwsi, void ***wsi)

status = iv_activeInterfaces(I*4 server, I*4 nwsi, I*8 wsi)

Returns the active text interfaces for each attached client.

server the server instance (from startServer)

nwsi the number of text interfaces (the number of clients)

wsi a returned pointer to the list of active interfaces

FORTRAN note: nwsi must be the length of wsi on input, -999 is error flag for not large enough.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• killInterface

wv_killInterface(int server, void *wsi)

call iv_killInterface(I*4 server, I*8 wsi)

Aborts the client associated with the text Interface.

server the server instance (from startServer)

wsi the interfaces (client) to shutdown

• handShake

status = wv_handShake(wvContext *context)

status = iv_handShake(I*8 context)

Performs coarse-level handshaking. Both addGPrim and
modGPrim will do fine-level handshaking, but to fully
synchronize a larger suite of updates use this function.

context the WebViewer context (from createContext)

status 0 – the data is released to send, 1 – the data is grabbed until
invoked again when the updated GPrims will be sent

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

Call-back Required to catch Client Messages

• browserMessage

browserMessage(void *wsi, char *text, int len)

subroutine browserMessage(I*8 wsi, C** text)

This required routine gets called for each message sent from a
client.

wsi a pointer to the WebSocket Interface Structure

text the ASCII text received from the Browser

len the length of the text

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

Text based communication to the Client(s)

• broadcastText

wv_broadcastText(char *text)

call iv_broadcastText(C** text)

Sends the text to all active clients (Browsers).

text the text to send

• sendText

wv_sendText(void *wsi, char *text)

call iv_sendText(I*8 wsi, C** text)

Sends the text to the specific client designated by wsi.

wsi the WebSocket Interface Structure (from browserMessage)

text the text to send

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

FORTRAN Only Utility Functions

• setPsize

call iv_setPisze(I*8 context, I*4 index, R*4 size)

Sets the Point Size in an existing Graphics Primitive in scene
graph associated with this context.

context the WebViewer context (from createContext)

index the index created for the primitive (from addGPrim)

size the point size in pixels

• setLwidth

call iv_setLwidth(I*8 context, I*4 index, R*4 width)

Sets the Line Width in an existing Graphics Primitive.

context the WebViewer context (from createContext)

index the index created for the primitive (from addGPrim)

width the line width in pixels

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

• usleep

call iv_usleep(I*4 micsec)

Suspends the calling thread for the specified number of
microseconds

micsec the number of microseconds

