
Nastran Analysis Interface Module (AIM)

Ryan Durscher and Ed Alyanak
AFRL/RQVC

May 14, 2018

ii CONTENTS

Contents

1 Introduction 1

1.1 Nastran AIM Overview . 1

1.2 Examples . 2

2 Nastran AIM attributes 2

3 Geometry Representation and Analysis Intent 3

4 AIM Inputs 3

5 AIM Shareable Data 4

6 AIM Outputs 4

7 Nastran Data Transfer 5

7.1 Data transfer from Nastran . 5

7.2 Data transfer to Nastran . 5

8 FEA Material 5

8.1 JSON String Dictionary . 5

8.2 Single Value String . 6

9 FEA Property 6

9.1 JSON String Dictionary . 7

9.2 Single Value String . 8

10 FEA Constraint 9

10.1 JSON String Dictionary . 9

10.2 Single Value String . 9

11 FEA Support 9

11.1 JSON String Dictionary . 9

11.2 Single Value String . 9

12 FEA Connection 10

12.1 JSON String Dictionary . 10

12.2 Single Value String . 10

13 FEA Load 10

13.1 JSON String Dictionary . 11

13.2 Single Value String . 11

14 FEA Analysis 12

14.1 JSON String Dictionary . 12

Nastran Analysis Interface Module (AIM) Manual

1 Introduction 1

14.2 Single Value String . 13

15 FEA DesignVariable 14

15.1 JSON String Dictionary . 14

16 FEA DesignConstraint 15

16.1 JSON String Dictionary . 15

17 Vortex Lattice Surface 16

17.1 JSON String Dictionary . 16

17.2 Single Value String . 17

18 Vortex Lattice Control Surface 17

18.1 JSON String Dictionary . 17

18.2 Single Value String . 17

19 Nastran AIM Examples 17

19.1 Single Load Case Example . 17

19.2 Multiple Load/Boundary Case Example . 21

19.3 Modal Analysis Example Case . 21

19.4 Optimization Example Case . 22

19.5 Composite Wing Example . 23

19.6 Composite Wing Optimization Example . 26

Bibliography 27

1 Introduction

1.1 Nastran AIM Overview

A module in the Computational Aircraft Prototype Syntheses (CAPS) has been developed to interact (primarily
through input files) with the finite element structural solver Nastran [1].

Current issues include:

• A thorough bug testing needs to be undertaken.

An outline of the AIM's inputs, outputs and attributes are provided in AIM Inputs and AIM Outputs and Nastran AIM
attributes, respectively.

The accepted and expected geometric representation and analysis intentions are detailed in Geometry Represen-
tation and Analysis Intent.

Details of the AIM's shareable data structures are outlined in AIM Shareable Data if connecting this AIM to other
AIMs in a parent-child like manner.

Details of the AIM's automated data transfer capabilities are outlined in Nastran Data Transfer

Nastran Analysis Interface Module (AIM) Manual

2 CONTENTS

1.2 Examples

Example problems using the Nastran AIM may be found at Nastran AIM Examples .

• Single Load Case Example

• Multiple Load/Boundary Case Example

• Modal Analysis Example Case

• Optimization Example Case

• Composite Wing Example

• Composite Wing Optimization Example

2 Nastran AIM attributes

The following list of attributes are required for the Nastran AIM inside the geometry input.

• capsIntent This attribute is a CAPS requirement to indicate the analysis fidelity the geometry representation
supports. Options are: ALL, STRUCTURE

• capsGroup This is a name assigned to any geometric body. This body could be a solid, surface, face, wire,
edge or node. Recall that a string in ESP starts with a $. For example, attribute capsGroup $Wing.

• capsLoad This is a name assigned to any geometric body where a load is applied. This attribute was
separated from the capsGroup attribute to allow the user to define a local area to apply a load on without
adding multiple capsGroup attributes. Recall that a string in ESP starts with a $. For example, attribute
capsLoad $force.

• capsConstraint This is a name assigned to any geometric body where a constraint/boundary condition is
applied. This attribute was separated from the capsGroup attribute to allow the user to define a local area
to apply a boundary condition without adding multiple capsGroup attributes. Recall that a string in ESP
starts with a $. For example, attribute capsConstraint $fixed.

• capsIgnore It is possible that there is a geometric body (or entity) that you do not want the Nastran AIM to
pay attention to when creating a finite element model. The capsIgnore attribute allows a body (or entity) to be
in the geometry and ignored by the AIM. For example, because of limitations in OpenCASCADE a situation
where two edges are overlapping may occur; capsIgnore allows the user to only pay attention to one of the
overlapping edges.

• capsConnect This is a name assigned to any geometric body where the user wishes to create "fictitious"
connections such as springs, dampers, and/or rigid body connections to. The user must manually specify the
connection between two capsConnect entities using the "Connect" tuple (see AIM Inputs). Recall that a
string in ESP starts with a $. For example, attribute capsConnect $springStart.

• capsConnectLink Similar to capsConnect, this is a name assigned to any geometric body where the user
wishes to create "fictitious" connections to. A connection is automatically made if a capsConnectLink
matches a capsConnect group. Again further specifics of the connection are input using the "Connect"
tuple (see AIM Inputs). Recall that a string in ESP starts with a $. For example, attribute capsConnect←↩
Link $springEnd.

• capsBound This is used to mark surfaces on the structural grid in which data transfer with an external solver
will take place. See Nastran Data Transfer for additional details.

Internal Aeroelastic Analysis

• capsBound This is used to mark surfaces on the structural grid in which a spline will be created between
the structural and aero-loads.

Nastran Analysis Interface Module (AIM) Manual

3 Geometry Representation and Analysis Intent 3

• capsReferenceArea [Optional: Default 1.0] Reference area to use when doing aeroelastic analysis. This
attribute may exist on any aerodynamic cross-section.

• capsReferenceChord [Optional: Default 1.0] Reference chord to use when doing aeroelastic analysis. This
attribute may exist on any aerodynamic cross-section.

• capsReferenceSpan [Optional: Default 1.0] Reference span to use when doing aeroelastic analysis. This
attribute may exist on any aerodynamic cross-section.

3 Geometry Representation and Analysis Intent

The attribute capsIntent may be set to either ALL or STRUCTURE for the Nastran AIM. The geometric representa-
tion for the AIM requires that bodies be:

• WIREBODY for purely 1D simulations

• FACEBODY or SHEETBODY (non-manifold) for 2D simulations

• SOLIDBODY or SHEETBODY (manifold) for 3D simulations

4 AIM Inputs

The following list outlines the Nastran inputs along with their default value available through the AIM interface.
Unless noted these values will be not be linked to any parent AIMs with variables of the same name.

• Proj_Name = "nastran_CAPS"
This corresponds to the project name used for file naming.

• Tess_Params = [0.025, 0.001, 15.0]
Body tessellation parameters used when creating a boundary element model. Tess_Params[0] and Tess←↩
_Params[1] get scaled by the bounding box of the body. (From the EGADS manual) A set of 3 parameters
that drive the EDGE discretization and the FACE triangulation. The first is the maximum length of an ED←↩
GE segment or triangle side (in physical space). A zero is flag that allows for any length. The second is a
curvature-based value that looks locally at the deviation between the centroid of the discrete object and the
underlying geometry. Any deviation larger than the input value will cause the tessellation to be enhanced in
those regions. The third is the maximum interior dihedral angle (in degrees) between triangle facets (or Edge
segment tangents for a WIREBODY tessellation), note that a zero ignores this phase

• Edge_Point_Min = 4
Minimum number of points along an edge to use when creating a boundary element model.

