
Computational Aircraft Prototype Syntheses:
The CAPS API

Part of ESP Revision 1.13

Bob Haimes
haimes@mit.edu

Aerospace Computational Design Lab
Massachusetts Institute of Technology

Haimes CAPS API 5 May 2018 1 / 68

CAPS Infrastructure in ESP

ESP
UI

pyCAPS

User

——–

MDO
Framework

Sorcer

OpenMDAO

ModelCenter
Analysis

tools

Computa-
tional

Analysis
Prototype
Syntheses

(CAPS)
API

Problem
Database

Analysis
Subsystem

Geometry
Subsystem

—
OpenCSM

EGADS

Analysis
I/O Files

Analysis
Interface

& Meshing
(AIM)

Geometry
Database

Haimes CAPS API 5 May 2018 2 / 68

CAPS Definitions

Problem Object
The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data
associated with the run(s), which can be both multi-fidelity and multidisciplinary.
There can be multiple Problems in a single execution of CAPS and each Problem is
designed to be thread safe allowing for multi-threading of CAPS at the highest level.

Value Object
A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both.
Also Value Objects can refer to mission parameters that are stored at the top-level of
the CAPS database. The values contained in any input Value Object can be bypassed
by the linkage connection to another Value (or DataSet) Object of the same shape.
Attributes are also cast to temporary (User) Value Objects.

Haimes CAPS API 5 May 2018 3 / 68

CAPS Definitions

Analysis Object
The Analysis Object refers to an instance of running an analysis code. It holds the
input and output Value Objects for the instance and a directory path in which to
execute the code (though no explicit execution is initiated). Multiple various
analyses can be utilized and multiple instances of the same analysis can be handled
under the same Problem.

Bound Object
A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the outer surface of the wing). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body).

Dimensionally:
1D – Collection of Edges
2D – Collection of Faces

Haimes CAPS API 5 May 2018 4 / 68

CAPS Definitions

VertexSet Object
A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
its data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object
A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

Haimes CAPS API 5 May 2018 5 / 68

CAPS Objects

Object SubTypes Parent Object
capsProblem Parametric, Static
capsValue GeometryIn, GeometryOut, capsProblem,

Branch, Parameter, User capsValue
capsAnalysis capsProblem
capsValue AnalysisIn, AnalysisOut capsAnalysis,

capsValue
capsBound capsProblem
capsVertexSet Connected, Unconnected capsBound

capsDataSet User, Analysis, Interpolate, capsVertexSet
Conserve, Builtin, Sensitivity

Body Objects are EGADS Objects (egos)

Haimes CAPS API 5 May 2018 6 / 68

CAPS Intent

This value reflects the “Intention” that will be used for a specific analysis. When a
geometric entity (a Body) is constructed it should have the Attribute “capsIntent”
assigned. The assignment along with the Body Type allows CAPS the ability to filter
the Bodies available for any Analysis.

Intent Reference Body Type Reference
0 ALL 0 ALL

32 WAKE 20 NODE
64 STRUCTURE 6 WIREBODY

128 LINEARAERO 7 FACEBODY
256 FULLPOTENTIAL 8 SHEETBODY
512 CFD 9 SOLIDBODY

The Body filtering is performed by a “bit-orred” combination of the intent and the Body type. For
example: if you were looking for a BEM you would specify (SHEETBODY|STRUCTURE), which would
be 72. If you wanted all SHEETBODYs regardless of analysis it would be (SHEETBODY|ALL), or simply
the value 8. And if you wanted any body marked as structure the it would be (ALL|STRUCTURE), 64 in
this case.

Haimes CAPS API 5 May 2018 7 / 68

Other Reserved CAPS Attribute names

capsLength
This string Attribute must be applied to an EGADS Body to indicate the length units
used in the geometric construction.

capsBound
This string Attribute must be applied to EGADS BRep Objects to indicate which
CAPS Bound(s) are associated with the geometry. A entity can be assigned to
multiple Bounds by having the Bound names separated by a semicolon. Face
examples could be “Wing”, “Wing;Flap”, “Fuselage”, and etc.

Note: Bound names should not cross dimensional lines.

capsGroup
This string Attribute can be applied to EGADS BRep Objects to assist in grouping
geometry into logical sets. A geometric entity can be assigned to multiple groups in
the same manner as the capsBound attribute.

Note: CAPS does not internally use this, but is suggested of classifying geometry.

Haimes CAPS API 5 May 2018 8 / 68

AIMs and query Functions – capsValue Structure

The capsValue Structure is simply the data found within a CAPS Value Object.
aimInputs and aimOutputs must fill the structure with the type, form and
optionally units of the data. aimInputs also sets the default value(s) in the vals
member. The structure’s members listed below must be filled (most have defaults).

Value Type – no default
The value type can be one of:

0 Boolean 2 Double 4 String Tuple
1 Integer 3 Character String

Shape of the Value – 0 is the default
dim can be one of:

0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

Haimes CAPS API 5 May 2018 9 / 68

AIMs and query Functions – capsValue Structure

Value Dimensions – 1 is the default
nrow and ncol set the dimension of the Value. If both are 1 this has a scalar shape.
If either nrow or ncol are one then the shape is vector. If both are greater than 1
then this represents a 2D array of values.

Varying Length – the default is “Fixed”
The member lfixed indicates whether the length of the Value is allowed to change.

Varying Shape – the default is “Fixed”
The member sfixed indicates whether the shape of the Value is allowed to change.

