
Mystran Analysis Interface Module (AIM)

Ryan Durscher
AFRL/RQVC

May 14, 2018

ii CONTENTS

Contents

1 Introduction 1

1.1 MYSTRAN AIM Overview . 1

1.2 Examples . 1

2 MYSTRAN AIM attributes 1

3 Geometry Representation and Analysis Intent 2

4 AIM Inputs 2

5 AIM Shareable Data 3

6 AIM Outputs 3

7 MYSTRAN Data Transfer 3

7.1 Data transfer from MYSTRAN . 3

7.2 Data transfer to MYSTRAN . 3

8 FEA Material 4

8.1 JSON String Dictionary . 4

8.2 Single Value String . 5

9 FEA Property 5

9.1 JSON String Dictionary . 5

9.2 Single Value String . 7

10 FEA Constraint 7

10.1 JSON String Dictionary . 7

10.2 Single Value String . 7

11 FEA Support 7

11.1 JSON String Dictionary . 7

11.2 Single Value String . 8

12 FEA Connection 8

12.1 JSON String Dictionary . 8

12.2 Single Value String . 8

13 FEA Load 9

13.1 JSON String Dictionary . 9

13.2 Single Value String . 10

14 FEA Analysis 10

14.1 JSON String Dictionary . 10

Mystran Analysis Interface Module (AIM) Manual

1 Introduction 1

14.2 Single Value String . 11

15 FEA DesignVariable 11

15.1 JSON String Dictionary . 11

16 FEA DesignConstraint 11

16.1 JSON String Dictionary . 11

17 Mystran AIM Basic Example 11

17.1 Prerequisites . 12

17.1.1 Script files . 12

17.2 Creating Geometry using ESP . 12

17.3 Performing analysis using pyCAPS . 14

17.4 Executing pyCAPS script . 16

Bibliography 17

1 Introduction

1.1 MYSTRAN AIM Overview

A module in the Computational Aircraft Prototype Syntheses (CAPS) has been developed to interact (primarily
through input files) with the finite element structural solver MYSTRAN [1]. MYSTRAN is an open source, general
purpose, linear finite element analysis computer program written by Dr. Bill Case. Available at, http://www.←↩
mystran.com/ , MYSTRAN currently supports Linux and Windows operating systems.

An outline of the AIM's inputs, outputs and attributes are provided in AIM Inputs and AIM Outputs and MYSTRAN
AIM attributes, respectively.

The accepted and expected geometric representation and analysis intentions are detailed in Geometry Represen-
tation and Analysis Intent.

Details of the AIM's shareable data structures are outlined in AIM Shareable Data if connecting this AIM to other
AIMs in a parent-child like manner.

Details of the AIM's automated data transfer capabilities are outlined in MYSTRAN Data Transfer

1.2 Examples

An example problem using the MYSTRAN AIM may be found at Mystran AIM Basic Example.

2 MYSTRAN AIM attributes

The following list of attributes are required for the MYSTRAN AIM inside the geometry input.

• capsIntent This attribute is a CAPS requirement to indicate the analysis fidelity the geometry representation
supports. Options are: ALL, STRUCTURE

• capsGroup This is a name assigned to any geometric body. This body could be a solid, surface, face, wire,
edge or node. Recall that a string in ESP starts with a $. For example, attribute capsGroup $Wing.

Mystran Analysis Interface Module (AIM) Manual

http://www.mystran.com/
http://www.mystran.com/

2 CONTENTS

• capsLoad This is a name assigned to any geometric body where a load is applied. This attribute was
separated from the capsGroup attribute to allow the user to define a local area to apply a load on without
adding multiple capsGroup attributes. Recall that a string in ESP starts with a $. For example, attribute
capsLoad $force.

• capsConstraint This is a name assigned to any geometric body where a constraint/boundary condition is
applied. This attribute was separated from the capsGroup attribute to allow the user to define a local area
to apply a boundary condition without adding multiple capsGroup attributes. Recall that a string in ESP
starts with a $. For example, attribute capsConstraint $fixed.

• capsIgnore It is possible that there is a geometric body (or entity) that you do not want the MYSTRAN AIM to
pay attention to when creating a finite element model. The capsIgnore attribute allows a body (or entity) to be
in the geometry and ignored by the AIM. For example, because of limitations in OpenCASCADE a situation
where two edges are overlapping may occur; capsIgnore allows the user to only pay attention to one of the
overlapping edges.

• capsBound This is used to mark surfaces on the structural grid in which data transfer with an external solver
will take place. See MYSTRAN Data Transfer for additional details.