• Edge_Point_Max = 10
Maximum number of points along an edge to use when creating a boundary element model.

• Quad_Mesh = False
Create a quadratic mesh on four edge faces when creating the boundary element model.

• Property = NULL
Property tuple used to input property information for the model, see FEA Property for additional details.

• Material = NULL
Material tuple used to input material information for the model, see FEA Material for additional details.

• Constraint = NULL
Constraint tuple used to input constraint information for the model, see FEA Constraint for additional details.

• Load = NULL
Load tuple used to input load information for the model, see FEA Load for additional details.

Nastran Analysis Interface Module (AIM) Manual

4 CONTENTS

• Analysis = NULL
Analysis tuple used to input analysis/case information for the model, see FEA Analysis for additional details.

• Analysis_Type = "Modal"
Type of analysis to generate files for, options include "Modal", "Static", "AeroelasticTrim", "AeroelasticFlutter",
and "Optimization". Note: "Aeroelastic" and "StaticOpt" are still supported and refer to "AeroelasticTrim" and
"Optimization".

• File_Format = "Small"
Formatting type for the bulk file. Options: "Small", "Large", "Free".

• Mesh_File_Format = "Small"
Formatting type for the mesh file. Options: "Small", "Large", "Free".

• Design_Variable = NULL
The design variable tuple used to input design variable information for the model optimization, see FEA
DesignVariable for additional details.

• Design_Constraint = NULL
The design constraint tuple used to input design constraint information for the model optimization, see FEA
DesignConstraint for additional details.

• ObjectiveMinMax = "Max"
Maximize or minimize the design objective during an optimization. Option: "Max" or "Min".

• ObjectiveResponseType = "Weight"
Object response type (see Nastran manual).

• VLM_Surface = NULL
Vortex lattice method tuple input. See Vortex Lattice Surface for additional details.

• Support = NULL
Support tuple used to input support information for the model, see FEA Support for additional details.

• Connect = NULL
Connect tuple used to define connection to be made in the, see FEA Connection for additional details.

• Parameter = NULL
Parameter tuple used to define PARAM entries. Note, entries are output exactly as inputed, that is, if the
PARAM entry requires an integer entry the user must input an integer!

5 AIM Shareable Data

Currently the Nastran AIM does not have any shareable data types or values. It will try, however, to inherit a
"FEA_MESH" or "Volume_Mesh" from any parent AIMs. Note that the inheritance of the mesh is not required.

6 AIM Outputs

The following list outlines the Nastran outputs available through the AIM interface.

• EigenValue = List of Eigen-Values (λ) after a modal solve.

• EigenRadian = List of Eigen-Values in terms of radians (ω =
√

λ) after a modal solve.

• EigenFrequency = List of Eigen-Values in terms of frequencies (f = ω

2π
) after a modal solve.

• EigenGeneralMass = List of generalized masses for the Eigen-Values.

• EigenGeneralStiffness = List of generalized stiffness for the Eigen-Values.

Nastran Analysis Interface Module (AIM) Manual

7 Nastran Data Transfer 5

7 Nastran Data Transfer

The Nastran AIM has the ability to transfer displacements and eigenvectors from the AIM and pressure distributions
to the AIM using the conservative and interpolative data transfer schemes in CAPS. Currently these transfers may
only take place on triangular meshes.

7.1 Data transfer from Nastran

• "Displacement"
Retrieves nodal displacements from the ∗.f06 file.

• "EigenVector_#"
Retrieves modal eigen-vectors from the ∗.f06 file, where "#" should be replaced by the corresponding mode
number for the eigen-vector (eg. EigenVector_3 would correspond to the third mode, while EigenVector_6
would be the sixth mode).

7.2 Data transfer to Nastran

• "Pressure"
Writes appropriate load cards using the provided pressure distribution.

8 FEA Material

Structure for the material tuple = ("Material Name", "Value"). "Material Name" defines the reference name for the
material being specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary)
or a single string keyword (see Section Single Value String).

8.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"density": 7850, "youngModulus": 120000.0, "poissonRatio":
0.5, "materialType": "isotropic"}) the following keywords (= default values) may be used:

• materialType = "Isotropic"
Material property type. Options: Isotropic, Anisothotropic, Orthotropic, or Anisotropic.

• youngModulus = 0.0
Also known as the elastic modulus, defines the relationship between stress and strain. Default if ‘shear←↩
Modulus' and ‘poissonRatio' != 0, youngModulus = 2∗(1+poissonRatio)∗shearModulus

• shearModulus = 0.0
Also known as the modulus of rigidity, is defined as the ratio of shear stress to the shear strain. Default if
‘youngModulus' and ‘poissonRatio' != 0, shearModulus = youngModulus/(2∗(1+poissonRatio))

• poissonRatio = 0.0
The fraction of expansion divided by the fraction of compression. Default if ‘youngModulus' and ‘shear←↩
Modulus' != 0, poissonRatio = (2∗youngModulus/shearModulus) - 1

• density = 0.0
Density of the material.

• thermalExpCoeff = 0.0
Thermal expansion coefficient of the material.

Nastran Analysis Interface Module (AIM) Manual

6 CONTENTS

• thermalExpCoeffLateral = 0.0
Thermal expansion coefficient of the material.

• temperatureRef = 0.0
Reference temperature for material properties.

• dampingCoeff = 0.0
Damping coefficient for the material.

• yieldAllow = 0.0
Yield strength/allowable for the material.

• tensionAllow = 0.0
Tension allowable for the material.

• tensionAllowLateral = 0.0
Lateral tension allowable for the material.

• compressAllow = 0.0
Compression allowable for the material.

• compressAllowLateral = 0.0
Lateral compression allowable for the material.

• shearAllow = 0.0
Shear allowable for the material.

• allowType = 0
This flag defines if the above allowables compressAllow etc. are defined in terms of stress (0) or strain
(1). The default is stress (0).

• youngModulusLateral = 0.0
Elastic modulus in lateral direction for an orthotropic material

• shearModulusTrans1Z = 0.0
Transverse shear modulus in the 1-Z plane for an orthotropic material

• shearModulusTrans2Z = 0.0
Transverse shear modulus in the 2-Z plane for an orthotropic material

8.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined material lookup table. NOT YET
IMPLEMENTED!!!!

9 FEA Property

Structure for the property tuple = ("Property Name", "Value"). "Property Name" defines the reference capsGroup
for the property being specified. The "Value" can either be a JSON String dictionary (see Section JSON String
Dictionary) or a single string keyword (see Section Single Value String).

Nastran Analysis Interface Module (AIM) Manual

9.1 JSON String Dictionary 7

9.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"shearMembraneRatio": 0.83, "bendingInertiaRatio": 1.0,
"membraneThickness": 0.2, "propertyType": "Shell"}) the following keywords (= default values) may be used:

• propertyType = No Default value
Type of property to apply to a given capsGroup Name. Options: ConcentratedMass, Rod, Bar, Shear, Shell,
Composite, and Solid

• material = "Material Name" (FEA Material)
"Material Name" from FEA Material to use for property. If no material is set the first material created will be
used

• crossSecArea = 0.0
Cross sectional area.

• torsionalConst = 0.0
Torsional constant.

• torsionalStressReCoeff = 0.0
Torsional stress recovery coefficient.

• massPerLength = 0.0
Mass per unit length.

• zAxisInertia = 0.0
Section moment of inertia about the element z-axis.

• yAxisInertia = 0.0
Section moment of inertia about the element y-axis.

• yCoords[4] = [0.0, 0.0, 0.0, 0.0]
Element y-coordinates, in the bar cross-section, of four points at which to recover stresses

• zCoords[4] = [0.0, 0.0, 0.0, 0.0]
Element z-coordinates, in the bar cross-section, of four points at which to recover stresses

• areaShearFactors[2] = [0.0, 0.0]
Area factors for shear.