Can Value be NULL – the default is “NotAllowed”
The member nullVal indicates whether the Value is or can be NULL:
0 – “NotAllowed”, 1 – “NotNull”, 2 – “IsNull”

Haimes CAPS API 5 May 2018 10 / 68

AIMs and query Functions – capsValue Structure

capsValue Member Usage Notes
sfixed & dim
If the shape is “Fixed” then nrow and ncol must fit that shape (or a lesser
dimension). [Note that the length can change if lfixed is “Change”.] If sfixed is
“Change” then you change dim before changing nrow and ncol to a higher
dimension than the current setting.

lfixed & nrow/ncol
If the length is “Fixed” then all updates of the Value(s) must match in both
nrow and ncol (which presumes a “Fixed” shape).

nullVal & nrow/ncol
nrow and ncol should remain at their values even if the Value is NULL to
maintain the dimension (and possibly length) when “Fixed”. To indicate a
NULL all that is necessary is to set nullVal to “IsNull”. The actual allocated
storage can remain in the vals member or set to NULL.

Use EG alloc to allocate any memory required for the vals member.

Haimes CAPS API 5 May 2018 11 / 68

CAPS API Functions

Haimes CAPS API 5 May 2018 12 / 68

CAPS API – Utilities
Open CAPS Problem
icode = caps open(char *name, char *pname, capsObj *problem)

name the input file name – action based on file extension:
*.caps read the saved CAPS problem file
*.csm initialize the project using the specified OpenCSM file

*.egads initialize the project based on the static geometry

pname the input CAPS problem process name

problem the returned CAPS problem Object

Set Verbosity Level
icode = caps outLevel(capsObj problem, int outLevel)

problem the CAPS problem object

outLevel 0 - minimal, 1 - standard (default), 2 - debug

icode the integer return code / old outLevel

Close CAPS Problem
icode = caps close(capsObj problem)

problem the input CAPS problem to close and perform a memory cleanup

Haimes CAPS API 5 May 2018 13 / 68

CAPS API – Utilities
Save Problem file
icode = caps save(capsObj problem, char *name)

problem the input CAPS problem Object to write

name the save file name – no extension (added by this function)

icode the integer return code

Information about an Object
icode = caps info(capsObj object, char **name, enum *type, enum *stype,

capsObj *link, capsObj *parent, capsOwn *last)

object the input CAPS Object

name the returned Object name pointer (if any)

type the returned data type: Problem, Value, Analysis, Bound, VertexSet, DataSet

stype the returned subtype (depending on type)

link the returned linkage Value Object (NULL – no link)

parent the returned parent Object (NULL for a Problem or an Attribute generated User Value)

last the returned last owner to touch the Object

icode integer return code

Haimes CAPS API 5 May 2018 14 / 68

CAPS API – Utilities
Children Sizing info from a Parent Object
icode = caps size(capsObj object, enum type, enum stype, int *size)

object the input CAPS Object

type the data type to size: Bodies, Attributes, Value, Analysis, Bound, VertexSet, DataSet

stype the subtype to size (depending on type)

size the returned size

icode integer return code

Get Child by Index
icode = caps childByIndex(capsObj object, enum type, enum stype,

int index, capsObj *child)

object the input parent Object

type the Object type to return: Value, Analysis, Bound, VertexSet, DataSet

stype the subtype to find (depending on type)

index the index [1-size]

child the returned CAPS Object

icode integer return code

Haimes CAPS API 5 May 2018 15 / 68

CAPS API – Utilities

Get Child by Name
icode = caps childByName(capsObj object, enum type, enum stype,

char *name, capsObj *child)

object the input parent Object

type the Object type to return: Value, Analysis, Bound, VertexSet, DataSet

stype the subtype to find (depending on type)

name a pointer to the index character string

child the returned CAPS Object

icode integer return code

Delete an Object
icode = caps delete(capsObj object)

object the Object to be deleted
Note: only Value Objects of subtype User and Bound Objects may be deleted!

icode integer return code

Haimes CAPS API 5 May 2018 16 / 68

CAPS API – Utilities

Get Body by index
icode = caps bodyByIndex(capsObj obj, int ind, ego *body, char **unit)

obj the input CAPS Problem or Analysis Object

ind the index [1-size]

body the returned EGADS Body Object

units pointer to the string declaring the length units – NULL for unitless values

icode integer return code

Set Owner Data
icode = caps setOwner(capsObj prob, char *pname, capsOwn *owner)

prob the input CAPS Problem Object

pname a pointer to the process name character string

owner a pointer to the CAPS Owner structure to fill

icode integer return code

Notes: (1) This increases the Problem’s sequence number
(2) This does not return the owner pointer, but uses the address to fill
(3) The internal strings can be freed up with caps freeOwner

Haimes CAPS API 5 May 2018 17 / 68

CAPS API – Utilities

Free Owner Information
caps freeOwner(capsOwn *owner)

owner a pointer to the CAPS Owner structure to free up the members pname, pID and user

Get Owner Information
icode = caps ownerInfo(capsOwn owner, char **pname, char **pID,

char **userID, short datetime[6], long *sNum)

owner the input CAPS Owner structure

pname the returned pointer to the process name

pID the returned pointer to the process ID

userID the returned pointer to the user ID

datetime the filled date/time stamp info [year, month, day, hour, minute, second]

sNum the sequence number (always increasing)

icode integer return code

Haimes CAPS API 5 May 2018 18 / 68

CAPS API – Utilities

Get Error Information
icode = caps errorInfo(capsErrs *errors, int eindex, capsObj *errObj,

int *nLines, char ***lines)

errors the input CAPS Error structure

eindex the index into error (1 bias)

errObj the offending CAPS Object

nLines the returned number of comment lines to describe the error

lines a pointer to a list of character strings with the error description

icode integer return code

Free Error Structure
icode = caps freeError(capsErrs *errors)

errors the CAPS Error structure to be freed

icode integer return code

Haimes CAPS API 5 May 2018 19 / 68

CAPS API – Value Objects

Create A Value Object
icode = caps makeValue(capsObj problem, char *vname, enum subtype,

enum vtype, int nrow, int ncol, void *data,
char *units, capsObj *val)

problem the input CAPS Problem Object where the Value to to reside

vname the Value Object name to be created

subtype the Object subtype: Parameter or User

vtype the value data type:
0 Boolean 2 Double 4 String Tuple
1 Integer 3 Character String