3 Geometry Representation and Analysis Intent

The attribute capsIntent may be set to either ALL or STRUCTURE for the MYSTRAN AIM. The geometric represen-
tation for the AIM requires that bodies be:

• WIREBODY for purely 1D simulations

• FACEBODY or SHEETBODY (non-manifold) for 2D simulations

• SOLIDBODY or SHEETBODY (manifold) for 3D simulations

4 AIM Inputs

The following list outlines the MYSTRAN inputs along with their default value available through the AIM interface.
Unless noted these values will be not be linked to any parent AIMs with variables of the same name.

• Proj_Name = "mystran_CAPS"
This corresponds to the project name used for file naming.

• Tess_Params = [0.025, 0.001, 15.0]
Body tessellation parameters used when creating a boundary element model. Tess_Params[0] and Tess←↩
_Params[1] get scaled by the bounding box of the body. (From the EGADS manual) A set of 3 parameters
that drive the EDGE discretization and the FACE triangulation. The first is the maximum length of an ED←↩
GE segment or triangle side (in physical space). A zero is flag that allows for any length. The second is a
curvature-based value that looks locally at the deviation between the centroid of the discrete object and the
underlying geometry. Any deviation larger than the input value will cause the tessellation to be enhanced in
those regions. The third is the maximum interior dihedral angle (in degrees) between triangle facets (or Edge
segment tangents for a WIREBODY tessellation), note that a zero ignores this phase

• Edge_Point_Min = 4
Minimum number of points along an edge to use when creating a boundary element model.

• Edge_Point_Max = 10
Maximum number of points along an edge to use when creating a boundary element model.

• Quad_Mesh = False
Create a quadratic mesh on four edge faces when creating the boundary element model.

• Property = NULL
Property tuple used to input property information for the model, see FEA Property for additional details.

Mystran Analysis Interface Module (AIM) Manual

5 AIM Shareable Data 3

• Material = NULL
Material tuple used to input material information for the model, see FEA Material for additional details.

• Constraint = NULL
Constraint tuple used to input constraint information for the model, see FEA Constraint for additional details.

• Load = NULL
Load tuple used to input load information for the model, see FEA Load for additional details.

• Analysis = NULL
Analysis tuple used to input analysis/case information for the model, see FEA Analysis for additional details.

• Analysis_Type = "Modal"
Type of analysis to generate files for, options include "Modal", "Static", and "Craig-Bampton".

• Support = NULL
Support tuple used to input support information for the model, see FEA Support for additional details.

5 AIM Shareable Data

Currently the MYSTRAN AIM does not have any shareable data types or values. It will try, however, to inherit a
"FEA_MESH" or "Volume_Mesh" from any parent AIMs. Note that the inheritance of the mesh is not required.

6 AIM Outputs

The following list outlines the MYSTRAN outputs available through the AIM interface.

• EigenValue = List of Eigen-Values (λ) after a modal solve.

• EigenRadian = List of Eigen-Values in terms of radians (ω =
√

λ) after a modal solve.

• EigenFrequency = List of Eigen-Values in terms of frequencies (f = ω

2π
) after a modal solve.

• EigenGeneralMass = List of generalized masses for the Eigen-Values.

7 MYSTRAN Data Transfer

The MYSTRAN AIM has the ability to transfer displacements and eigenvectors from the AIM and pressure distribu-
tions to the AIM using the conservative and interpolative data transfer schemes in CAPS. Currently these transfers
may only take place on triangular meshes.

7.1 Data transfer from MYSTRAN

• "Displacement"
Retrieves nodal displacements from the ∗.F06 file.

• "EigenVector_#"
Retrieves modal eigen-vectors from the ∗.F06 file, where "#" should be replaced by the corresponding mode
number for the eigen-vector (eg. EigenVector_3 would correspond to the third mode, while EigenVector_6
would be the sixth mode).

7.2 Data transfer to MYSTRAN

• "Pressure"
Writes appropriate load cards using the provided pressure distribution.

Mystran Analysis Interface Module (AIM) Manual

4 CONTENTS

8 FEA Material

Structure for the material tuple = ("Material Name", "Value"). "Material Name" defines the reference name for the
material being specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary)
or a single string keyword (see Section Single Value String).

8.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"density": 7850, "youngModulus": 120000.0, "poissonRatio":
0.5, "materialType": "isotropic"}) the following keywords (= default values) may be used:

• materialType = "Isotropic"
Material property type. Options: Isotropic, Anisothotropic, Orthotropic, or Anisotropic.

• youngModulus = 0.0
Also known as the elastic modulus, defines the relationship between stress and strain. Default if ‘shear←↩
Modulus' and ‘poissonRatio' != 0, youngModulus = 2∗(1+poissonRatio)∗shearModulus

• shearModulus = 0.0
Also known as the modulus of rigidity, is defined as the ratio of shear stress to the shear strain. Default if
‘youngModulus' and ‘poissonRatio' != 0, shearModulus = youngModulus/(2∗(1+poissonRatio))

• poissonRatio = 0.0
The fraction of expansion divided by the fraction of compression. Default if ‘youngModulus' and ‘shear←↩
Modulus' != 0, poissonRatio = (2∗youngModulus/shearModulus) - 1

• density = 0.0
Density of the material.

