Engineering Sketch Pad (ESP)

esp

Training Session 5 CSM Language (2)

John F. Dannenhoffer, III

jfdannen@syr.edu

Syracuse University

Bob Haimes

haimes@mit.edu
Massachusetts Institute of Technology
updated for v1.18

esp Overview

- Manipulating the Stack
- GROUP
- STORE, RESTORE
- Looping
- PATBEG, PATBREAK, PATEND
- Logic
- IFTHEN, ELSEIF, ELSE, ENDIF
- Signal Handling
- THROW, CATBEG, CATEND
- User-defined Components (UDCs)
- Include-style
- Function-style
- Homework Exercises

esp Manipulating the Stack (1)

- During the build process, OpenCSM maintains a last-in-first-out (LIFO) "Stack" that can contain Bodys and Sketches.
- The .csm statements are executed in a stack-like way, taking their inputs from the Stack and depositing their results onto the Stack.
- Bodys can be grouped with the GROUP statement
- all the Bodys back to the Mark (or the beginning of the Stack) are put into a single Group
- some operations, such as the transformations, ATTRIBUTE, STORE, and DUMP operate on all Bodys in the Group simultaneously
- Bodys and be ungrouped by giving GROUP a negative argument

ESP Manipulating the Stack (2)

- The Group on the top of the Stack can be "popped" off the stack with a STORE command
- if the name is alpha-numeric, the Group is stored in a named storage location
- if the name is a dot (.), the Group is not stored (just popped off the Stack)
- if the name is two dots (..), all the Groups back to the Mark are popped off the Stack (and not stored)
- if the name is three dots (...), everything is popped off the Stack

ESP Manipulating the Stack (3)

- Groups can be read from a named storage location and "pushed" onto the Stack with the RESTORE command
- The RESTORE command is considered a primitive, so its Attributes are put on all the Bodys and all their Faces

esp Patterns (1)

- Patterns are like "for" or "do" loops
- the Branches between the PATBEG and PATEND are executed a known number of times
- at the beginning of each "instance", the pattern number is incremented (from 1 to the number of copies)
- one can break out of the pattern early with a PATBREAK statement
- patterns can be nested within other patterns

esp Patterns (2)

- Example pattern (indentation optional):

| PATBEG | i | 3 | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SET | j | $i-1$ | | | | |
| BOX | j | 0 | 0 | 1 | 1 | 1 |
| ROTATEX | $j * 10$ | 0 | 0 | | | |
| PATEND | | | | | | |
| PAT | | | | | | |

- is the same as:

BOX	0	0	0	1	1	1
ROTATEX	0	0	0			
BOX	1	0	0	1	1	1
ROTATEX	10	0	0			
BOX	2	0	0	1	1	1
ROTATEX	20	0	0			

esp If/then (1)

- If/then constructs are used to make a choice within a .csm script
- start with IFTHEN statement
- has zero or more ELSEIF statements
- has zero or one ELSE statement
- has exactly one ENDIF statement
- The IFTHEN and ELSEIF statements have arguments, some of which can be specified in lowercase or UPPERCASE
- val1 - an expression
- op1 - can be lt, le, eq, ge, gt, ne, LT, ...
- val2 - an expression
- op2 - can be or, xor, and, OR, ... (defaults to and)
- val3 - an expression (defaults to 0)
- op3 - can be lt, le, eq, ge, gt, ne, LT, or ... (defaults to eq)
- val4 - an expression (defaults to 0)

esp If/then (2)

- Example (indentation optional):

IFTHEN	a	eq	4	or	b	ne	2
BOX	0	0	0	1	1	1	
ELSEIF	c	eq	sqrt (9)				
BOX	2	2	2	2	2	2	
ELSE BOX	3	3	3	3	3	3	
ENDIF							

esp Throw/catch (1)

- Throw/catch constructs are used to generate and react to signals (errors)
- Signals can be generated by
- executing a THROW command
- a run-time error encountered elsewhere (see "help" for more info)
- When a signal is generated, all Branches are skipped until a matching CATBEG statement is encountered
- the signal is cancelled
- processing continues at the statement following the CATBEG
- If a CATBEG statement is encountered when there is no pending signal (or the pending signal does not match the CATBEG)
- all Branches up to, and including the matching CATEND statement, are skipped

esp Throw/ catch (2)

1:	BOX	000111				
2 :	THROW	-99				
3: SPHERE 0001						
4:	CATBEG -98					
5:	SPHERE 0002					
6:	CATEND					
7:	SPHERE 0003					
8:	CATBEG -99					
9:	BOX 100					
10: CATEND	CATEND					
11:	CATBEG -99					
12:	SPHERE 0004					
13:	CATEND					

- BOX in line 1 is generated
- SPHERE in line 3 is skipped (since there is an active signal)
- CATBEG/CATEND in lines 4-6 are skipped (since they do not match -99)
- SPHERE in line 7 is skipped
- BOX in line 9 is generated
- CATBEG/CATEND in lines 11-13 are skipped (since the signal was cancelled when it was caught in line 8)

ESP Special Note on Programming Blocks

- Programming Blocks are delineated by
- PATBEG and PATEND
- IFTHEN, ELSEIF, ELSE, and ENDIF
- SOLBEG and SOLEND
- CATBEG and CATEND
- Any programming Block can be nested fully within any other programming Block (up to 10 levels deep)

esp Homework Exercises

- Rectangular plate with holes
- Round plate with holes
- Determine if two Bodys overlap
- Files in \$ESP_ROOT/training/ESP/data/session05 will get you started

esp Rectangular Plate with Holes (1)

esp Rectangular Plate with Holes (2)

nx	number of holes in X-direction	3.00
ny	number of holes in Y-direction	2.00
rad	radius of each hole	0.30
	distance between hole centers	1.00

esp Rectangular Plate with Holes (3)

- Can you make a single hole in the center of the plate?
- Can you change your solution to have the holes spaced so that they fill the plate?
- What if you make the radius of the hole too big?

esp Round Plate with Holes (1)

esp Round Plate with Holes (2)

Rplate	radius or plate	4.50
thick	thickness of plate	0.20
space	distance between hole centers	2.00
Rhole	radius of holes	0.80
	number of holes selected	
	automatically	

esp Overlapping Bodys (1)

esp Overlapping Bodys (2)

- Write . csm file to:
- set overlap1 to 1 if Bodys 1 and 4 overlap, otherwise set it to 0
- set overlap2 to 1 if Bodys 2 and 4 overlap, otherwise set it to 0
- set overlap3 to 1 if Bodys 3 and 4 overlap, otherwise set it to 0
- Try to use a pattern to do this compactly