nrow number of rows (not needed for Character Strings)

ncol number of columns (not needed for strings) – vlen = nrow * ncol

data pointer to the appropriate block of memory
must be a pointer to a capsTuple structure(s) when vtype is a Tuple

units pointer to the string declaring the units – NULL for unitless values

val the returned CAPS Value Object

icode integer return code

Haimes CAPS API 5 May 2018 20 / 68

CAPS API – Value Objects

Retrieve Values
icode = caps getValue(capsObj val, enum *vtype, int *vlen, void **data,

char **units, int *nErr, capsErrs **errs)

val the input Value Object

vtype the returned data type:
0 Boolean 2 Double 4 String Tuple
1 Integer 3 Character String 5 Value Object

vlen the returned value length

data a filled pointer to the appropriate block of memory (NULL – don’t fill)
Can use childByIndex to get Value Objects

units the returned pointer to the string declaring the units

nErr the returned number of errors generated – 0 means no errors

errs the returned CAPS error structure – NULL with no errors

icode integer return code

Use the structure capsTuple when casting data if a Tuple (4)

Haimes CAPS API 5 May 2018 21 / 68

CAPS API – Value Objects
Reset A Value Object
icode = caps setValue(capsObj val, int nrow, int ncol, void *data)

val the input CAPS Value Object (not for GeometryOut or AnalysisOut)
nrow number of rows (not needed for Character Strings)
ncol number of columns (not needed for strings) – vlen = nrow * ncol
data pointer to the appropriate block of memory used to reset the values

Get Valid Value Range
icode = caps getLimits(capsObj val, void **limits)

val the input Value Object
limits an returned pointer to a block of memory containing the valid range [2*sizeof(vtype)

in length] – or – NULL if not yet filled

Set Valid Value Range
icode = caps setLimits(capsObj val, void *limits)

val the input Value Object (only for the User & Parameter subtypes)
limits a pointer to the appropriate block of memory which contains the minimum and

maximum range allowed (2 in length)
icode integer return code

Haimes CAPS API 5 May 2018 22 / 68

CAPS API – Value Object

Get Value Shape/Dimension
icode = caps getValueShape(capsObj val, int *dim, enum *lfixed,

enum *sfixed, enum *ntype,
int *nrow, int *ncol)

val the input Value Object

dim the returned dimensionality:
0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

lfixed 0 – the length(s) can change, 1 – the length is fixed

sfixed 0 – the Shape can change, 1 – Shape is fixed

ntype 0 – NULL invalid, 1 – not NULL, 2 – is NULL

nrow number of rows – parent index for Value vtypes

ncol number of columns
Note: vlen = nrow * ncol

icode integer return code

Haimes CAPS API 5 May 2018 23 / 68

CAPS API – Value Object

Set Value Shape/Dimension
icode = caps setValueShape(capsObj val, int dim, enum lfixed,

enum sfixed, enum ntype)

val the input Value Object (only for the User & Parameter subtypes)

dim the dimensionality:
0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

lfixed 0 – the length(s) can change, 1 – the length is fixed

sfixed 0 – the Shape can change, 1 – Shape is fixed

ntype 0 – NULL invalid, 1 – not NULL, 2 – is NULL

Units conversion
icode = caps convert(capsObj val, char *units, double in, double *out)

val the reference Value Object

units the pointer to the string declaring the source units

in the source value to be converted

out the returned converted value in the Value Object’s units

Haimes CAPS API 5 May 2018 24 / 68

CAPS API – Value Object

Transfer Values
icode = caps transferValues(capsObj src, enum tmethod, capsObj dst,

int *nErr, capsErrs **errs)

src the source input Value Object (not for Value or Tuple vtypes) – or –
DataSet Object

tmethod 0 – copy, 1 – integrate, 2 – weighted average – (1 & 2 only for DataSet src)

dst the destination Value Object to receive the data
Notes:

Must not be GeometryOut or AnalysisOut
Shapes must be compatible
Overwrites any Linkage

nErr the returned number of errors generated – 0 means no errors

errs the returned CAPS error structure – NULL with no errors

icode integer return code

Haimes CAPS API 5 May 2018 25 / 68

CAPS API – Value Object

Establish Linkage
icode = caps makeLinkage(capsObj link, enum tmethod, capsObj trgt)

link linking Value Object (not for Value or Tuple vtypes or Value subtype User) – or –
DataSet Object

tmethod 0 – copy, 1 – integrate, 2 – weighted average – (1 & 2 only for DataSet link)

trgt the target Value Object which will get its data from link
Notes:

Must not be GeometryOut or AnalysisOut
Shapes must be compatible
link = NULL removes any Linkage

icode integer return code

Note: circular linkages are not allowed!

Haimes CAPS API 5 May 2018 26 / 68

CAPS API – Attributes

Get Attribute by name
icode = caps attrByName(capsObj object, char *name, capsObj *attr)

object any CAPS Object

name a string referring to the Attribute name

attr the returned User Value Object (must be deleted when no longer needed)

icode integer return code

Get Attribute by index
icode = caps attrByIndex(capsObj object, int in, capsObj *attr)

object any CAPS Object

in the index (bias 1) to the list of Attributes

attr the returned User Value Object (must be deleted when no longer needed)
Attribute name is the Value Object name

icode integer return code

Note: The shape of the original Value Object is not maintained, but the length is correct.