• crossProductInertia = 0.0
Section cross-product of inertia.

• shearPanelThickness = 0.0
Shear panel thickness.

• nonStructMassPerArea = 0.0
Nonstructural mass per unit area.

• membraneThickness = 0.0
Membrane thickness.

• bendingInertiaRatio = 1.0
Ratio of actual bending moment inertia to the bending inertia of a solid plate of thickness "membrane←↩
Thickness"

Nastran Analysis Interface Module (AIM) Manual

8 CONTENTS

• shearMembraneRatio = 5.0/6.0
Ratio shear thickness to membrane thickness.

• materialBending = "Material Name" (FEA Material)
"Material Name" from FEA Material to use for property bending. If no material is given and "bendingInertia←↩
Ratio" is greater than 0, the material name provided in "material" is used.

• materialShear = "Material Name" (FEA Material)
"Material Name" from FEA Material to use for property shear. If no material is given and "shearMembrane←↩
Ratio" is greater than 0, the material name provided in "material" is used.

• massPerArea = 0.0
Mass per unit area.

• compositeMaterial = "no default"
List of "Material Name"s, ["Material Name -1", "Material Name -2", ...], from FEA Material to use for compos-
ites.

• shearBondAllowable = 0.0
Allowable interlaminar shear stress.

• symmetricLaminate = False
Symmetric lamination option. True- SYM only half the plies are specified, for odd number plies 1/2 thickness
of center ply is specified with the first ply being the bottom ply in the stack, default (False) all plies specified.

• compositeFailureTheory = "(no default)"
Composite failure theory. Options: "HILL", "HOFF", "TSAI", and "STRN"

• compositeThickness = (no default)
List of composite thickness for each layer (e.g. [1.2, 4.0, 3.0]). If the length of this list doesn't match the
length of the "compositeMaterial" list, the list is either truncated [>length("compositeMaterial")] or expanded
[<length("compositeMaterial")] in which case the last thickness provided is repeated.

• compositeOrientation = (no default)
List of composite orientations (angle relative element material axis) for each layer (eg. [5.0, 10.0, 30.0]).
If the length of this list doesn't match the length of the "compositeMaterial" list, the list is either truncated [
>length("compositeMaterial")] or expanded [<length("compositeMaterial")] in which case the last orientation
provided is repeated.

• mass = 0.0
Mass value.

• massOffset = [0.0, 0.0, 0.0]
Offset distance from the grid point to the center of gravity for a concentrated mass.

• massInertia = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Mass moment of inertia measured at the mass center of gravity.

9.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined property lookup table. NOT YET
IMPLEMENTED!!!!

Nastran Analysis Interface Module (AIM) Manual

10 FEA Constraint 9

10 FEA Constraint

Structure for the constraint tuple = ("Constraint Name", "Value"). "Constraint Name" defines the reference name
for the constraint being specified. The "Value" can either be a JSON String dictionary (see Section JSON String
Dictionary) or a single string keyword (see Section Single Value String).

10.1 JSON String Dictionary

If "Value" is JSON string dictionary (eg. "Value" = {"groupName": "plateEdge", "dofConstraint": 123456}) the follow-
ing keywords (= default values) may be used:

• constraintType = "ZeroDisplacement"
Type of constraint. Options: "Displacement", "ZeroDisplacement".

• groupName = "(no default)"
Single or list of capsConstraint names on which to apply the constraint (e.g. "Name1" or ["Name1","←↩
Name2",...]. If not provided, the constraint tuple name will be used.

• dofConstraint = 0
Component numbers / degrees of freedom that will be constrained (123 - zero translation in all three direc-
tions).

• gridDisplacement = 0.0
Value of displacement for components defined in "dofConstraint".

10.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined constraint lookup table. NOT YET
IMPLEMENTED!!!!

11 FEA Support

Structure for the support tuple = ("Support Name", "Value"). "Support Name" defines the reference name for the
support being specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary)
or a single string keyword (see Section Single Value String).

11.1 JSON String Dictionary

If "Value" is JSON string dictionary (eg. "Value" = {"groupName": "plateEdge", "dofSupport": 123456}) the following
keywords (= default values) may be used:

• groupName = "(no default)"
Single or list of capsConstraint names on which to apply the support (e.g. "Name1" or ["Name1","←↩
Name2",...]. If not provided, the constraint tuple name will be used.

• dofSupport = 0
Component numbers / degrees of freedom that will be supported (123 - zero translation in all three directions).

11.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined support lookup table. NOT YET
IMPLEMENTED!!!!

Nastran Analysis Interface Module (AIM) Manual

10 CONTENTS

12 FEA Connection

Structure for the connection tuple = ("Connection Name", "Value"). "Connection Name" defines the reference name
to the capsConnect being specified and denotes the "source" node for the connection. The "Value" can either be a
JSON String dictionary (see Section JSON String Dictionary) or a single string keyword (see Section Single Value
String).

12.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"dofDependent": 1, "propertyType": "RigidBody"}) the following
keywords (= default values) may be used:

• connectionType = RigidBody
Type of connection to apply to a given capsConnect pair defined by "Connection Name" and the "groupName".
Options: Mass (scalar), Spring (scalar), Damper (scalar), RigidBody.

• dofDependent = 0
Component numbers / degrees of freedom of the dependent end of rigid body connections (ex. 123 - trans-
lation in all three directions).

• componentNumberStart = 0
Component numbers / degrees of freedom of the starting point of the connection for mass, spring, and damper
elements (scalar) (0 <= Integer <= 6).

• componentNumberEnd= 0
Component numbers / degrees of freedom of the ending point of the connection for mass, spring, and damper
elements (scalar) (0 <= Integer <= 6).

• stiffnessConst = 0.0
Stiffness constant of a spring element (scalar).

• dampingConst = 0.0
Damping coefficient/constant of a spring or damping element (scalar).

• stressCoeff = 0.0
Stress coefficient of a spring element (scalar).

• mass = 0.0
Mass of a mass element (scalar).

• groupName = "(no default)"
Single or list of capsConnect names on which to connect the nodes found with the tuple name ("←↩
Connection Name") to. (e.g. "Name1" or ["Name1","Name2",...].

12.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined connection lookup table. NOT YET
IMPLEMENTED!!!!

13 FEA Load

Structure for the load tuple = ("Load Name", "Value"). "Load Name" defines the reference name for the load being
specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary) or a single
string keyword (see Section Single Value String).

Nastran Analysis Interface Module (AIM) Manual

13.1 JSON String Dictionary 11

13.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"groupName": "plate", "loadType": "Pressure", "pressureForce":
2000000.0}) the following keywords (= default values) may be used:

• loadType = "(no default)"
Type of load. Options: "GridForce", "GridMoment", "Rotational", "Thermal", "Pressure", "PressureDistribute",
"PressureExternal", "Gravity".

• groupName = "(no default)"
Single or list of capsLoad names on which to apply the load (e.g. "Name1" or ["Name1","Name2",...]. If not
provided, the load tuple name will be used.

• loadScaleFactor = 1.0
Scale factor to use when combining loads.

• forceScaleFactor = 0.0
Overall scale factor for the force for a "GridForce" load.

• directionVector = [0.0, 0.0, 0.0]
X-, y-, and z- components of the force vector for a "GridForce", "GridMoment", or "Gravity" load.

• momentScaleFactor = 0.0
Overall scale factor for the moment for a "GridMoment" load.

• gravityAcceleration = 0.0
Acceleration value for a "Gravity" load.