• thermalExpCoeff = 0.0
Thermal expansion coefficient of the material.

• thermalExpCoeffLateral = 0.0
Thermal expansion coefficient of the material.

• temperatureRef = 0.0
Reference temperature for material properties.

• dampingCoeff = 0.0
Damping coefficient for the material.

• allowType = 0
This flag defines if the above allowables compressAllow etc. are defined in terms of stress (0) or strain
(1). The default is stress (0).

• youngModulusLateral = 0.0
Elastic modulus in lateral direction for an orthotropic material

• shearModulusTrans1Z = 0.0
Transverse shear modulus in the 1-Z plane for an orthotropic material

• shearModulusTrans2Z = 0.0
Transverse shear modulus in the 2-Z plane for an orthotropic material

Mystran Analysis Interface Module (AIM) Manual

8.2 Single Value String 5

8.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined material lookup table. NOT YET
IMPLEMENTED!!!!

9 FEA Property

Structure for the property tuple = ("Property Name", "Value"). "Property Name" defines the reference capsGroup
for the property being specified. The "Value" can either be a JSON String dictionary (see Section JSON String
Dictionary) or a single string keyword (see Section Single Value String).

9.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"shearMembraneRatio": 0.83, "bendingInertiaRatio": 1.0,
"membraneThickness": 0.2, "propertyType": "Shell"}) the following keywords (= default values) may be used:

• propertyType = No Default value
Type of property to apply to a given capsGroup Name. Options: ConcentratedMass, Rod, Bar, Shear, Shell,
Composite, and Solid

• material = "Material Name" (FEA Material)
"Material Name" from FEA Material to use for property. If no material is set the first material created will be
used

• crossSecArea = 0.0
Cross sectional area.

• torsionalConst = 0.0
Torsional constant.

• torsionalStressReCoeff = 0.0
Torsional stress recovery coefficient.

• massPerLength = 0.0
Mass per unit length.

• zAxisInertia = 0.0
Section moment of inertia about the element z-axis.

• yAxisInertia = 0.0
Section moment of inertia about the element y-axis.

• yCoords[4] = [0.0, 0.0, 0.0, 0.0]
Element y-coordinates, in the bar cross-section, of four points at which to recover stresses

• zCoords[4] = [0.0, 0.0, 0.0, 0.0]
Element z-coordinates, in the bar cross-section, of four points at which to recover stresses

• areaShearFactors[2] = [0.0, 0.0]
Area factors for shear.

• crossProductInertia = 0.0
Section cross-product of inertia.

Mystran Analysis Interface Module (AIM) Manual

6 CONTENTS

• shearPanelThickness = 0.0
Shear panel thickness.

• nonStructMassPerArea = 0.0
Nonstructural mass per unit area.

• membraneThickness = 0.0
Membrane thickness.

• bendingInertiaRatio = 1.0
Ratio of actual bending moment inertia to the bending inertia of a solid plate of thickness "membrane←↩
Thickness"

• shearMembraneRatio = 5.0/6.0
Ratio shear thickness to membrane thickness.

• materialBending = "Material Name" (FEA Material)
"Material Name" from FEA Material to use for property bending. If no material is given and "bendingInertia←↩
Ratio" is greater than 0, the material name provided in "material" is used.

• materialShear = "Material Name" (FEA Material)
"Material Name" from FEA Material to use for property shear. If no material is given and "shearMembrane←↩
Ratio" is greater than 0, the material name provided in "material" is used.

• massPerArea = 0.0
Mass per unit area.

• compositeMaterial = "no default"
List of "Material Name"s, ["Material Name -1", "Material Name -2", ...], from FEA Material to use for compos-
ites.

• shearBondAllowable = 0.0
Allowable interlaminar shear stress.

• symmetricLaminate = False
Symmetric lamination option. True- SYM only half the plies are specified, for odd number plies 1/2 thickness
of center ply is specified with the first ply being the bottom ply in the stack, default (False) all plies specified.

• compositeFailureTheory = "(no default)"
Composite failure theory. Options: "HILL", "HOFF", "TSAI", and "STRN"

• compositeThickness = (no default)
List of composite thickness for each layer (e.g. [1.2, 4.0, 3.0]). If the length of this list doesn't match the
length of the "compositeMaterial" list, the list is either truncated [>length("compositeMaterial")] or expanded
[<length("compositeMaterial")] in which case the last thickness provided is repeated.