Haimes CAPS API 5 May 2018 27 / 68

CAPS API – Attributes

Set an Attribute
icode = caps setAttr(capsObj object, char *name, capsObj attr)

object any CAPS Object

name a string referring to the Attribute name – NULL: use name in attr
Note: an existing Attribute of this name is overwritten with the new value

attr the Value Object containing the attribute
The attribute will not maintain the Value Object’s shape

icode integer return code

Delete an Attribute
icode = caps deleteAttr(capsObj object, char *name)

object any CAPS Object

name a string referring to the Attribute to delete
NULL deletes all attributes attached to the Object

icode integer return code

Haimes CAPS API 5 May 2018 28 / 68

CAPS API – Analysis

Query Analysis – Does not ‘load’ or create an object
icode = caps queryAnalysis(capsObj problem, char *aname,

int *nIn, int *nOut, int *execution)

problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name
Note: this causes the the DLL/Shared-Object to be loaded (if not already resident)

nIn the returned number of Inputs

nOut the returned number of Outputs

execution the returned execution flag: 0 – no execution, 1 – AIM performs analysis

icode integer return code

Free memory in Value Structure
caps freeValue(capsValue *value)

value a pointer to the Value structure to be cleaned up

Haimes CAPS API 5 May 2018 29 / 68

CAPS API – Analysis
Query Analysis Input Information
icode = caps getInput(capsObj problem, char *aname, int index,

char **ainame, capsValue *default)
problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name

index the Input index [1-nIn]

ainame a pointer to the returned Analysis Input variable name (use EG free to free memory)

default a pointer to the filled default value(s) and units – use caps freeValue to cleanup

Query Analysis Output Information
icode = caps getOutput(capsObj problem, char *aname, int index,

char **aoname, capsValue *form)
problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name

index the Output index [1-nOut]

aoname a pointer to the returned Analysis Output variable name (use EG free)

form a pointer to the Value Shape & Units information – returned
use caps freeValue to cleanup

Haimes CAPS API 5 May 2018 30 / 68

CAPS API – Analysis

Load Analysis into a Problem
icode = caps load(capsObj problem, char *aname, char *apath,

char *unitSys, int intentCombo, int naobj,
capsObj *aobjs, capsObj *analysis)

problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name
Note: this causes the the DLL/Shared-Object to be loaded (if not already resident)

apath the absolute filesystem path to both read and write files
this is required even if the AIM does not use the the filesystem, so that the combination
of aname and apath is unique

unitSys pointer to string describing the unit system to be used by the AIM (can be NULL)
see specific AIM documentation for a list of strings for which the AIM will respond

intentCombo the Intent “orred” with the Geometry Type (including wildcards)
ignored if the Analysis only supports a single Intent

naobj the number of parent Analysis Object(s)

aobjs a list of the parent Analysis Object(s) – may be NULL if naobj == 0

analysis the resultant Analysis Object

icode integer return code

Haimes CAPS API 5 May 2018 31 / 68

CAPS API – Analysis
Initialize Analysis from another Analysis Object
icode = caps dupAnalysis(capsObj from, char *apath, int naobj,

capsObj *aobjs, capsObj *analysis)

from an existing CAPS Analysis Object

apath the absolute filesystem path to both read and write files
required so that the combination of aname and apath is unique

naobj the number of parent Analysis Object(s)

aobjs a list of the parent Analysis Object(s) – may be NULL if naobj == 0

analysis the resultant Analysis Object

icode integer return code

Get Dirty Analysis Object(s)
icode = caps dirtyAnalysis(capsObj object, int *nAobj, capsObj **aobjs)

problem a CAPS Problem, Bound or Analysis Object

nAobjs the returned number of dirty Analysis Objects

aobjs a returned pointer to the list of dirty Analysis Objects (freeable)

icode integer return code

Haimes CAPS API 5 May 2018 32 / 68

CAPS API – Analysis

Get Info about an Analysis Object
icode = caps analysisInfo(capsObj analysis, char **apath, char **uSys,

int *intent, int *naobj, capsObj *aobjs,
int *nfields, char ***fnames, int **ranks,
int *exec, int *status)

analysis the input Analysis Object

apath a returned pointer to the string specifying the filesystem path for file I/O

uSys returned pointer to string describing the unit system used by the AIM (can be NULL)

intent the returned Intent associated with this Analysis Object

naobj the returned number of parent Analysis Object(s)

aobjs a returned pointer to a list of the parent Analysis Object(s)

nfields the returned number of fields for DataSet filling

fnames a returned pointer to a list of character strings with the field/DataSet names

ranks a returned pointer to a list of ranks associated with each field

exec the returned execution flag: 0 – no execution, 1 – AIM performs analysis

status 0 – up to date, 1 – dirty Analysis inputs, 2 – dirty Geometry inputs
3 – both Geometry & Analysis inputs are dirty , 4 – new geometry,
5 – post Analysis required, 6 – Execution & post Analysis required

Haimes CAPS API 5 May 2018 33 / 68

CAPS API – Analysis

Generate Analysis Inputs
icode = caps preAnalysis(capsObj analysis, int *nErr, capsErrs **errs)

analysis the Analysis (or Problem) Object
a Geometry-only regen is forced when this is a Problem Object

nErr the returned number of errors generated – 0 means no errors

errs the returned CAPS error structure – NULL with no errors

icode integer return code

Mark Analysis as Run
icode = caps postAnalysis(capsObj analysis, capsOwn current, int *nErr,

capsErrs **errors)

analysis the Analysis Object
Note: this clears all Analysis Output Objects to force reloads/recomputes

current the CAPS owner structure information for the run

nErr the returned number of errors generated – 0 means no errors

errors the returned CAPS error structure – NULL with no errors

icode integer return code

Haimes CAPS API 5 May 2018 34 / 68

CAPS API – Analysis

Backdoor AIM Specific Communication
icode = caps AIMbackdoor(capsObj analysis, char *JSONin,

char **JSONout)

analysis the Analysis Object

JSONin a pointer to a character string that AIM function aimBackdoor will respond to.