• pressureForce = 0.0
Uniform pressure force for a "Pressure" load.

• pressureDistributeForce = [0.0, 0.0, 0.0, 0.0]
Distributed pressure force for a "PressureDistribute" load.

• angularVelScaleFactor = 0.0
An overall scale factor for the angular velocity in revolutions per unit time for a "Rotational" load.

• angularAccScaleFactor = 0.0
An overall scale factor for the angular acceleration in revolutions per unit time squared for a "Rotational" load.

• coordinateSystem = "(no default)"
Name of coordinate system in which defined force components are in reference to. If no value is provided the
global system is assumed.

• temperature = 0.0
Temperature at give node for a "Temperature" load. </ ul>

– temperatureDefault = 0.0
Default temperature at a node not explicitly being used for a "Temperature" load. </ ul>

13.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined load lookup table. NOT YET
IMPLEMENTED!!!!

Nastran Analysis Interface Module (AIM) Manual

12 CONTENTS

14 FEA Analysis

Structure for the analysis tuple = (‘Analysis Name', ‘Value'). 'Analysis Name' defines the reference name for the
analysis being specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary)
or a single string keyword (see Section Single Value String).

14.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"numDesiredEigenvalue": 10, "eigenNormaliztion": "MAS←↩
S", "numEstEigenvalue": 1, "extractionMethod": "GIV", "frequencyRange": [0, 10000]}) the following keywords (=
default values) may be used:

• analysisType = "Modal"
Type of load. Options: "Modal", "Static", "AeroelasticTrim", "AeroelasticFlutter" Note: "AeroelasticStatic" is
still supported but refers to "AeroelasticTrim" Note: "Optimization" and "StaticOpt" are not valid - Optimization
is initialized by the Analysis_Type AIM Input

• analysisLoad = "(no default)"
Single or list of "Load Name"s defined in FEA Load in which to use for the analysis (e.g. "Name1" or ["←↩
Name1","Name2",...].

• analysisConstraint = "(no default)"
Single or list of "Constraint Name"s defined in FEA Constraint in which to use for the analysis (e.g. "Name1"
or ["Name1","Name2",...].

• analysisSupport = "(no default)"
Single or list of "Support Name"s defined in FEA Support in which to use for the analysis (e.g. "Name1" or
["Name1","Name2",...].

• analysisDesignConstraint = "(no default)"
Single or list of "Design Constraint Name"s defined in FEA DesignConstraint in which to use for the analysis
(e.g. "Name1" or ["Name1","Name2",...].

• extractionMethod = "(no default)"
Extraction method for modal analysis.

• frequencyRange = [0.0, 0.0]
Frequency range of interest for modal analysis.

• numEstEigenvalue = 0
Number of estimated eigenvalues for modal analysis.

• numDesiredEigenvalue = 0
Number of desired eigenvalues for modal analysis.

• eigenNormaliztion = "(no default)"
Method of eigenvector renormilization. Options: "POINT", "MAX", "MASS"

• gridNormaliztion = 0
Grid point to be used in normalizing eigenvector to 1.0 when using eigenNormaliztion = "POINT"

• componentNormaliztion = 0
Degree of freedom about "gridNormalization" to be used in normalizing eigenvector to 1.0 when using eigen←↩
Normaliztion = "POINT"

Nastran Analysis Interface Module (AIM) Manual

14.2 Single Value String 13

• lanczosMode = 2
Mode refers to the Lanczos mode type to be used in the solution. In mode 3 the mass matrix, Maa,must be
nonsingular whereas in mode 2 the matrix K aa - sigma∗Maa must be nonsingular

• lanczosType = "(no default)"
Lanczos matrix type. Options: DPB, DGB.

• machNumber = 0.0 or [0.0, ..., 0.0]
Mach number used in trim analysis OR Mach numbers used in flutter analysis..

• dynamicPressure = 0.0
Dynamic pressure used in trim analysis.

• density = 0.0
Density used in trim analysis to determine true velocity, or flutter analysis.

• aeroSymmetryXY = "(no default)"
Aerodynamic symmetry about the XY Plane. Options: SYM, ANTISYM, ASYM. Aerodynamic symmetry about
the XY Plane. Options: SYM, ANTISYM, ASYM. SYMMETRIC Indicates that a half span aerodynamic model
is moving in a symmetric manner with respect to the XY plane. ANTISYMMETRIC Indicates that a half span
aerodynamic model is moving in an antisymmetric manner with respect to the XY plane. ASYMMETRIC
Indicates that a full aerodynamic model is provided.

• aeroSymmetryXZ = "(no default)"
Aerodynamic symmetry about the XZ Plane. Options: SYM, ANTISYM, ASYM. SYMMETRIC Indicates that
a half span aerodynamic model is moving in a symmetric manner with respect to the XZ plane. ANTISYM←↩
METRIC Indicates that a half span aerodynamic model is moving in an antisymmetric manner with respect to
the XZ plane. ASYMMETRIC Indicates that a full aerodynamic model is provided.

• rigidVariable = ["no default"]
List of rigid body motions to be used as trim variables during a trim analysis. Nastran valid labels are: ANG←↩
LEA, SIDES, ROLL, PITCH, YAW, URDD1, URDD2, URDD3, URDD4, URDD5, URDD6

• rigidConstraint = ["no default"]
List of rigid body motions to be used as trim constraint variables during a trim analysis. Nastran valid labels
are: ANGLEA, SIDES, ROLL, PITCH, YAW, URDD1, URDD2, URDD3, URDD4, URDD5, URDD6

• magRigidConstraint = [0.0 , 0.0, ...]
List of magnitudes of trim constraint variables. If none and 'rigidConstraint'(s) are specified then 0.0 is as-
sumed for each rigid constraint.

• controlConstraint = ["no default"]
List of controls surfaces to be used as trim constraint variables during a trim analysis.

• magControlConstraint = [0.0 , 0.0, ...]
List of magnitudes of trim control surface constraint variables. If none and 'controlConstraint'(s) are specified
then 0.0 is assumed for each control surface constraint.

• reducedFreq = [0.1, ..., 20.0], No Default Values are defined.
Reduced Frequencies to be used in Flutter Analysis. Up to 8 values can be defined.

14.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined analysis lookup table. NOT YET
IMPLEMENTED!!!!

Nastran Analysis Interface Module (AIM) Manual

14 CONTENTS

15 FEA DesignVariable

Structure for the design variable tuple = ("DesignVariable Name", "Value"). "DesignVariable Name" defines the
reference name for the design variable being specified. This string will be used in the FEA input directly. The
"Value" must be a JSON String dictionary (see Section JSON String Dictionary). In Nastran the DesignVariable
Name will be the LABEL used in the DESVAR input. For this reason the user should keep the length of this input to
a minimum number of characters, ideally 7 or less.

• DESVAR ID LABEL XINIT XLB XUB DELXV DDVAL

15.1 JSON String Dictionary

If "Value" is JSON string dictionary (eg. "Value" = {"designVariableType": "Property", "groupName": "plate", "upper←↩
Bound": 10.0, "fieldName": "TM"}) the following keywords (= default values) may be used:

• designVariableType = "Property"
Type of design variable in an optimization problem. Options: "Material", "Property".

• groupName = "(no default)"
Single or list of capsGroup or FEA Material name(s) to the design variable (e.g. "Name1" or ["Name1","←↩
Name2",...].

– For designVariableType Property a capsGroup Name (or names) is given. The property (see
FEA Property) also assigned to the same capsGroup will be automatically related to this design
variable entry.

– For designVariableType Material a FEA Material name (or names) is given.