• compositeOrientation = (no default)
List of composite orientations (angle relative element material axis) for each layer (eg. [5.0, 10.0, 30.0]).
If the length of this list doesn't match the length of the "compositeMaterial" list, the list is either truncated [
>length("compositeMaterial")] or expanded [<length("compositeMaterial")] in which case the last orientation
provided is repeated.

• mass = 0.0
Mass value.

• massOffset = [0.0, 0.0, 0.0]
Offset distance from the grid point to the center of gravity for a concentrated mass.

• massInertia = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Mass moment of inertia measured at the mass center of gravity.

Mystran Analysis Interface Module (AIM) Manual

9.2 Single Value String 7

9.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined property lookup table. NOT YET
IMPLEMENTED!!!!

10 FEA Constraint

Structure for the constraint tuple = ("Constraint Name", "Value"). "Constraint Name" defines the reference name
for the constraint being specified. The "Value" can either be a JSON String dictionary (see Section JSON String
Dictionary) or a single string keyword (see Section Single Value String).

10.1 JSON String Dictionary

If "Value" is JSON string dictionary (eg. "Value" = {"groupName": "plateEdge", "dofConstraint": 123456}) the follow-
ing keywords (= default values) may be used:

• constraintType = "ZeroDisplacement"
Type of constraint. Options: "Displacement", "ZeroDisplacement".

• groupName = "(no default)"
Single or list of capsConstraint names on which to apply the constraint (e.g. "Name1" or ["Name1","←↩
Name2",...]. If not provided, the constraint tuple name will be used.

• dofConstraint = 0
Component numbers / degrees of freedom that will be constrained (123 - zero translation in all three direc-
tions).

• gridDisplacement = 0.0
Value of displacement for components defined in "dofConstraint".

10.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined constraint lookup table. NOT YET
IMPLEMENTED!!!!

11 FEA Support

Structure for the support tuple = ("Support Name", "Value"). "Support Name" defines the reference name for the
support being specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary)
or a single string keyword (see Section Single Value String).

11.1 JSON String Dictionary

If "Value" is JSON string dictionary (eg. "Value" = {"groupName": "plateEdge", "dofSupport": 123456}) the following
keywords (= default values) may be used:

• groupName = "(no default)"
Single or list of capsConstraint names on which to apply the support (e.g. "Name1" or ["Name1","←↩
Name2",...]. If not provided, the constraint tuple name will be used.

• dofSupport = 0
Component numbers / degrees of freedom that will be supported (123 - zero translation in all three directions).

Mystran Analysis Interface Module (AIM) Manual

8 CONTENTS

11.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined support lookup table. NOT YET
IMPLEMENTED!!!!

12 FEA Connection

Structure for the connection tuple = ("Connection Name", "Value"). "Connection Name" defines the reference name
to the capsConnect being specified and denotes the "source" node for the connection. The "Value" can either be a
JSON String dictionary (see Section JSON String Dictionary) or a single string keyword (see Section Single Value
String).

12.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"dofDependent": 1, "propertyType": "RigidBody"}) the following
keywords (= default values) may be used:

• connectionType = RigidBody
Type of connection to apply to a given capsConnect pair defined by "Connection Name" and the "groupName".
Options: Mass (scalar), Spring (scalar), Damper (scalar), RigidBody.

• dofDependent = 0
Component numbers / degrees of freedom of the dependent end of rigid body connections (ex. 123 - trans-
lation in all three directions).

• componentNumberStart = 0
Component numbers / degrees of freedom of the starting point of the connection for mass, spring, and damper
elements (scalar) (0 <= Integer <= 6).

• componentNumberEnd= 0
Component numbers / degrees of freedom of the ending point of the connection for mass, spring, and damper
elements (scalar) (0 <= Integer <= 6).

• stiffnessConst = 0.0
Stiffness constant of a spring element (scalar).

• dampingConst = 0.0
Damping coefficient/constant of a spring or damping element (scalar).

• stressCoeff = 0.0
Stress coefficient of a spring element (scalar).

• mass = 0.0
Mass of a mass element (scalar).

• groupName = "(no default)"
Single or list of capsConnect names on which to connect the nodes found with the tuple name ("←↩
Connection Name") to. (e.g. "Name1" or ["Name1","Name2",...].

12.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined connection lookup table. NOT YET
IMPLEMENTED!!!!

Mystran Analysis Interface Module (AIM) Manual

13 FEA Load 9

13 FEA Load

Structure for the load tuple = ("Load Name", "Value"). "Load Name" defines the reference name for the load being
specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary) or a single
string keyword (see Section Single Value String).