JSONout a returned pointer to a character string that AIM function aimBackdoor creates and
passes back as the result to the request (may be freeable – depending on the AIM).

icode integer return code

Haimes CAPS API 5 May 2018 35 / 68

CAPS API – Analysis Data

Create a Bound – Open until completeBound
icode = caps makeBound(capsObj problem, int dim, char *bname,

capsObj *bound)

problem a CAPS Problem Object

dim the dimensionality of the Bound (1 – 3)

bname the Bound name (matching the capsBound Attribute)

bound the resultant open Bound Object

icode integer return code

Complete a Bound
icode = caps completeBound(capsObj bound)

bound the CAPS Bound Object to close after creating all of the VertexSets & DataSets
make calls to makeVertexSet and makeDataSet in between these 2 functions

icode integer return code

Haimes CAPS API 5 May 2018 36 / 68

CAPS API – Analysis Data

Get Information about a Bound
icode = caps boundInfo(capsObj bound, enum *state, int *dim,

double *plims)

bound the CAPS Bound Object

state the returned Bound state:
-1 Open
0 Empty & Closed
1 single BRep entity
2 multiple BRep entities

-2 multiple BRep entities – Error in reparameterization!

dim the returned dimensionality of the Bound (1 – 3)

plims the filled parameterization limits (2 values when dim is 1, 4 when dim is 2)

icode integer return code

Haimes CAPS API 5 May 2018 37 / 68

CAPS API – Analysis Data
Make a VertexSet
icode = caps makeVertexSet(capsObj bound, capsObj analysis,

char *vname, capsObj *vset)

bound an input open CAPS Bound Object

analysis the Analysis Object (NULL – Unconnected)

vname a character string naming the VertexSet (can be NULL for a Connected VertexSet)

vset the returned VertexSet Object

icode integer return code

Get Info about a VertexSet
icode = caps vertexSetInfo(capsObj vset, int *nGpts, int *nDpts,

capsObj *bound, capsObj *analysis)

vset the VertexSet Object

nGpts the returned number of Geometry points in the VertexSet

nDpts the returned number of point Data positions in the VertexSet

bound the returned associated Bound Object

analysis the returned associated Analysis Object (NULL – Unconnected)

icode integer return code

Haimes CAPS API 5 May 2018 38 / 68

CAPS API – Analysis Data

Fill an Unconnected VertexSet
icode = caps fillUnVertexSet(capsObj vset, int npts, double *xyzs)

vset the input Unconnected VertexSet Object

npts the number of points in the VertexSet

xyzs the point positions (3*npts in length)

icode integer return code

Create a DataSet
icode = caps makeDataSet(capsObj vset, char *dname, enum method,

int rank, capsObj *dset)

vset the VertexSet Object – associated Bound must be open

dname a pointer to a string containing the name of the DataSet (i.e., pressure)

method the method used for data transfers: (Sensitivity, Analysis, Interpolate, Conserve, User)

rank the rank of the data (e.g., 1 – scalar, 3 – vector)

dset the returned DataSet Object

icode integer return code

Haimes CAPS API 5 May 2018 39 / 68

CAPS API – Analysis Data
DataSet Naming Conventions

Multiple DataSets in a Bound can have the same Name
Allows for automatic data transfers
One source (from either Analysis or User Methods)
Reserved Names:

DSet Name rank Meaning Comments
xyz 3 Geometry Positions
xyzd 3 Data Positions Not for vertex-based

discretizations
param* 1/2 t or [u,v] data for Geometry

Positions
paramd* 1/2 t or [u,v] for Data Positions Not for vertex-based

discretizations
GeomIn* 3 Sensitivity for the Geometry can have [irow, icol] in

Input GeomIn name
* Note: not valid for 3D Bounds

Haimes CAPS API 5 May 2018 40 / 68

CAPS API – Analysis Data
Get Data from a DataSet
icode = caps getData(capsObj dset, int *npts, int *rank,

double **data, char **units)

dset the DataSet Object

npts the returned number of points in the DataSet

rank the returned rank of the data (e.g., 1 – scalar, 3 – vector)

data the returned pointer to the data (rank*npts in length)

units the returned pointer to the string declaring the units

icode integer return code

Get History of a DataSet
icode = caps getHistory(capsObj dset, capsObj *vset, int *nhist,

capsOwn **hist)

dset the DataSet Object

vset the returned associated VertexSet Object

nhist the returned length of the history list

hist the returned pointer to the list (nhist in length)

icode integer return code

Haimes CAPS API 5 May 2018 41 / 68

CAPS API – Analysis Data
Put User Data into a DataSet
icode = caps setData(capsObj dset, int nverts, int rank, double *data,

char *units)

dset the DataSet Object

nverts the number of points in data – must match declared npts

rank the rank of the data – must match declared rank (e.g., 1 – scalar, 3 – vector)

data a pointer to the data (rank*nverts in length)

units the pointer to the string declaring the units

icode integer return code

Get DataSet Objects by Name
icode = caps getDataSets(capsObj bound, char *dname, int *nobj,

capsObj **dsets)

bound an input CAPS Bound Object

dname a pointer to a string containing the name of the DataSet

nobj the returned number of Objects with the name

dsets a returned pointer to the list of DataSet Objects (freeable)

icode integer return code

Haimes CAPS API 5 May 2018 42 / 68

CAPS API – Analysis Data

Get Triangulations for a 2D VertexSet
icode = caps triangulate(capsObj vset, int *nGtris, int **Gtris,

int *nDtris, int **Dtris)

vset the input CAPS Connected VertexSet Object

nGtris the returned number of Geometry-based Triangles

Gtris the returned pointer to a list of indices (bias 1) referencing Geometry-based points
(3*nGtris in length) – freeable

nDtris the returned number of Data-based Triangles (0 if discretization is vertex based)

Dtris the returned pointer to a list of indices (bias 1) referencing Data-based points
(3*nDtris in length) – freeable

icode integer return code

Haimes CAPS API 5 May 2018 43 / 68

AIM Plugin Functions

Haimes CAPS API 5 May 2018 44 / 68

Analysis Interface & Meshing

Hides all of the individual Analysis details (and peculiarities)
Dynamically loaded at runtime – extendibility and extensibility