• initialValue = 0.0
Initial value for the design variable.

• lowerBound = 0.0
Lower bound for the design variable.

• upperBound = 0.0
Upper bound for the design variable.

• maxDelta = 0.0
Move limit for the design variable.

• discreteValue = 0.0
List of discrete values do use for the design variable (e.g. [0.0,1.0,1.5,3.0].

• fieldName = "(no default)"
Fieldname of variable (e.g. "E" for Young's Modulus). Design Variables can be defined as two types based
on the designVariableType value. These are Material or Property. This means that an aspect of a
material or property input can change in the optimization problem. This input specifies what aspect of the
Material or Property is changing.

1. Material Types Selected based on the material type (see FEA Material, materialType) referenced in the
groupName above.

– MAT1, materialType = "Isotropic"

* "E", "G", "NU", "RHO", "A"

– MAT2, materialType = "Anisothotropic"

* "G11", "G12", "G13", "G22", "G23", "G33", "RHO", "A1", "A2", "A3"

Nastran Analysis Interface Module (AIM) Manual

16 FEA DesignConstraint 15

– MAT8, materialType = "Orthotropic"

* "E1", "E2", "NU12", "G12", "G1Z", "G2Z", "RHO", "A1", "A2"
– MAT9, materialType = "Anisotropic"

* "G11", "G12", "G13", "G14", "G15", "G16"

* "G22", "G23", "G24", "G25", "G26"

* "G33", "G34", "G35", "G36"

* "G44", "G45", "G46"

* "G55", "G56", "G66"

* "RHO", "A1", "A2", "A3", "A4", "A5", "A6"

2. Property Types (see FEA Property)

– PROD propertyType = "Rod"

* "A", "J"
– PBAR propertyType = "Bar"

* "A", "I1", "I2", "J"
– PSHELL propertyType = "Shell"

* "T"
– PCOMP propertyType = "Composite"

* "T1", "THETA1", "T2", "THETA2", ... "Ti", "THETAi"
– PSOLID propertyType = "Solid"

* not supported

• fieldPosition = 0
This input is ignored if not defined. The user may use this field instead of the fieldName input defined
above to relate design variables and property inputs. This requires knowledge of Nastran bulk data input
format for material and property input cards.

• independentVariable = "(no default)"
Single or list of "DesignVariable Name"s (that is the Tuple name) used to create/designate a dependent design
variable.

– independentValue = variableWeight[1] + variableWeight[2] ∗ SUM{independentVariableWeight[i] ∗
independentVariable[i]}

• independentVariableWeight = 1.0 or [1.0, 1.0, ...]
Single or list of weighting constants with respect to the variables set for "independentVariable". If the
length of this list doesn't match the length of the "independentVariable" list, the list is either truncated
[>length("independentVariable")] or expanded [<length("independentVariable")] in which case the last
weight is repeated.

• variableWeight = [1.0, 1.0]
Weighting constants for a dependent variable - used if "independentVariable"(s) have been provided.

16 FEA DesignConstraint

Structure for the design constraint tuple = (‘DesignConstraint Name', ‘Value'). 'DesignConstraint Name' defines
the reference name for the design constraint being specified. The "Value" must be a JSON String dictionary (see
Section JSON String Dictionary).

16.1 JSON String Dictionary

If "Value" is JSON string dictionary (eg. "Value" = {"groupName": "plate", "upperBound": 10.0}) the following key-
words (= default values) may be used:

Nastran Analysis Interface Module (AIM) Manual

16 CONTENTS

• groupName = "(no default)"
Single or list of capsGroup name(s) to the design variable (e.g. "Name1" or ["Name1","Name2",...].The
property (see FEA Property) also assigned to the same capsGroup will be automatically related to this
constraint entry.

• lowerBound = 0.0
Lower bound for the design constraint.

• upperBound = 0.0
Upper bound for the design constraint.

• responseType = "(no default)"
Response type options for DRESP1 Entry (see Nastran manual).

– Implemented Options

1. STRESS, for propertyType = "Rod" or "Shell" (see FEA Property)

2. CFAILURE, for propertyType = "Composite" (see FEA Property)

• fieldName = "(no default)"
For constraints, this field is only used currently when applying constraints to composites. This field is used
to identify the specific lamina in a stacking sequence that a constraint is being applied too. Note if the user
has design variables for both THEATA1 and T1 it is likely that only a single constraint on the first lamina is
required. For this reason, the user can simply enter LAMINA1 in addition to the possible entries defined in
the FEA DesignVariable section. Additionally, the fieldPosition integer entry below can be used. In
this case "LAMINA1" = 1.

– -# Property Types (see FEA Property)

* PCOMP propertyType = "Composite"

· "T1", "THETA1", "T2", "THETA2", ... "Ti", "THETAi"

· "LAMINA1", "LAMINA2", ... "LAMINAi"

• fieldPosition = 0
This input is ignored if not defined. The user may use this field instead of the fieldName input defined
above to identify a specific lamina in a composite stacking sequence where a constraint is applied. Please
read the fieldName information above for more information.

17 Vortex Lattice Surface

Structure for the Vortex Lattice Surface tuple = ("Name of Surface", "Value"). "Name of surface defines the name of
the surface in which the data should be applied. The "Value" can either be a JSON String dictionary (see Section
JSON String Dictionary) or a single string keyword string (see Section Single Value String).

17.1 JSON String Dictionary

If "Value" is a JSON string dictionary (eg. "Value" = {"numChord": 5, "spaceChord": 1.0, "numSpan": 10, "space←↩
Span": 0.5}) the following keywords (= default values) may be used:

• groupName = "(no default)"
Single or list of capsGroup names used to define the surface (e.g. "Name1" or ["Name1","Name2",...]. If no
groupName variable is provided an attempted will be made to use the tuple name instead;

• numChord = 10
The number of chordwise horseshoe vortices placed on the surface.

Nastran Analysis Interface Module (AIM) Manual

17.2 Single Value String 17

• spaceChord = 0.0
The chordwise vortex spacing parameter.

• numSpan = 10
The number of spanwise horseshoe vortices placed on the surface.

• spaceSpan = 0.0
The spanwise vortex spacing parameter.

• yMirror = False
Mirror surface about the y-direction.

17.2 Single Value String

If "Value" is a single string the following options maybe used:

• (NONE Currently)

18 Vortex Lattice Control Surface

Structure for the Vortex Lattice Control Surface tuple = ("Name of Control Surface", "Value"). "Name of control
surface defines the name of the control surface in which the data should be applied. The "Value" must be a JSON
String dictionary (see Section JSON String Dictionary).

18.1 JSON String Dictionary

If "Value" is a JSON string dictionary (e.g. "Value" = {"deflectionAngle": 10.0}) the following keywords (= default
values) may be used:

18.2 Single Value String

If "Value" is a single string, the following options maybe used:

• (NONE Currently)

19 Nastran AIM Examples

This section introduces the user to the Nastran AIM via examples. These examples are intended to introduce the
user to nastran functionality. They make use of the information found in the AIM Inputs, AIM Outputs and Nastran
AIM attributes sections.

19.1 Single Load Case Example

The first example is a simple three bar truss structure. This example is intended to demonstrate the use of all the
attributes in addition to introducing the user to the Nastran AIM.