13.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"groupName": "plate", "loadType": "Pressure", "pressureForce":
2000000.0}) the following keywords (= default values) may be used:

• loadType = "(no default)"
Type of load. Options: "GridForce", "GridMoment", "Rotational", "Thermal", "Pressure", "PressureDistribute",
"PressureExternal", "Gravity".

• groupName = "(no default)"
Single or list of capsLoad names on which to apply the load (e.g. "Name1" or ["Name1","Name2",...]. If not
provided, the load tuple name will be used.

• loadScaleFactor = 1.0
Scale factor to use when combining loads.

• forceScaleFactor = 0.0
Overall scale factor for the force for a "GridForce" load.

• directionVector = [0.0, 0.0, 0.0]
X-, y-, and z- components of the force vector for a "GridForce", "GridMoment", or "Gravity" load.

• momentScaleFactor = 0.0
Overall scale factor for the moment for a "GridMoment" load.

• gravityAcceleration = 0.0
Acceleration value for a "Gravity" load.

• pressureForce = 0.0
Uniform pressure force for a "Pressure" load (only applicable to 2D elements).

• pressureDistributeForce = [0.0, 0.0, 0.0, 0.0]
Distributed pressure force for a "PressureDistribute" load (only applicable to 2D elements). The four values
correspond to the 4 (quadrilateral elements) or 3 (triangle elements) node locations.

• angularVelScaleFactor = 0.0
An overall scale factor for the angular velocity in revolutions per unit time for a "Rotational" load.

• angularAccScaleFactor = 0.0
An overall scale factor for the angular acceleration in revolutions per unit time squared for a "Rotational" load.

• coordinateSystem = "(no default)"
Name of coordinate system in which defined force components are in reference to. If no value is provided the
global system is assumed.

• temperature = 0.0
Temperature at give node for a "Temperature" load. </ ul>

– temperatureDefault = 0.0
Default temperature at a node not explicitly being used for a "Temperature" load. </ ul>

Mystran Analysis Interface Module (AIM) Manual

10 CONTENTS

13.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined load lookup table. NOT YET
IMPLEMENTED!!!!

14 FEA Analysis

Structure for the analysis tuple = (‘Analysis Name', ‘Value'). 'Analysis Name' defines the reference name for the
analysis being specified. The "Value" can either be a JSON String dictionary (see Section JSON String Dictionary)
or a single string keyword (see Section Single Value String).

14.1 JSON String Dictionary

If "Value" is JSON string dictionary (e.g. "Value" = {"numDesiredEigenvalue": 10, "eigenNormaliztion": "MAS←↩
S", "numEstEigenvalue": 1, "extractionMethod": "GIV", "frequencyRange": [0, 10000]}) the following keywords (=
default values) may be used:

• analysisType = "Modal"
Type of load. Options: "Modal", "Static".

• analysisLoad = "(no default)"
Single or list of "Load Name"s defined in FEA Load in which to use for the analysis (e.g. "Name1" or ["←↩
Name1","Name2",...].

• analysisConstraint = "(no default)"
Single or list of "Constraint Name"s defined in FEA Constraint in which to use for the analysis (e.g. "Name1"
or ["Name1","Name2",...].

• analysisSupport = "(no default)"
Single or list of "Support Name"s defined in FEA Support in which to use for the analysis (e.g. "Name1" or
["Name1","Name2",...].

• extractionMethod = "(no default)"
Extraction method for modal analysis.

• frequencyRange = [0.0, 0.0]
Frequency range of interest for modal analysis.

• numEstEigenvalue = 0
Number of estimated eigenvalues for modal analysis.

• numDesiredEigenvalue = 0
Number of desired eigenvalues for modal analysis.

• eigenNormaliztion = "(no default)"
Method of eigenvector renormilization. Options: "POINT", "MAX", "MASS"

• gridNormaliztion = 0
Grid point to be used in normalizing eigenvector to 1.0 when using eigenNormaliztion = "POINT"

• componentNormaliztion = 0
Degree of freedom about "gridNormalization" to be used in normalizing eigenvector to 1.0 when using eigen←↩
Normaliztion = "POINT"

Mystran Analysis Interface Module (AIM) Manual

14.2 Single Value String 11

• lanczosMode = 2
Mode refers to the Lanczos mode type to be used in the solution. In mode 3 the mass matrix, Maa,must be
nonsingular whereas in mode 2 the matrix K aa - sigma∗Maa must be nonsingular

• lanczosType = "(no default)"
Lanczos matrix type. Options: DPB, DGB.

• aeroSymmetryXY = "(no default)"
Aerodynamic symmetry about the XY Plane. Options: SYM, ANTISYM, ASYM. Aerodynamic symmetry about
the XY Plane. Options: SYM, ANTISYM, ASYM. SYMMETRIC Indicates that a half span aerodynamic model
is moving in a symmetric manner with respect to the XY plane. ANTISYMMETRIC Indicates that a half span
aerodynamic model is moving in an antisymmetric manner with respect to the XY plane. ASYMMETRIC
Indicates that a full aerodynamic model is provided.