Windows Dynamically Loaded Libraries (name.dll)
LINUX Shared Objects (name.so)

MAC Bundles, CAPS will use the so file extension
An AIM plugin is required for each Analysis code at:

a specific intent
a specific mode (i.e., where the inputs may be different)

Plugin names must be unique – loaded by the name

† indicates memory handled by CAPS in the following functions
i.e., CAPS will free these memory blocks when necessary

Haimes CAPS API 5 May 2018 45 / 68

Analysis Interface & Meshing – Initialization

Initialization Information for the AIM
icode = aimInitialize(int ngIn, capsValue *gIn, int *qeFlg,

char *unitSys, int *nIntent, int **intents,
int *nIn, int *nOut, int *nFields,
char ***fnames, int **ranks)

ngIn the number of Geometry Input value structures

gIn a pointer to the list of Geometry Input value structures

qeFlg on Input: 1 indicates a query and not an analysis instance;
on Output: 1 specifies that the AIM executes the analysis

unitSys a pointer to a character string declaring the unit system – can be NULL

nIntent the returned number of intentions for this AIM requires

intents the returned pointer to the intents associated with this Analysis †
nIn the number of Inputs (minimum of 1)∗

nOut the number of possible Outputs∗

nFields the number of fields to responds to for DataSet filling

fnames a pointer to a list of character strings with the field/DataSet names †
ranks a pointer to a list of ranks associated with each field †

∗nIn & nOut should not depend on the intent
Haimes CAPS API 5 May 2018 46 / 68

Analysis Interface & Meshing – Support

Discrete Structure
The CAPS Discrete data structure holds the spatial discretization information for a
Bound. It defines reference positions for the location of the vertices that support the
geometry and optionally the positions for the data locations (if these differ). This
structure can contain a homogeneous or heterogeneous collection of element types
and optionally specifies match positions for conservative data transfers.

Fill-in the Discrete data for a Bound Object– Optional
icode = aimDiscr(char *tname, capsDiscr *discr)

tname the Bound name
Note: all of the BRep entities are examined for the attribute capsBound. Any that
match tname must be included when filling this capsDiscr.

discr the Discrete structure to fill
Note: the AIM instance, AIM info pointer and the dimensionality have been filled in
before this function is invoked.

icode integer return code

Haimes CAPS API 5 May 2018 47 / 68

Analysis Interface & Meshing – Support

Frees up data in a Discrete Structure
icode = aimFreeDiscr(capsDiscr *discr)

discr the Discrete Structure to have its members freed
if NULL, this flags that all internal data stored in the AIM should be cleaned up!

icode integer return code

Element in the Mesh – Optional
icode = aimLocateElement(capsDiscr *discr, double *params,

double *param, int *eIndex, double *bary)

discr the input Discrete Structure

params the input global parametric space (at all of the geometry support positions)
rank is the dimensionality (t for 1D, [u, v] for 2D and [x, y, z] for 3D)

param the input requested parametric position in params (dimensionality in length)

eIndex the returned element index in the discr where the position was found (1 bias)

bary the resultant Barycentric/reference position in the element eIndex

icode integer return code

Haimes CAPS API 5 May 2018 48 / 68

Analysis Interface & Meshing – Input Prep

Input Information for the AIM
icode = aimInputs(int inst, void *aimInfo, int index, char **ainame,

capsValue *default)

inst the AIM instance index

aimInfo the AIM context – NULL if called from caps getInput

index the Input index [1-nIn]

ainame a pointer to the returned Analysis Input variable name

default a pointer to the filled default value(s) and units – CAPS will free any allocated memory

Parse Input data & Generate Input File(s)
icode = aimPreAnalysis(int inst, void *aimInfo, char *apath,

capsValue *inputs, capsErrs **errs)

inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)

apath the filesystem path where the input file(s) are to be written

inputs the complete suite of Analysis inputs (nIn in length)

errs a pointer to the returned structure where input error(s) occurred – NULL no errors

Haimes CAPS API 5 May 2018 49 / 68

Analysis Interface & Meshing – Output Parsing
Output Information for the AIM
icode = aimOutputs(int inst, void *aimInfo, int index, char **aonam,

capsValue *form)

inst the AIM instance index
aimInfo the AIM context (used by the Utility Functions)

index the Output index [1-nOut]
aonam a pointer to the returned Analysis Output variable name

form a pointer to the Value Shape & Units information – to be filled
any actual values stored are ignored/freed

Calculate/Retrieve Output Information
icode = aimCalcOutput(int inst, void *aimInfo, char *apath, int index,

capsValue *val, capsErrs **errors)

inst the AIM instance index
aimInfo the AIM context (used by the Utility Functions)

apath the filesystem path where the Analysis output file(s) should be read
index the Output index [1-nOut] for this single result

val a pointer to the capsValue data to fill – CAPS will free any allocated memory
errors a pointer to the returned error structure where output parsing error(s) occurred

NULL with no errors
Haimes CAPS API 5 May 2018 50 / 68

Analysis Interface & Meshing – Data Transfers

Data Transfer using the Discrete Structure – Optional
icode = aimTransfer(capsDiscr *discr, char *name, int npts,

int rank, double *data, char **units)

discr the input Discrete Structure

name the field name to that corresponds to the fill

npts the number of points to be filled

rank the rank of the data

data a pointer associated with the data to be filled (rank*npts in length)

units the returned pointer to the string declaring the units †
return NULL to indicate unitless values

icode integer return code

Haimes CAPS API 5 May 2018 51 / 68

Analysis Interface & Meshing – Data Transfers
Interpolation on the Bound – Optional
icode = aimInterpolation(capsDiscr *discr, char *name, int eIndex,

double *bary, int rank, double *data,
double *result)

icode = aimInterpolateBar(capsDiscr *discr, char *name, int eIndex,
double *bary, int rank, double *r bar,
double *d bar)

discr the input Discrete Structure

name a pointer to the input DataSet name string

eIndex the input target element index (1 bias) in the Discrete Structure

bary the input Barycentric/reference position in the element eIndex

rank the input rank of the data

data values at the data (or geometry) positions

result the filled in results (rank in length)

r bar input d(objective)/d(result)

d bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
Haimes CAPS API 5 May 2018 52 / 68