Nastran Analysis Interface Module (AIM) Manual

18 CONTENTS

Figure 1: Three Bar Truss

The follow code details the process in a ∗.csm file that generates a three bar truss. Note to execute in serveCSM a
dictionary file must be included

• serveCSM -dict $ESP_ROOT/include/intent.dict feaThreeBar.csm

First step is to define the analysis intent that the geometry is intended support.

attribute capsIntent STRUCTURE

Next we will define the design parameters to define the wing cross section and planform. Notice that the despmtr
entries have a dimension input that must be defined for inputs with a length greater than one.

dimension X 1 4 1
dimension Y 1 4 1
dimension Z 1 4 1

despmtr X "-10; 0; 10; 0;"
despmtr Y " 0; 0; 0; -10;"
despmtr Z " 0; 0; 0; 0;"

Next the three bar truss is defined using the points defined in the despmtr entries. Notice that the middle edge
is "drawn" twice. This is done because OpenCASCADE cannot perform boolean operations on non-manifold (not
closed) wire bodies.

skbeg X[1,1] Y[1,1] Z[1,1]
linseg X[1,4] Y[1,4] Z[1,4]
linseg X[1,2] Y[1,2] Z[1,2]
linseg X[1,4] Y[1,4] Z[1,4]
linseg X[1,3] Y[1,3] Z[1,3]
skend

In this section the edge elements are attributed with a capsGroup string $bar1 etc. so information can be
assigned to them. Notice the capsIgnore attribute assigned to one of the overlapping "middle" edges defined in
the geometry above. The reason for this is discussed in the Nastran AIM attributes section.

select edge 1
attribute capsGroup $bar1
select edge 2
attribute capsGroup $bar2
select edge 3
attribute capsIgnore $multipleEdge
select edge 4
attribute capsGroup $bar3

Finally, the nodes are attributed. In this case, the three nodes across the top are given the same caps←↩
Constraint name. They could be assigned a different name allowing the user to define a different boundary
condition at each location. The lower node is given a different capsLoad name so a load can be applied.

Nastran Analysis Interface Module (AIM) Manual

19.1 Single Load Case Example 19

select node 1
attribute capsConstraint $boundary
select node 2
attribute capsLoad $force
select node 3
attribute capsConstraint $boundary
select node 4
attribute capsConstraint $boundary

The following input defines a pyCAPS input that can be used along with the above ∗.csm input to create a nastran
input. First the pyCAPS and os module needs to be imported.

Import pyCAPS class file
from pyCAPS import capsProblem

Import os module
try:

import os
except:

print ("Unable to import os module")
raise SystemError

Note if your Python major version is less than 3 (i.e. Python 2.7) the following statement should also be included so
that print statements work correctly.

from __future__ import print_function

Once the modules have been loaded the problem needs to be initiated.

Initialize capsProblem object
myProblem = capsProblem()

Next the ∗.csm file is loaded. Though not shown in this example the user has access to the X, Y and Z despmtr
inputs from this pyCAPS script.

Load CSM file
myProblem.loadCAPS("./csmData/feaThreeBar.csm")

The Nastran AIM is then loaded with the capsIntent set to STRUCTURE (this is consistent with the intent specified
above in the ∗.csm file.

Load nastran aim
nastranAIM = myProblem.loadAIM(aim = "nastranAIM",

altName = "nastran",
analysisDir= "NastranThreeBar",
capsIntent = "STRUCTURE")

After the AIM is loaded some of the inputs to the AIM are defined. A full list of options can be found in the AIM Inputs
section. In this case the Proj_Name is entered. The project name becomes the Nastran input file names. Two
are create projectName.bdf and projectName.dat. The ∗.bdf file contains the grid and connectivity
information. The data file contains the case control and other bulk data inputs required by Nastran. The input format
is selected as Free and large field format is used when the option is available. This is most likely in the GRID
entries only. Additionally the analysis type selected is Static. The maximum and minimum points that can be
placed along an edge is set to be two. This ensures that each edge shown in the figure will be represented by a
single finite element bar.

Set project name so a mesh file is generated
projectName = "threebar_nastran_Test"
nastranAIM.setAnalysisVal("Proj_Name", projectName)
nastranAIM.setAnalysisVal("File_Format", "Free")
nastranAIM.setAnalysisVal("Mesh_File_Format", "Large")
nastranAIM.setAnalysisVal("Edge_Point_Max", 2);
nastranAIM.setAnalysisVal("Edge_Point_Min", 2);
nastranAIM.setAnalysisVal("Analysis_Type", "Static");

Next the material inputs, property selection, constraints and loads are defined. First materials are defined.

Nastran Analysis Interface Module (AIM) Manual

20 CONTENTS

madeupium = {"materialType" : "isotropic",
"youngModulus" : 1.0E7 ,
"poissonRatio" : .33,
"density" : 0.1}

nastranAIM.setAnalysisVal("Material", [("Madeupium", madeupium)])

Next these materials are used in the property definition. In this case two bar type properties are assigned to the
edges. The outer bars have a property with a different area then the center bar. Note the relationship of bar1 etc.
between this pyCAPS input and the ∗,csm input previously shown.

rod = {"propertyType" : "Rod",
"material" : "Madeupium",
"crossSecArea" : 1.0}

rod2 = {"propertyType" : "Rod",
"material" : "Madeupium",
"crossSecArea" : 2.0}

nastranAIM.setAnalysisVal("Property", [("bar1", rod),
("bar2", rod2),
("bar3", rod)])

Next the three nodes with capsConstraint boundary are constrained in all six degrees of freedom.

constraint = {"groupName" : ["boundary"],
"dofConstraint" : 123456}

nastranAIM.setAnalysisVal("Constraint", ("BoundaryCondition", constraint))

Finally a load is applied the the node with the capsLoad force.

load = {"groupName" : "force",
"loadType" : "GridForce",
"forceScaleFactor" : 20000.0,
"directionVector" : [0.8, -0.6, 0.0]}

nastranAIM.setAnalysisVal("Load", ("appliedForce", load))

Finally an analysis case is defined that connects an analysis type to the load and constraint condition by name.

value = {"analysisType" : "Static",
"analysisConstraint" : "BoundaryCondition",
"analysisLoad" : "appliedForce"}

myProblem.analysis["nastran"].setAnalysisVal("Analysis", ("SingleLoadCase", value))

Once all the inputs have been set, aimPreanalysis needs to be executed. During this operation all the necessary
files to run Nastran are generated and placed in the analysis working directory (analysisDir)

nastranAIM.aimPreAnalysis()

An OS system call is then made from Python to execute Nastran.

print ("\n\nRunning Nastran......")
currentDirectory = os.getcwd() # Get our current working directory
os.chdir(nastranAIM.analysisDir) # Move into test directory
os.system("nastran old=no notify=no batch=no scr=yes sdirectory=./ " + projectName + ".dat"); # Run

Nastran via system call
os.chdir(currentDirectory) # Move back to working directory
print ("Done running Nastran!")

A call to aimPostanalysis is then made to check to see if AVL executed successfully and the expected files were
generated.

nastranAIM.aimPostAnalysis()

Finally the session is closed

myProblem.closeCAPS()

Nastran Analysis Interface Module (AIM) Manual

19.2 Multiple Load/Boundary Case Example 21

19.2 Multiple Load/Boundary Case Example

To create multiple load cases with different boundary conditions the pyCAPS input for constraints, and loads
changes with respect to the Single Load Case Example. In addition an analysis section is added.

The constraint section may expand to allow multiple boundary conditions. In this way each load case can have a
seperate boundary condition. If the input is left identical to the single load case example then the same boundary
condition will be applied to each load case.

constraints = []

constraint = {"groupName" : ["boundary"],
"dofConstraint" : 123456}

tmp = ("conOne", constraint)
constraints.append(tmp)

constraint = {"groupName" : ["boundary"],
"dofConstraint" : 123}

tmp = ("conTwo", constraint)
constraints.append(tmp)

nastranAIM.setAnalysisVal("Constraint", constraints)

Notice that an empty constraints variable has been defined. Then a tmp tuple is created with the name
"conOne" paired with the dictionary constraint. This tuple is appended to the empty constraints vari-
able. The process is repeated for the second boundary condition. Then the AIM input "Constraint" is defined
with the information.

