FRICTION Analysis Interface Module (AIM) Manual

Ed Alyanak and Ryan Durscher
AFRL/RQVC

May 14, 2018

CONTENTS 1

Contents
1 Introduction 1
1.1 FRICTION AIM OVEIVIEW o o e 1
1.2 FRICTION Modifications e e e 2
1.3 Examples L e e 2
2 AIM Attributes 2
3 Geometry Representation and Analysis Intent 2
4 AIM Inputs 2
5 AIM Outputs 3
6 FRICTION Examples 3
6.1 Prerequisites e e e 3
6.1.1 Scriptfiles e 3
6.2 Creating Geometry using ESP L 3
6.3 Performing analysis using pyCAPS 5
Bibliography 7

1 Introduction

1.1 FRICTION AIM Overview

FRICTION provides an estimate of laminar and turbulent skin friction and form drag suitable for use in aircraft pre-
liminary design [1]. Taken from the FRICTION manual: "The program has its roots in a program by Ron Hendrickson
at Grumman. It runs on any computer. The input requires geometric information and either the Mach and altitude
combination, or the Mach and Reynolds number at which the results are desired. It uses standard flat plate skin
friction formulas. The compressibility effects on skin friction are found using the Eckert Reference Temperature
method for laminar flow and the van Driest Il formula for turbulent flow. The basic formulas are valid from subsonic
to hypersonic speeds, but the implementation makes assumptions that limit the validity to moderate supersonic
speeds (about Mach 3). The key assumption is that the vehicle surface is at the adiabatic wall temperature (the
user can easily modify this assumption). Form factors are used to estimate the effect of thickness on drag, and a
composite formula is used to include the effect of a partial run of laminar flow."

An outline of the AIM's inputs, outputs and attributes are provided in AIM Inputs and AIM Outputs and AIM Attributes,
respectively.

The accepted and expected geometric representation and analysis intentions are detailed in Geometry Represen-
tation and Analysis Intent.

Upon running preAnalysis the AIM generates a single file, "frictionInput.txt” which contains the input information
and control sequence for FRICTION to execute. To populate output data the AIM expects a file, "frictionOutput.txt",
to exist after running FRICTION. An example execution for FRICTION looks like (Linux and OSX executable being
used - see FRICTION Modifications):

friction frictionInput.txt frictionOutput.txt

AVL Analysis Interface Module (AIM) Manual

2 CONTENTS

1.2 FRICTION Modifications

While FRICTION is available from, FRICTION download, the AIM assumes that a modified version of FRICT+«
ION is being used. The modified version allows for longer input and output file name lengths, as well as other I/O
modifications. This modified version of FRICTION, friction_eja_mod.f, is supplied and built with the AIM. During the
compilation the source code is compiled into an executable with the name friction (Linux and OSX) or friction.exe
(Windows).

1.3 Examples

An example problem using the FRICTION AIM may be found at FRICTION Examples.

2 AIM Attributes

The following list of attributes drives the FRICTION geometric definition. Aircraft components are defined as cross
sections in the low fidelity geometry definition. To be able to logically group the cross sections into wings, tails,
fuselage, etc they must be given a grouping attribute. This attribute defines a logical group along with identifying a
set of cross sections as a lifting surface or a body of revolution. The format is as follows.

» capsType This string attribute labels the FaceBody as to which type the section is assigned. This information
is also used to logically group sections together by type to create wings, tails, stores, etc. Because AWAVE
is relatively rigid capsType attributes must be on of the following items:

Lifting Surfaces: Wing, Tail, HTail, VTail, Horizontal_Tail, Vertical_Tail, Canard

Body of Revolution: Fuselage, Fuse, Store

« capsintent This attribute is a CAPS requirement to indicate the analysis fidelity the geometry representation
supports. Options are: ALL, LINEARAERO

» capsReferenceArea [Optional: Default 1.0] This attribute may exist on any Body. Its value will be used as
the SREF entry in the FRICTION input.

+ capsLength This attribute defines the length units that the x.csm file is generated in. Friction input MUST be
in units of feet. The AIM handles all unit conversion internally based on this input.

3 Geometry Representation and Analysis Intent

The geometric representation for the FRICTION AIM requires that the bodies be either a face body(ies) (FACEB«
ODY) or non-manifold sheet body(ies) (SHEETBODY). The attribute capsintent should be set to LINEARAERO or
ALL.

4 AIM Inputs

The following list outlines the FRICTION inputs along with their default values available through the AIM interface.
All inputs to the FRICTION AIM are variable length arrays. All inputs must be the same length .

* Mach = double
OR

* Mach = [double, ... , double]
Mach number.