• aeroSymmetryXZ = "(no default)"
Aerodynamic symmetry about the XZ Plane. Options: SYM, ANTISYM, ASYM. SYMMETRIC Indicates that
a half span aerodynamic model is moving in a symmetric manner with respect to the XZ plane. ANTISYM←↩
METRIC Indicates that a half span aerodynamic model is moving in an antisymmetric manner with respect to
the XZ plane. ASYMMETRIC Indicates that a full aerodynamic model is provided.

14.2 Single Value String

If "Value" is a string, the string value may correspond to an entry in a predefined analysis lookup table. NOT YET
IMPLEMENTED!!!!

15 FEA DesignVariable

Structure for the design variable tuple = ("DesignVariable Name", "Value"). "DesignVariable Name" defines the
reference name for the design variable being specified. This string will be used in the FEA input directly. The
"Value" must be a JSON String dictionary (see Section JSON String Dictionary).

15.1 JSON String Dictionary

If "Value" is JSON string dictionary the following keywords (= default values) may be used:

16 FEA DesignConstraint

Structure for the design constraint tuple = (‘DesignConstraint Name', ‘Value'). 'DesignConstraint Name' defines
the reference name for the design constraint being specified. The "Value" must be a JSON String dictionary (see
Section JSON String Dictionary).

16.1 JSON String Dictionary

If "Value" is JSON string dictionary the following keywords (= default values) may be used:

17 Mystran AIM Basic Example

This is a walkthrough for using MYSTRAN AIM to analyze a three-dimensional wing with internal ribs and spars.

Mystran Analysis Interface Module (AIM) Manual

12 CONTENTS

17.1 Prerequisites

It is presumed that ESP and CAPS have been already installed, as well as MYSTRAN.

17.1.1 Script files

Two scripts are used for this illustration:

1. feaWingBEM.csm: Creates geometry, as described in the next section (Creating Geometry using ESP).

2. mystran_PyTest.py: pyCAPS script for performing analysis, as described in Performing analysis using pyC←↩
APS .

17.2 Creating Geometry using ESP

In our example ∗.csm file setting up the CAPS fidelity is the first step. If multiple bodies exist in the ∗.csm file the
tag, capsIntent, can be used to distinguish what type of analysis the body may be used for. In this example, the
geometry model generated can be used for structural analysis, as shown:

attribute capsIntent STRUCTURE

A typical geometry model can be created and interactively modified using design parameters. These design param-
eters are either design- or geometry- based. In this example, a wing configuration is created using following design
parameters.

Design Parameters for OML
despmtr thick 0.12 frac of local chord
despmtr camber 0.04 frac of loacl chord

despmtr area 10.0
despmtr aspect 6.00
despmtr taper 0.60
despmtr sweep 20.0 deg (of c/4)

despmtr washout 5.00 deg (down at tip)
despmtr dihedral 4.00 deg

Design Parameters for BEM
despmtr nrib 11 number of ribs
despmtr spar1 0.20 frac of local chord
despmtr spar2 0.75 frac of local chord

After our design parameters are defined they are used to setup other local variables (analytically) for the outer model
line (OML).

OML
set span sqrt(aspect*area)
set croot 2*area/span/(1+taper)
set ctip croot*taper
set dxtip (croot-ctip)/4+span/2*tand(sweep)
set dytip span/2*tand(dihedral)

In a similar manner, local variables are defined for the ribs and spars.

wing ribs
dimension waffle nrib+4 4 0
set Nrib nint(nrib)
patbeg i Nrib

set waffle[i,1] (span/2)*(2*i-Nrib-1)/Nrib
set waffle[i,2] -0.01*croot
set waffle[i,3] (span/2)*(2*i-Nrib-1)/Nrib
set waffle[i,4] max(croot,dxtip+ctip)

patend

wing spars
set eps 0.01*span

Mystran Analysis Interface Module (AIM) Manual

17.2 Creating Geometry using ESP 13

set waffle[Nrib+1,1] -span/2-eps
set waffle[Nrib+1,2] spar1*ctip+dxtip
set waffle[Nrib+1,3] 0
set waffle[Nrib+1,4] spar1*croot
set waffle[Nrib+2,1] span/2+eps
set waffle[Nrib+2,2] spar1*ctip+dxtip
set waffle[Nrib+2,3] 0
set waffle[Nrib+2,4] spar1*croot
set waffle[Nrib+3,1] -span/2-eps
set waffle[Nrib+3,2] spar2*ctip+dxtip
set waffle[Nrib+3,3] 0
set waffle[Nrib+3,4] spar2*croot
set waffle[Nrib+4,1] span/2+eps
set waffle[Nrib+4,2] spar2*ctip+dxtip
set waffle[Nrib+4,3] 0
set waffle[Nrib+4,4] spar2*croot