Next the load input is expanded to contain multiple cases.

loads = []

load = {"groupName" : "force",
"loadType" : "GridForce",
"forceScaleFactor" : 20000.0,
"directionVector" : [0.8, -0.6, 0.0]}

loads.append(("loadOne", load))

load = {"groupName" : "force",
"loadType" : "GridForce",
"forceScaleFactor" : 20000.0,
"directionVector" : [-0.8, -0.6, 0.0]}

loads.append(("loadTwo", load))

nastranAIM.setAnalysisVal("Load", loads)

The process is identical to the constraint input.

Finally, analysis cases are defined that connect an analysis type to a load and constraint condition by name.

analysisCases = []

value = {"analysisType" : "Static",
"analysisConstraint" : "conOne",
"analysisLoad" : "loadOne"}

analysisCases.append(("analysisOne", value))

value = {"analysisType" : "Static",
"analysisConstraint" : "conTwo",
"analysisLoad" : "loadTwo"}

analysisCases.append(("analysisTwo", value))

myProblem.analysis["nastran"].setAnalysisVal("Analysis", analysisCases)

Notice how the tuple names "conOne", "loadOne" and "analysisOne" are all tied together. The
"analysisOne" string also becomes the case control LABEL for the load case in the Nastran input file.

To finish the pyCAPS input the process starting with the pre-analysis input is identical to the Single Load Case
Example input.

19.3 Modal Analysis Example Case

To create input for a modal analysis a two simple changes are required to the Single Load Case Example input. The
first change is to the AIM Inputs Analysis_Type. This input is the last input in the list below.

Nastran Analysis Interface Module (AIM) Manual

22 CONTENTS

Set project name so a mesh file is generated
projectName = "threebar_nastran_Test"
nastranAIM.setAnalysisVal("Proj_Name", projectName)
nastranAIM.setAnalysisVal("File_Format", "Free")
nastranAIM.setAnalysisVal("Mesh_File_Format", "Large")
nastranAIM.setAnalysisVal("Edge_Point_Max", 2);
nastranAIM.setAnalysisVal("Edge_Point_Min", 2);
nastranAIM.setAnalysisVal("Analysis_Type", "Modal");

A description of each of these inputs can be found in Single Load Case Example.

The second change is replacing the load case information with a definition for the Analysis AIM input.

eigen = { "extractionMethod" : "Lanczos",
"frequencyRange" : [0, 10000],
"numEstEigenvalue" : 1,
"numDesiredEigenvalue" : 10,
"eigenNormaliztion" : "MASS"}

nastranAIM.setAnalysisVal("Analysis", ("EigenAnalysis", eigen))

This information defines the eigenvalue solver method and parameters and assigns it as an analysis case.

19.4 Optimization Example Case

This section creates a design model out of the single load case example. The first change is an update to the
Analysis_Type AIM Input to StaticOpt.

Set project name so a mesh file is generated
projectName = "threebar_nastran_Test"
nastranAIM.setAnalysisVal("Proj_Name", projectName)
nastranAIM.setAnalysisVal("File_Format", "Free")
nastranAIM.setAnalysisVal("Mesh_File_Format", "Large")
nastranAIM.setAnalysisVal("Edge_Point_Max", 2);
nastranAIM.setAnalysisVal("Edge_Point_Min", 2);
nastranAIM.setAnalysisVal("Analysis_Type", "StaticOpt");

The next update adds a material allowable to the material input yieldAllow. This is not a requirement for THIS
optimization problem, but this input is referenced when design constraints are added later.

madeupium = {"materialType" : "isotropic",
"youngModulus" : 1.0E7 ,
"poissonRatio" : .33,
"density" : 0.1,
"yieldAllow" : 5.6E7}

nastranAIM.setAnalysisVal("Material", [("Madeupium", madeupium)])

The first large optimization input is the design variable definition section. For more information, the user is pointed
to the FEA DesignVariable section. In this section the area of each rod element in the three bar truss is defined as
a separate design variable. Finally each of these variables are used to defined AIM Input Design_Variable

DesVar1 = {"groupName" : "bar1",
"initialValue" : rod["crossSecArea"],
"lowerBound" : rod["crossSecArea"]*0.5,
"upperBound" : rod["crossSecArea"]*1.5,
"maxDelta" : rod["crossSecArea"]*0.1,
"fieldName" : "A"}

DesVar2 = {"groupName" : "bar2",
"initialValue" : rod2["crossSecArea"],
"lowerBound" : rod2["crossSecArea"]*0.5,
"upperBound" : rod2["crossSecArea"]*1.5,
"maxDelta" : rod2["crossSecArea"]*0.1,
"fieldName" : "A"}

DesVar3 = {"groupName" : "bar3",
"initialValue" : rod["crossSecArea"],
"lowerBound" : rod["crossSecArea"]*0.5,
"upperBound" : rod["crossSecArea"]*1.5,
"maxDelta" : rod["crossSecArea"]*0.1,
"fieldName" : "A"}

Nastran Analysis Interface Module (AIM) Manual

19.5 Composite Wing Example 23

myProblem.analysis["nastran"].setAnalysisVal("Design_Variable", [("Bar1A", DesVar1),
("Bar2A", DesVar2),
("Bar3A", DesVar3)])

The next unique section is the addition of design constraints. In this problem stress constraints in each rod element
are added.

designConstraint1 = {"groupName" : "bar1",
"responseType" : "STRESS",
"lowerBound" : -madeupium["yieldAllow"],
"upperBound" : madeupium["yieldAllow"]}

designConstraint2 = {"groupName" : "bar2",
"responseType" : "STRESS",
"lowerBound" : -madeupium["yieldAllow"],
"upperBound" : madeupium["yieldAllow"]}

designConstraint3 = {"groupName" : "bar3",
"responseType" : "STRESS",
"lowerBound" : -madeupium["yieldAllow"],
"upperBound" : madeupium["yieldAllow"]}

myProblem.analysis["nastran"].setAnalysisVal("Design_Constraint",[("stress1", designConstraint1),
("stress2", designConstraint2),
("stress3", designConstraint3)])

This completes the unique parts of the design inputs required for a Nastran optimization problem.

19.5 Composite Wing Example

This example introduces the use of composite materials. Initially a composite wing frequency analysis is completed.
This example will grow to introduce design optimization with composites, including design variable linking.

Figure 2: Composite Wing Example

First step is to define the analysis intent that the geometry is intended support. In this case the intent is STRUCT←↩
URE.

attribute capsIntent STRUCTURE

The parameter being set in this case is a definition for a coordinate system in Engineering Sketch Pad. The
documentation for csystem inputs is as follows.

CSYSTEM $csysName csysList
use: attach a Csystem to Body on top of stack
pops: any
pushes: any
notes: Sketch may not be open

if csysList contains 9 entries:
{x0, y0, z0, dx1, dy1, dz1, dx2, dy2, dz2}
origin is at (x0,y0,q0)
dirn1 is in (dx1,dy1,dz1) direction
dirn2 is part of (dx2,dy2,dz2) that is orthog. to dirn1

elseif csysList contains 5 entries and first is positive
{+iface, ubar0, vbar0, du2, dv2}
origin is at normalized (ubar0,vbar0) in iface
dirn1 is normal to Face

Nastran Analysis Interface Module (AIM) Manual

24 CONTENTS

dirn2 is in (du2,dv2) direction
elseif csysList contains 5 entries and first is negative

{-iedge, tbar, dx2, dy2, dz2}
origin is at normalized (tbar) in iedge
dirn1 is tangent to Edge
dirn2 is part of (dx2,dy2,dz2) that is orthog. to dirn1

elseif csysList contains 7 entries
{inode, dx1, dy1, dz1, dx2, dy2, dz2}
origin is at Node inode
dirn1 is in (dx1,dy1,dz1) direction
dirn2 is part of (dx1,dy2,dz2) that is orthog. to dirn1

else
error

semicolon-sep lists can instead refer to
multi-valued Parameter

dirn3 is formed by (dirn1)-cross-(dirn2)
does not create a Branch

In the compositesys parameter defined below 9 entries are given. Based on the documentation above this
indicates the following.