Analysis Interface & Meshing – Data Transfers

Element Integration on the Bound – Optional
icode = aimIntegration(capsDiscr *discr, char *name, int eIndex,

int rank, double *data, double *result)
icode = aimIntegrateBar(capsDiscr *discr, char *name, int eIndex,

int rank, double *r bar, double *d bar)

discr the input Discrete Structure

name a pointer to the input DataSet name string

eIndex the input target element index (1 bias) in discr

rank the input rank of the data

data values at the data (or geometry) positions – NULL length/area/volume of element

result the filled in results (rank in length)

r bar input d(objective)/d(result)

d bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions

Haimes CAPS API 5 May 2018 53 / 68

Analysis Interface & Meshing – Data Transfers
Data Transfer to Child AIM – Optional
icode = aimData(char *name, enum *vtype, int *rank, int *nrow,

int *ncol, void **data, char **units)

name the agreed-upon data name to transfer

vtype value data type – returned

rank the rank of the data – returned (negative – child should free data)

nrow the number of rows – returned

ncol the number of columns – returned

data a void pointer associated with the data – returned

units the pointer to the string declaring the units (will be free’d by child) – returned

AIM specific Communication – Optional
icode = aimBackdoor(int inst, void *aimInfo, char *JSONin,

char **JSONout)

inst the AIM instance index

aimInfo the AIM context

JSONin a pointer to a character string that represents the inputs.

JSONout a returned pointer to a character string that is the output of the request.

Haimes CAPS API 5 May 2018 54 / 68

AIM Helper Functions

Haimes CAPS API 5 May 2018 55 / 68

Analysis Interface & Meshing – Utility Library

provides useful functions for the AIM programmer
note that all function names begin with aim
if any of these functions are used, then the library must be
included in the AIM so/DLL build

Bodies/Nodes Available through aim getBodies
1 If NO Bodies/Nodes on the stack have a capsIntent assigned, ALL Bodies/Nodes are provided to

the AIM that match the AIM’s acceptable list of intention combos (set at aimInitialize).
intentCombo of caps load is ignored and acts as if set to ALL.

2 If Bodies/Nodes on the stack HAVE capsIntent attributes assigned and any wildcard
intentCombo is specified, CAPS will internally filter the bodies and provide the AIM with
Bodies/Nodes that match the intention combinations defined in aimInitialize. A warning is
raised if no Bodies/Nodes have combinations that match with the expected values for the AIM.

3 If Bodies/Nodes on the stack HAVE capsIntent attributes assigned and a intentCombo (not with
a wildcard) is provided, CAPS will internally filter the Bodies/Nodes and only supply the AIM
with the Bodies/Nodes that match the combination.

Haimes CAPS API 5 May 2018 56 / 68

Analysis Interface & Meshing – Utility Library

Get Bodies
icode = aim getBodies(void *aimInfo, int *nBody, ego **bodies)

aimInfo the AIM context

nBody the returned number of EGADS Body Objects that match the intentCombo

bodies the returned pointer to a list of EGADS Body/Node Objects,
Tessellation Objects (set by aim setTess) follow (length – 2*nBody)

icode integer return code

Units conversion
icode = aim convert(void *aimInfo, char *inUnits, double inValue,

char *outUnits, double *outValue)

aimInfo the AIM context

inUnits the pointer to the string declaring the source units

inValue the value to be converted

outUnits the pointer to the string declaring the desired units

outValue the returned converted value

icode integer return code

Haimes CAPS API 5 May 2018 57 / 68

Analysis Interface & Meshing – Utility Library

Name to Index conversion
icode = aim getIndex(void *aimInfo, char *name, enum stype)

aimInfo the AIM context

name the pointer to the string specifying the name to look-up
NULL returns the total number of members in the subtype

stype GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

icode index (1 bias) or negative integer return code

Index to Name conversion
icode = aim getName(void *aimInfo, int index, enum stype, char **name)

aimInfo the AIM context

index the index to use (1 bias)

stype GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

name the returned pointer to the string specifying the name

icode integer return code

Haimes CAPS API 5 May 2018 58 / 68

Analysis Interface & Meshing – Utility Library

Get Value Structure
icode = aim getValue(void *aimInfo, int index, enum stype,

capsValue *value)

aimInfo the AIM context

index the index to use (1 bias)

stype GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

value the returned pointer to the capsValue structure

icode integer return code

Haimes CAPS API 5 May 2018 59 / 68

Analysis Interface & Meshing – Utility Library

Data Transfer from Parent AIM(s)
icode = aim getData(void *aimInfo, char *name, enum *vtype, int *rank,

int *nrow, int *ncol, void **data, char **units)

aimInfo the AIM context

name the requested agreed-upon name to fill

vtype the returned value data type

rank the returned rank of the data (negative – data should be free’d when done)

nrow the returned number of rows

ncol the returned number of columns

data a returned void pointer associated with the data

units the returned pointer to the string declaring the units (should be free’d)
NULL indicates unitless values

icode integer return code

Notes: All parent AIMs are queried. If none properly respond, this function returns
CAPS NOTFOUND. If multiple parents respond then this function returns
CAPS SOURCEERR. Parents must not be dirty.

Haimes CAPS API 5 May 2018 60 / 68

Analysis Interface & Meshing – Utility Library

Establish Linkage from Parent or Geometry
icode = aim link(void *aimInfo, char *name, enum stype,

capsValue *default)

aimInfo the AIM context

name the requested Value Object name to link

stype Value subtype (GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or
ANALSYSOUT)

default the pointer from aimInputs

icode integer return code

Note: For ANALYSISIN or ANALYSISOUT subtypes all parent Analyses are
queried. If none is found in the parent hierarchy, this function returns
CAPS NOTFOUND. The query is performed from the oldest ancestor down. The first
match is used.

