
Engineering Sketch Pad (ESP) Training
Session 5: Using UDPs, UDFs, and

UDCs

John F. Dannenhoffer, III
Syracuse University

Bob Haimes
Massachusetts Institute of Technology

Revised for v1.13

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 1 / 21

Overview

Difference between UDPs, UDFs, and UDCs
Using user-defined primitives (UDPs)

list of UDPs shipped with ESP

calling a UDP
Using user-defined functions (UDFs)

list of UDFs shipped with ESP

calling a UDF
Using user-defined components (UDCs)

list of UDCs shipped with ESP

calling a UDC
Writing a UDC

creating the interface
example UDC

Hands-on exercises:
reflected cone
fuselage

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 2 / 21

Differences Between UDPs, UDFs, and UDCs (1)

Users can add their own user-defined primitives (UDPs)

create a single solid
do not consume any Bodys from the stack
are written in C, C++, or FORTRAN and are compiled
can be written either top-down or bottom-up or both
have access to the entire suite of methods provided by EGADS

are coupled into ESP dynamically at run time

Users can add their own user-defined functions (UDFs)

are the same as UDPs, except they consume one or two Bodys
from the stack

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 3 / 21

Differences Between UDPs, UDFs, and UDCs (2)

Users can add their own user-defined components (UDCs)

can be thought of as “macros”
consume zero or more Bodys from the stack
create zero or more Bodys (onto the stack)
are written as .csm-type scripts

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 4 / 21

UDPs Shipped with ESP (1)

bezier — generate a Bezier Wire, Sheet, or Solid Body from a
input file

biconvex — generate a biconvex airfoil

box — generate a (rectangular) Wire, Sheet, or Solid Body
centered at the origin (with possibly-rounded corners)

csm — call OpenCSM recursively to read a .csm fie and create a
Body

ellipse — generate an ellipse centered at the origin (try to use
the supell UDP instead)

fitcurve — fit a Bspline curve to a set of points

freeform — generate a freeform Wire, Sheet, or Solid Body
from an input file

hex — create a general hexahedron from its corners segments

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 5 / 21

UDPs Shipped with ESP (2)

import — read a Body out of a .step file

kulfan — generate a Kulfan airfoil

naca — generate a NACA 4-series airfoil or camberline

naca456 — generate a NACA 4-, 5-, or 6-series airfoil

nurbbody — generate a Body from a seried of NURBS

parsec — generate a Parsec airfoil by either specifying
Sobieski’s parameters or spline parameters

pod — generates a VSP-like pod

tt radwaf – generate a radial waffle, which is useful for creating
fuselage structures

sample — used as an example for users who want to create
their own UDP

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 6 / 21

UDPs Shipped with ESP (3)

sew — sew Faces in a step file into a Solid Body

stag — simple turbomachinery airfoil generator

supell — generate a 4-quadrant super-ellipse

waffle — generate a waffle by extruding a 2D group of
segments

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 7 / 21

Calling a UDP

UDPs are called with a UDPRIM statement
UDPRIM $primtype $argName1 argValue1 \

$argName2 argValue2 \

$argName3 argValue3 \

$argName4 argValue4

$primtype must start with a letter

At most 4 name-value pairs can be specified on the UDPRIM

statement
More name-value pairs can be specified in any number of
UDPARG statements that precede the UDPRIM statement
updarg $primtype $argName1 argValue1 \

$argName2 argValue2 \

$argName3 argValue3 \

$argName4 argValue4

name-value pairs are processed in order (with possible
over-writing)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 8 / 21