Once all design and local variables are defined, a full span, solid model is created by "ruling" together NACA series
airfoils (following a series of scales, rotations, and translations).

mark
Right tip
udprim naca Thickness thick Camber camber
scale ctip
rotatez washout ctip/4 0
translate dxtip dytip -span/2

root
udprim naca Thickness thick Camber camber
scale croot

left tip
udprim naca Thickness thick Camber camber
scale ctip
rotatez washout ctip/4 0
translate dxtip dytip +span/2

rule
attribute OML 1

Once complete, the wing is stored for later use under the name OML.

store OML

Next, the inner layout of the ribs and spars are created using the waffle udprim.

udprim waffle Depth +6*thick*croot Segments waffle

An attribute is then placed on ribs and spars so that the geometry components may be reference by the MYSTRAN
AIM.

attribute capsGroup $Ribs_and_Spars

Following a series of rotations and translations the ribs and spars are stored for later use.

translate 0 0 -3*thick*croot
rotatey 90 0 0
rotatez -90 0 0

store layoutRibSpar

Next, the layout of the ribs and spars are intersected the outer mold line of wing, which results in only keeping the
part of layout that is inside the OML.

restore layoutRibSpar
restore OML
intersect

Finally, select faces (airfoil sections at the root) are tagged, so that a constraint may be applied later.

Mystran Analysis Interface Module (AIM) Manual

14 CONTENTS

select face 31
attribute capsConstraint $Rib_Constraint

select face 27
attribute capsConstraint $Rib_Constraint

select face 26
attribute capsConstraint $Rib_Constraint

The above ∗.csm file results in the follow geometry model:

Figure 1: Wing built up element model

17.3 Performing analysis using pyCAPS

The first step in the pyCAPS script is to import the required modules. For this example the following modules are
used,

from __future__ import print_function

try:
import os

except:
print ("Unable to import os module")
raise SystemError

In order to create a new capsProblem the pyCAPS module also needs to be imported; on Linux and OSX this is the
pyCAPS.so file, while on Windows it is the pyCAPS.pyd file. For convenience, it is recommended that the path to
this file is added to the environmental variable PYTHONPATH.

from pyCAPS import capsProblem

Similarly, local variables used throughout the script may be defined.

workDir = "MystranModalWingBEM"
projectName = workDir

Once the required modules have been loaded, a capsProblem can be instantiated.

myProblem = capsProblem()

Next, using the loadCAPS() function, the desired geometry file is then loaded into the problem.

myProblem.loadCAPS("./csmData/feaWingBEM.csm")

After the geometry is loaded, the MYSTRAN AIM needs to be instantiated. Note that below, the capsIntent is set to
"ALL" as opposed to "STRUCTURE" as specified above in the ∗.csm file. This is only valid since there is only one
body in the ∗.csm file. If more than one body existed in the ∗.csm file the capsIntent during the loadAIM() function
call should be set "STRUCTURE".

mystranAIM = myProblem.loadAIM(aim = "mystranAIM",
altName = "mystran",
analysisDir= workDir,
capsIntent = "ALL")

Mystran Analysis Interface Module (AIM) Manual

17.3 Performing analysis using pyCAPS 15

Once loaded analysis parameters specific to MYSTRAN need to be set (see AIM Inputs). These parameters are
automatically converted into MYSTRAN specific format and transferred into the MYSTRAN configuration file. One
will note in the following snippet the instance of the AIM is referenced in two different manners: 1. Using the returned
object from load call and 2. Using the "altName" name reference in the analysis dictionary. While syntactically
different, these two forms are essentially identical.

Set project name so a mesh file is generated
mystranAIM.setAnalysisVal("Proj_Name", projectName)

Set meshing inputs
myProblem.analysis["mystran"].setAnalysisVal("Edge_Point_Max", 4)

myProblem.analysis["mystran"].setAnalysisVal("Quad_Mesh", True)

Along the same lines of setting the input values above the "Analysis" (see FEA Analysis), "Material" (see F←↩
EA Material), "Property" (see FEA Property), and "Constraint" (see FEA Constraint) tuples are used to set more
complex information. The user is encouraged to read the additional documentation on these inputs for further
explanations. Once provided this information is converted into MYSTRAN specific syntax and set in the MYSTRAN
configuration file.