« Altitude = double
OR

AVL Analysis Interface Module (AIM) Manual

http://www.dept.aoe.vt.edu/~mason/Mason_f/MRsoft.html

5 AIM Outputs 3

« Altitude = [double, ... , double]
Altitude in units of kft number.

» BL_Transition = double [0.1 default]
Boundary layer laminar to turbulent transition percentage [0.0 turbulent to 1.0 laminar] location for all sections.

5 AIM Outputs

Total, Form, and Friction drag components:

» CDtotal = Drag Coefficient [CDform + CDfric].
+ CDform = Form Drag Coefficient.

» CDfric = Friction Drag Coefficient.

6 FRICTION Examples

This is a walkthrough for using FRICTION AIM to analyze a wing, tail, fuselage configuration.

6.1 Prerequisites
It is presumed that ESP and CAPS have been already installed, as well as FRICTION. Furthermore, a user should
have knowledge on the generation of parametric geometry in Engineering Sketch Pad (ESP) before attempting to

integrate with any AIM. Specifically this example makes use of Design Parameters, Set Parameters, User Defined
Primitive (UDP) and attributes in ESP.

6.1.1 Script files
Two scripts are used for this illustration:

1. frictionWingTailFuselage.csm: Creates geometry, as described in the following section.

2. friction_PyTest.py: pyCAPS script for performing analysis, as described in Performing analysis using pyCAPS.

6.2 Creating Geometry using ESP
First step is to define the analysis intention that the geometry is intended support.

attribute capsIntent LINEARAERO

FRICTION input is always in feet, to enable automatic conversion, the geometric attribute capsLength may be used
to define the units the geometry (x.csm) file is in.

attribute capslLength $m

Next we will define the design parameters to define the wing cross section and planform.

despmtr thick 0.12 frac of local chord

despmtr camber 0.04 frac of loacl chord

despmtr tlen 5.00 length from wing LE to Tail LE
despmtr toff 0.5 tail offset

despmtr area 10.0

despmtr aspect 6.00

AVL Analysis Interface Module (AIM) Manual

CONTENTS

despmtr
despmtr

despmtr
despmtr

taper 0.60

sweep 20.0 deg (of c/4
washout -5.00 deg (down at tip)
dihedral 4.00 deg

The design parameters will then be used to set parameters for use internally to create geometry.

set
set

set
set

span sgrt (aspectxarea)

croot 2xarea/span/ (l+taper)

ctip crootxtaper

dxtip (croot-ctip) /4+span/2xtand (sweep)
dztip span/2+tand (dihedral)

Next the Wing, Vertical and Horizontal tails are created using the naca User Defined Primitive (UDP). The inputs
used for this example to the UDP are Thickness and Camber. The naca sections generated are in the X-Y plane
and are rotated to the X-Z plane. They are then translated to the appropriate position based on the design and
set parameters defined above. Finally reference area can be given to the FRICTION AIM by using the caps«
ReferenceArea attribute. If this attribute exists on any body that value is used otherwise the default is 1.0.

In addition, each section has a capsType attribute. This is used to logically group sections together. More informa-
tion on this can be found in the AIM Attributes section.

right ti
udprim
attribute
attribute
scale
rotatex
rotatey
translate

root
udprim
attribute
rotatex
scale

left tip
udprim
attribute
scale
rotatex
rotatey
translate

Vertical Ta

tip
udprim
attribute
scale
translate

root
udprim
attribute
scale
translate

Horizontal

tip left
udprim
attribute
scale
rotatex
translate

tip righ
udprim
attribute
scale
rotatex
translate

P
naca Thickness thick Camber
capsReferenceArea area

capsType SWing

ctip

90 0 0

washout 0 ctip/4

dxtip -span/2 dztip

naca Thickness thick Camber
capsType $Wing

90 0 0

croot

naca Thickness thick Camber
capsType $Wing

ctip

90 0 0

washout 0 ctip/4

dxtip span/2 dztip

il definition

naca Thickness thick

capsType $VTail

0.75*ctip

tlen+0.75x (croot-ctip) 0.0 ctip+toff

naca Thickness thick
capsType $VTail
0.75+croot

tlen 0.0 toff

Tail definition

naca Thickness thick
capsType $HTail
0.75*ctip

90 0 0

tlen+0.75% (croot-ctip) -ctip toff

t

naca Thickness thick
capsType $HTail
0.75xctip

90 0 0

tlen+0.75 (croot-ctip) ctip toff

camber

camber

camber

AVL Analysis Interface Module (AIM) Manual

6.3 Performing analysis using pyCAPS 5

Fuselage definition. Notice the use of the ellipse UDP. In this case, only translation is required to move the cross
section into the desired location.