Haimes CAPS API 5 May 2018 61 / 68

Analysis Interface & Meshing – Utility Library

Get Geometry State WRT the Analysis
icode = aim newGeometry(void *aimInfo)

aimInfo the AIM context

icode CAPS SUCCESS for new, CAPS CLEAN if not regenerated since last here

Set Tessellation for a Body
icode = aim setTess(void *aimInfo, ego object)

aimInfo the AIM context

object the EGADS Tessellation Object to use for the associated Body –or –
the Body Object to remove and delete an existing tessellation
Note that the Body Object is part of the Tessellation Object

icode integer return code

An error is raised when trying to set a Tessellation Object when one exists.

If the Problem is STATIC then the AIM (or CAPS application) is responsible for
deleting the Tessellation Object. Otherwise removal of the Tessellation Object is
controlled internally during Body operations. If a Tessellation Object is removed (no
longer associated with the Body) then CAPS deletes the Tessellation Object.

Haimes CAPS API 5 May 2018 62 / 68

Analysis Interface & Meshing – Utility Library

Get Discretization Structure
icode = aim getDiscr(void *aimInfo, char *bname, capsDiscr **discr)

aimInfo the AIM context

bname the Bound name

discr pointer to the returned Discrete structure

icode integer return code

Get Data from Existing DataSet
icode = aim getDataSet(capsDiscr *discr, char *dname, enum *method,

int *npts, int *rank, double **data)

discr the input Discrete Structure

dname the requested DataSet name

method the returned method used for data transfers

npts the returned number of points in the DataSet

rank the returned rank of the DataSet

data a returned pointer to the data within the DataSet

icode integer return code

Haimes CAPS API 5 May 2018 63 / 68

Analysis Interface & Meshing – Utility Library

Get Bound Names
icode = aim getBounds(void *aimInfo, int *nBname, char ***bnames)

aimInfo the AIM context

nBname returned number of Bound names

tnames returned pointer to list of Bound names (freeable)

Get Unit System
icode = aim unitSys(void *aimInfo, char **unitSys)

aimInfo the AIM context

unitSys a returned pointer to a character string declaring the unit system – can be NULL

icode integer return code

Haimes CAPS API 5 May 2018 64 / 68

Analysis Interface & Meshing – Utility Library

Setup for Sensitivities
icode = aim setSensitivity(void *aimInfo, char *GIname, int *irow,

int *icol)

aimInfo the AIM context

GIname the pointer to the string that matches the Geometry Input Parameter name

irow the parameter row to use – 1 bias

icol the parameter column to use – 1 bias

Notes: (1) aim setTess must have been invoked sometime before calling this function to set the
tessellations for the Bodies of interest.

(2) Call aim setSensitivity before call(s) to aim getSensitivity.

Haimes CAPS API 5 May 2018 65 / 68

Analysis Interface & Meshing – Utility Library

Get Sensitivities based on Tessellation Components
icode = aim getSensitivity(void *aimInfo, ego tess, int ttype,

int index, int *npts, double **dxyz)

aimInfo the AIM context

tess the EGADS Tessellation Object

ttype topological type – 0 - NODE, 1 - EDGE, 2 - FACE
Configuration Sensitivities – -1 - EDGE, -2 - FACE

index the index in the Body (associated with the tessellation) based on the type

npts the returned number of sensitivities (number of tessellation points)

dxyz a pointer to the returned sensitivities – 3*npts in length (freeable)

icode integer return code

Note: Call aim setSensitivity before call(s) to aim getSensitivity.

Haimes CAPS API 5 May 2018 66 / 68

Analysis Interface & Meshing – Utility Library

Get Global Tessellation Sensitivities
icode = aim sensitivity(void *aimInfo, char *GIname, int irow,

int icol, ego tess, int *npts, double **dxyz)

aimInfo the AIM context

GIname the pointer to the string that matches the Geometry Input Parameter name

irow the parameter row to use – 1 bias

icol the parameter column to use – 1 bias

tess the EGADS Tessellation Object

npts the returned number of sensitivities (number of global vertices)

dxyz a pointer to the returned sensitivities – 3*npts in length (freeable)

icode integer return code

Note: Used to get the tessellation sensitivities for the entire Tessellation Object. The
number of points is the global number of vertices in the tessellation.

Haimes CAPS API 5 May 2018 67 / 68

CAPS Return Codes

CAPS SUCCESS 0
CAPS BADRANK -301
CAPS BADDSETNAME -302
CAPS NOTFOUND -303
CAPS BADINDEX -304
CAPS NOTCHANGED -305
CAPS BADTYPE -306
CAPS NULLVALUE -307
CAPS NULLNAME -308
CAPS NULLOBJ -309
CAPS BADOBJECT -310
CAPS BADVALUE -311
CAPS PARAMBNDERR -312
CAPS NOTCONNECT -313
CAPS NOTPARMTRIC -314
CAPS READONLYERR -315
CAPS FIXEDLEN -316
CAPS BADNAME -317
CAPS BADMETHOD -318

CAPS CIRCULARLINK -319
CAPS UNITERR -320
CAPS NULLBLIND -321
CAPS SHAPEERR -322
CAPS LINKERR -323
CAPS MISMATCH -324
CAPS NOTPROBLEM -325
CAPS RANGEERR -326
CAPS DIRTY -327
CAPS HIERARCHERR -328
CAPS STATEERR -329
CAPS SOURCEERR -330
CAPS EXISTS -331
CAPS IOERR -332
CAPS DIRERR -333
CAPS NOTIMPLEMENT -334
CAPS EXECERR -335
CAPS CLEAN -336
CAPS BADINTENT -337

Haimes CAPS API 5 May 2018 68 / 68