Origin 0.0 5.5 0.←↩
0

Vector along x-Axis 79.3685 -0.65432 0.←↩
0

Vector along y-Axis 0.65432 79.3685 0.←↩
0

It should be noted that the vector along the y-axis may not be input perfectly perpendicular to the vector along the
x-Axis. In this case ESP takes the projection of the input vector that is in the plane defined by both input vectors
and perpendicular to the x-Axis. This is the case for all csystem input options defined above.

dimension compositesys 9 1 0
set compositesys 0;5.5;0;79.3685;-0.65432;0;0.65432;79.3685;0

The geometry definition was generated by the ESP sketcher. Users are referred to ESP tutorials for information on
how to create a sketch. The result is copy and pasted into the ∗.csm file snippet shown below.

skbeg 0 0 0 1
skvar xy

-0.024750;0.051384;4.841311;-0.024750;-3.895337;0.000000;82.067045;-3.895337;0.000000;77.5
94095;3.314007;0.000000;4.132462;13.891219;0.000000;-2.340160;13.680727;0.000000;-1.235078;10.891711;0.000000;

skcon X 1 -1 0
skcon Y 1 -1 0
skcon V 1 2 0
skcon L 3 4 8.5
skcon R 7 1 5.5
skcon H 2 3 0
skcon L 1 2 3.91
skcon L 6 7 3
skcon L 5 6 6.5
skcon L 4 5 74.2
skcon L 2 3 82.1
skcon P 1 -1 0
skcon A 5 -1 10
skcon A 6 -1 110
skcon A 4 -1 50
linseg ::x[2] ::y[2] 0
linseg ::x[3] ::y[3] 0
linseg ::x[4] ::y[4] 0
linseg ::x[5] ::y[5] 0
linseg ::x[6] ::y[6] 0
linseg ::x[7] ::y[7] 0
arc ::x[1] ::y[1] 0 ::d[1] xy

skend 0

The root edges are marked as capsConstraint locations. The overall surfaces is given a capsGroup and
capsLoad attribute and a csystem definition is attached to it using the compositesys parameter previously
discussed.

Nastran Analysis Interface Module (AIM) Manual

19.5 Composite Wing Example 25

attribute capsGroup $wing
attribute capsLoad $wing
attribute capsBound $wing
csystem wing compositesys
select edge 7
attribute capsConstraint $root
select edge 6
attribute capsConstraint $root
select edge 1
attribute capsConstraint $root

This model was created in centimeters and is converted to inches.

scale 1/2.54

Note if your Python major version is less than 3 (i.e. Python 2.7) the following statement should also be included so
that print statements work correctly.

The following input defines a pyCAPS input that can be used along with the above ∗.csm input to create a nastran
input. First the pyCAPS and os module needs to be imported.

Once the modules have been loaded the problem needs to be initiated.

Next the ∗.csm file is loaded. Though not shown in this example the user has access to the X, Y and Z despmtr
inputs from this pyCAPS script.

The Nastran AIM is then loaded with the capsIntent set to STRUCTURE (this is consistent with the fidelity specified
above in the ∗.csm file.

After the AIM is loaded some of the inputs to the AIM are defined. A full list of options can be found in the AIM Inputs
section. In this case the Proj_Name is entered. The project name becomes the Nastran input file names. Two
are create projectName.bdf and projectName.dat. The ∗.bdf file contains the grid and connectivity
information. The data file contains the case control and other bulk data inputs required by Nastran. The input format
is selected as Small and Large field format is used when the option is available. This is most likely in the GRID
entries only. Additionally, the analysis type selected is Static. The maximum points that can be placed along an
edge is set to be 40.

In this example two materials are defined. This demonstrates how simple it is to change materials in a model. Both
an aluminum and Graphite_expoxy material are defined in the Material AIM Inputs.

Again property information is defined for both an aluminum and composite stack version of the model. However,
only the composite entry is defined in the Property AIM Inputs.

The composite definition brings together the materials in each layer of the stack, their thicknesses and orien-
tations. For the sequence defined below the order of the sequence is given in the table below. The full sequence
is given to point out that they symmetry condition is applied to the right side of the compositeOrientation
input.

Nastran Analysis Interface Module (AIM) Manual

26 CONTENTS

0 0 0 0 -45 45 -45 45 45 -45 45 -45 0 0 0 0

Finally, the property is assigned to the regions with the capsGroup $wing attribute.

In this example the root edges are constrained in all degrees of freedom. This constraint references the caps←↩
Constraint $root input defined in the ∗.csm file.

As previously shown in Modal Analysis Example Case information to define an eigen value problem is entered and
the Analysis AIM Input is defined.

Finally, preAnalysis is executed to generate all the required Nastran inputs.

Nastran is executed with a simple system call.

A post analysis command is entered allowing the user to access output data, if desired, from the application.

The caps session is closed.

19.6 Composite Wing Optimization Example

This section removes the frequency analysis and adds a pressure load to the previously introduced composite wing
example case. Then An optimization problem allowing the thickness of each ply layer to change is performed.

Nastran Analysis Interface Module (AIM) Manual

REFERENCES 27

References

[1] Michael Reymond and Mark Miller. MSC NASTRAN Quick Reference Guide Version 68, 1996. 1

Nastran Analysis Interface Module (AIM) Manual

	1 Introduction
	1.1 Nastran AIM Overview
	1.2 Examples

	2 Nastran AIM attributes
	3 Geometry Representation and Analysis Intent
	4 AIM Inputs
	5 AIM Shareable Data
	6 AIM Outputs
	7 Nastran Data Transfer
	7.1 Data transfer from Nastran
	7.2 Data transfer to Nastran

	8 FEA Material
	8.1 JSON String Dictionary
	8.2 Single Value String

	9 FEA Property
	9.1 JSON String Dictionary
	9.2 Single Value String

	10 FEA Constraint
	10.1 JSON String Dictionary
	10.2 Single Value String

	11 FEA Support
	11.1 JSON String Dictionary
	11.2 Single Value String

	12 FEA Connection
	12.1 JSON String Dictionary
	12.2 Single Value String

	13 FEA Load
	13.1 JSON String Dictionary
	13.2 Single Value String

	14 FEA Analysis
	14.1 JSON String Dictionary
	14.2 Single Value String

	15 FEA DesignVariable
	15.1 JSON String Dictionary

	16 FEA DesignConstraint
	16.1 JSON String Dictionary

	17 Vortex Lattice Surface
	17.1 JSON String Dictionary
	17.2 Single Value String

	18 Vortex Lattice Control Surface
	18.1 JSON String Dictionary
	18.2 Single Value String

	19 Nastran AIM Examples
	19.1 Single Load Case Example
	19.2 Multiple Load/Boundary Case Example
	19.3 Modal Analysis Example Case
	19.4 Optimization Example Case
	19.5 Composite Wing Example
	19.6 Composite Wing Optimization Example

	Bibliography