Set analysis
eigen = { "extractionMethod" : "Lanczos",

"frequencyRange" : [0, 50],
"numEstEigenvalue" : 1,
"eigenNormaliztion" : "MASS"}

mystranAIM.setAnalysisVal("Analysis", ("EigenAnalysis", eigen))

Set materials
unobtainium = {"youngModulus" : 2.2E11 ,

"poissonRatio" : .33,
"density" : 7850}

madeupium = {"materialType" : "isotropic",
"youngModulus" : 1.2E9 ,
"poissonRatio" : .5,
"density" : 7850}

mystranAIM.setAnalysisVal("Material", [("Unobtainium", unobtainium),
("Madeupium", madeupium)])

Set property
shell = {"propertyType" : "Shell",

"membraneThickness" : 0.2,
"bendingInertiaRatio" : 1.0, # Default
"shearMembraneRatio" : 5.0/6.0} # Default }

mystranAIM.setAnalysisVal("Property", ("Ribs_and_Spars", shell))

Set constraints
constraint = {"groupName" : ["Rib_Constraint"],

"dofConstraint" : 123456}

mystranAIM.setAnalysisVal("Constraint", ("ribConstraint", constraint))

After all desired options are set aimPreAnalysis needs to be executed. Based on the input provided, MYSTRAN
specific files are generated during this call.

mystranAIM.aimPreAnalysis()

At this point the required files necessary run MYSTRAN should have be created and placed in the specified analysis
working directory. Next MYSTRAN needs to executed. In this example an OS system is made such as,

print ("\n\nRunning MYSTRAN......")
currentDirectory = os.getcwd() # Get our current working directory

os.chdir(mystranAIM.analysisDir) # Move into test directory

os.system("mystran.exe " + projectName + ".dat"); # Run MYSTRAN via system call

os.chdir(currentDirectory) # Move back to working directory
print ("Done running MYSTRAN!")

After MYSTRAN is finished running aimPostAnalysis needs to be executed.

Mystran Analysis Interface Module (AIM) Manual

16 CONTENTS

mystranAIM.aimPostAnalysis()

Finally, available AIM outputs (see AIM Outputs) may be retrieved, for example:

print ("\nGetting results for natural frequencies.....")
natrualFreq = mystranAIM.getAnalysisOutVal("EigenFrequency")

mode = 1
for i in natrualFreq:

print ("Natural freq (Mode", mode, ") = ", i, "(Hz)")
mode += 1

results in,

Natural freq (Mode 1) = 1.89166 (Hz)
Natural freq (Mode 2) = 6.33335 (Hz)
Natural freq (Mode 3) = 6.51397 (Hz)
Natural freq (Mode 4) = 23.88463 (Hz)
Natural freq (Mode 5) = 24.98205 (Hz)
Natural freq (Mode 6) = 28.23676 (Hz)
Natural freq (Mode 7) = 32.53667 (Hz)
Natural freq (Mode 8) = 33.92054 (Hz)
Natural freq (Mode 9) = 43.49964 (Hz)

When finally finished with the script, the open CAPS problem should be closed.

myProblem.closeCAPS()

17.4 Executing pyCAPS script

Issuing the following command executes the script:

python mystran_PyTest.py

Mystran Analysis Interface Module (AIM) Manual

REFERENCES 17

References

[1] William Case. MYSTRAN General Purpose Finite Element Structural Analysis Computer Program (Linux Ver-
sion 6.35) [Software Manual], Nov. 2011. Available from http://www.MYSTRAN.com. 1

Mystran Analysis Interface Module (AIM) Manual

	1 Introduction
	1.1 MYSTRAN AIM Overview
	1.2 Examples

	2 MYSTRAN AIM attributes
	3 Geometry Representation and Analysis Intent
	4 AIM Inputs
	5 AIM Shareable Data
	6 AIM Outputs
	7 MYSTRAN Data Transfer
	7.1 Data transfer from MYSTRAN
	7.2 Data transfer to MYSTRAN

	8 FEA Material
	8.1 JSON String Dictionary
	8.2 Single Value String

	9 FEA Property
	9.1 JSON String Dictionary
	9.2 Single Value String

	10 FEA Constraint
	10.1 JSON String Dictionary
	10.2 Single Value String

	11 FEA Support
	11.1 JSON String Dictionary
	11.2 Single Value String

	12 FEA Connection
	12.1 JSON String Dictionary
	12.2 Single Value String

	13 FEA Load
	13.1 JSON String Dictionary
	13.2 Single Value String

	14 FEA Analysis
	14.1 JSON String Dictionary
	14.2 Single Value String

	15 FEA DesignVariable
	15.1 JSON String Dictionary

	16 FEA DesignConstraint
	16.1 JSON String Dictionary

	17 Mystran AIM Basic Example
	17.1 Prerequisites
	17.1.1 Script files

	17.2 Creating Geometry using ESP
	17.3 Performing analysis using pyCAPS
	17.4 Executing pyCAPS script

	Bibliography