UDFs Shipped with ESP

createBEM — create a NASTRAN-type built-up-element
(BEM) file from Body on Stack

createPoly — create a TETGEN .poly file between the two
Bodys on the top of the Stack

editAttr — edit the Attributes for the Body on the top of the
stack

UDFs are called in exactly same way as UDPs are called

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 9 / 21

UDCs Shipped with ESP

biconvex — generate a biconvex airfoil

boxudc — similar to the box UDP

diamond — generate a double-diamond airfoil

flapz — cut a (deflected) flap in a Body

gen rot — general rotation with two fixed points

popupz — pop up a part of the configuration

spoilerz — pop up a spoiler

duct — generate a duct

fuselage — generate a fuselage

strut — generate a strut (between a duct and wing)

wing — generate a wing

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 10 / 21

Calling a UDC

UDCs are called with a UDPRIM statement

$primtype must start with a slash (/), dollar-slash ($/), or
dollar-dollar-slash ($$/)

if /, then the UDC file is in the current working directory
if $/, then the UDC file is in the same directory as the .csm file
if $$/, then the UDC file is in ESP ROOT/udc

The UDPRIM statement can be preceded by one or more UDPARG

statements

name-value pairs are processed in order (with possible
over-writing)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 11 / 21

Writing a UDC

Define the interface

input variables (with default values)
output variables (with default values)
dimensioned variables (which all default to 0)

Add assertions to ensure valid inputs

Make sure all “output” variables are assigned values

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 12 / 21

Example UDC — dumbbell.udc

dumbbell

INTERFACE Lbar in 0 # length of bar

INTERFACE Dbar in 0 # diameter of bar

INTERFACE Dball in 0 # diameter of balls

INTERFACE vol out 0 # volume

ASSERT ifpos(Lbar,1,0) 1

ASSERT ifpos(Dbar,1,0) 1

ASSERT ifpos(Dball,1,0) 1

SET Lhalf "Lbar / 2"

CYLINDER -Lhalf 0 0 +Lhalf 0 0 Dbar

SPHERE -Lhalf 0 0 Dball

UNION

SPHERE +Lhalf 0 0 Dball

UNION

SET vol @volume

END

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 13 / 21

Example UDC — jack.csm

jack

UDPARG $/dumbbell Lbar 5.0

UDPARG $/dumbbell Dball 1.0

UDPRIM $/dumbbell Dbar 0.2

SET foo @@vol

STORE dumbbell 0 1

RESTORE dumbbell

ROTATEY 90 0 0

UNION

RESTORE dumbbell

ROTATEZ 90 0 0

UNION

show that vol was a local variable in .udc

ASSERT ifnan(vol,1,0) 1

END

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 14 / 21

Example UDC — Jack

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 15 / 21

Example UDC — cutter.udc

cutter

INTERFACE xx in 0

INTERFACE yy in 0

INTERFACE zbeg in 0

INTERFACE zend in 0

ASSERT ifpos(xx.size-2,1,0) 1

ASSERT ifzero(xx.size-yy.size,1,0) 1

SKBEG xx[1] yy[1] zbeg

PATBEG i xx.size-1

LINSEG xx[i+1] yy[i+1] zbeg

PATEND

LINSEG xx[1] yy[1] zbeg

SKEND 1

EXTRUDE 0 0 zend-zbeg

END

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 16 / 21

Example UDC — scribeCyl.csm

scribeCyl

DIMENSION xpoints 1 3

DIMENSION ypoints 1 3

SET xpoints "-1.; 1.; .0;"

SET ypoints "-.5; -.5; +.5;"

CYLINDER -3 0 0 +3 0 0 2

ROTATEX 90 0 0

UDPARG $/cutter xx xpoints

UDPARG $/cutter yy ypoints

UDPARG $/cutter zbeg 0

UDPRIM $/cutter zend 3

SUBTRACT

END

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 17 / 21

Example UDC — Scribed Cylinder

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 18 / 21

Hands-on Exercises

Write mirrorDup.udc to

store a copy of the Body on the top of the stack
mirror the Body across a plane whose normal vector and
distance from the origin are given
union the original and mirrored Bodys

Apply mirrorDup.udc to a cone whose vertex is at the origin

Write fuselage.udc to create a fuselage by blending a series of
super-ellipses, where the dimensions of the cross-sections are
provided in arrays

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 19 / 21

Reflected Cone

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 20 / 21

Muddy Cards

Any questions?

Any suggestions?

Were the examples useful?

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 5 June 2018 21 / 21