skbeg -0.4xtlen 0.0 0.0

skend

attribute capsType $Fuse

udprim ellipse ry 0.5xcroot rz 0.2xcroot
attribute capsType $Fuse

translate 0.0 0.0 0.0

udprim ellipse ry 0.4xcroot rz 0.lxcroot
attribute capsType $Fuse

translate croot 0.0 0.0

udprim ellipse ry 0.lxcroot rz 0.lxcroot
attribute capsType $Fuse

translate tlen 0.0 toff

udprim ellipse ry 0.0l+croot rz 0.0lxcroot

attribute capsType $Fuse
translate tlen+0.75%croot 0.0 toff

6.3 Performing analysis using pyCAPS

An example pyCAPS script that uses the above x.csm file to run FRICTION is as follows.

First the pyCAPS and os module needs to be imported.

Import capsProblem from pyCAPS
from pyCAPS import capsProblem

Import os module
import os

Once the modules have been loaded the problem needs to be initiated.

myProblem = capsProblem/()

Next the x.csm file is loaded and design parameter is changed - area in the geometry. Any despmtr from the
frictionWingTailFuselage.csm file is available inside the pyCAPS script. They are: thick, camber, area, aspect,
taper, sweep, washout, dihedral...

myGeometry = myProblem.loadCAPS("./csmbData/frictionWingTailFuselage.csm")
myGeometry.setGeometryVal ("area", 10.0)

Next local variables used throughout the script are defined.

workDir = "FrictionAnalysisTest"

The FRICTION AIM is then loaded with the capsintent set to LINEARAERO (this is consistent with the intention
specified above in the x.csm file.

myAnalysis = myProblem.loadAIM(aim = "frictionAIM",
analysisDir = workDir,
capsIntent = "LINEARAERO")

After the AIM is loaded, the Mach number and Altitude are set (see AIM Inputs for additional inputs). The FRICTION
AIM supports variable length inputs. For example 1 or 10 or more, Mach and Altitude pairs can be entered. The
example below shows two inputs. Note that the length of the Mach and Altitude inputs must be the same.

myAnalysis.setAnalysisVval ("Mach", [0.5, 1.5])

Note: friction wants kft (defined in the AIM) - Automatic unit conversion to kft
myAnalysis.setAnalysisVal ("Altitude", [9000, 18200.0], units= "m")

Once all the inputs have been set, preAnalysis needs to be executed. During this operation, all the necessary files
to run FRICTION are generated and placed in the analysis working directory (analysisDir).

AVL Analysis Interface Module (AIM) Manual

6 CONTENTS

myAnalysis.preAnalysis ()

At this point the required files necessary run FRICTION should have been created and placed in the specified
analysis working directory. Next FRICTION needs to executed such as through an OS system call (see FRICTION
AIM Overview for additional details) like,

[("\n\nRunning FRICTION...... ")
currentDirectory = os.getcwd() # Get our current working directory

os.chdir (myAnalysis.analysisDir) # Move into test directory
os.system("friction frictionInput.txt frictionOutput.txt > Info.out"); # Run FRICTION via system call

os.chdir (currentDirectory) # Move back to top directory

A call to postAnalysis is then made to check to see if FRICTION executed successfully and the expected files were
generated.

myAnalysis.postAnalysis ()

Similar to the AIM inputs, after the execution of FRICTION and postAnalysis, any of the AIM's output variables (AIM
Outputs) are readily available; for example,

Cdtotal = myAnalysis.getAnalysisOutVal ("CDtotal")
CdForm = myAnalysis.getAnalysisOutVal ("CDform")
CdFric = myAnalysis.getAnalysisOutVal ("CDfric")

Printing the above variables results in,

Total drag = [0.01321, 0.01227]
Form drag = [0.00331, 0.00308]
Friction drag = [0.0099, 0.00919

AVL Analysis Interface Module (AIM) Manual

REFERENCES 7

References

[1] W. H. Mason. FRICTION - Skin Friction and Form Drag Program, Jan. 2006. Available from
http://www.dept.aoe.vt.edu/ mason/Mason_f/MRsoft.html. 1

AVL Analysis Interface Module (AIM) Manual

	1 Introduction
	1.1 FRICTION AIM Overview
	1.2 FRICTION Modifications
	1.3 Examples

	2 AIM Attributes
	3 Geometry Representation and Analysis Intent
	4 AIM Inputs
	5 AIM Outputs
	6 FRICTION Examples
	6.1 Prerequisites
	6.1.1 Script files

	6.2 Creating Geometry using ESP
	6.3 Performing analysis using pyCAPS

	Bibliography

