Engineering Sketch Pad (ESP)

Training Session 9 Sensitivities

John F. Dannenhoffer, III

jfdannen@syr.edu Syracuse University

Bob Haimes

haimes@mit.edu Massachusetts Institute of Technology updated for v1.18

esp Overview

- Background / Objective
- Alternative approaches
 - analytic derivatives
 - code differentiation
 - finite differences
- Computed examples
- Application to grid generation
- Conclusions
- Computing sensitivities in ESP
- Homework exercises

Background

- MDAO environments require calculation of sensitivity of objective function(s) w.r.t. the design parameters
- Many modern CFD systems can produce the objective function sensitivity all the way back to the grid
- Little work has been done in calculating the sensitivity of the grid w.r.t. the design parameters
- Objective
 - Compute sensitivities directly on parametric, CAD-based geometries

Possible Approaches

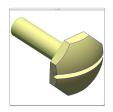
- Analytic derivatives
 - differentiate all operations within the CAD system analytically
 - requires access to CAD system's algorithms
 - produces results that are not susceptible to truncation error
- Code differentiation
 - CAD system source code is automatically differentiated via compiler-like process
 - requires access to CAD system's source code
 - produces results that are not susceptible to truncation error
- Finite differences
 - multiple instances of the configuration are generated and the sensitivities are computed via finite differences
 - requires one to find corresponding points in the configurations
 - picking appropriate step size (or perturbation) requires a trade-off between truncation and round-off errors

1:

Review of Construction Process (1)

thickness of head

bolt example

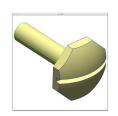

DESPMTR

design parameters

Thead

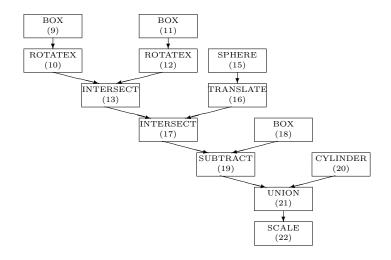
```
2:
      DESPMTR
                Whead
                          3.00
                                  # width
                                              of head
 3.
      DESPMTR
                Fhead
                          0.50
                                  # fraction of head that is flat
4:
      DESPMTR
                          0.75
                                  # depth of slot
                Dslot
                          0.25
                                  # width of slot
5.
      DESPMTR
                Wslot
6:
      DESPMTR
                Lshaft
                          4.00
                                  # length
                                             of shaft
7.
      DESPMTR
                Dshaft
                          1.00
                                  # diameter of shaft
8:
      DESPMTR.
                          0.50
                                  # overall scale factor
                sfact
      # head
      BOX
                       -Whead/2 -Whead/2 Thead
9:
                                                    Whead
                                                              Whead
10:
      ROTATEX
                90 0 0
11:
      BOX
                       -Whead/2 -Whead/2 Thead
                                                    Whead
                                                              Whead
12:
      ROTATEX
                45
                    0
13:
      INTERSECT
```

1.00



. . .

23: END


Review of Construction Process (2)

Rhead (Whead^2/4+(1-Fhead)^2*Thead^2)/(2*Thead*(1-Fhead)) 14: 15: SPHERE Rhead 16: TRANSLATE Thead-Rhead 17: INTERSECT # slot 18: BOX Thead-Dslot -Wslot/2 -Whead 2*Thead Wslot 2*Whead 19: SUBTRACT # shaft 20: CYLINDER -Lshaft Dshaft/2 21: UNION 22: SCALE sfact

Review of Construction Process (3)

Sensitivities Analytical Sensitivities

- Differentiate expressions for arguments to various operators
- For each Face
 - determine primitive that created the Face
 - differentiate functions used to generate the Face in its original position
 - apply appropriate transformations to sensitivities
- For each Edge
 - compute sensitivities of adjacent Faces
 - find sensitivity that is consistent with them and whose component along the Edge vanishes
- For each Node
 - compute sensitivities of incident Edges
 - find sensitivity that is consistent with them

Analytical Sensitivity for Faces

- Differentiate function(s) used to create a point on the Face
 - for a box

$$\left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{prim}} = \frac{\partial \overrightarrow{x_0}}{\partial P} + \frac{\partial \vec{S}}{\partial P} \left(\frac{\vec{x}_{\text{prim}} - \overrightarrow{x_0}}{\vec{S}}\right)$$

- Modify the sensitivities based upon transformations traversed in the feature tree
 - for a translation

$$\left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{new}} = \left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{prim}} + \frac{d\vec{x}_0}{dP}$$

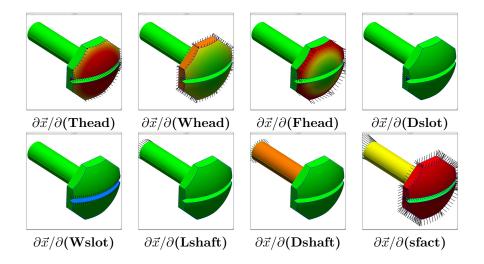
• Take normal component

$$\frac{\partial w}{\partial P} \equiv \frac{\partial \vec{x}}{\partial P} \bullet \vec{n}$$

Separation Analytical Sensitivity for Edges and Nodes

• Edge sensitivity is consistent with the adjacent Face sensitivities

$$\begin{bmatrix} n_{x,\text{left}} & n_{y,\text{left}} & n_{z,\text{left}} \\ n_{x,\text{right}} & n_{y,\text{right}} & n_{z,\text{right}} \\ t_{x,\text{edge}} & t_{y,\text{edge}} & t_{z,\text{edge}} \end{bmatrix} \begin{bmatrix} (\partial x/\partial P)_{\text{edge}} \\ (\partial y/\partial P)_{\text{edge}} \\ (\partial z/\partial P)_{\text{edge}} \end{bmatrix} = \begin{bmatrix} (\partial w/\partial P)_{\text{left}} \\ (\partial w/\partial P)_{\text{right}} \\ 0 \end{bmatrix}$$

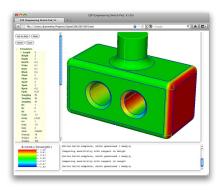

• Node sensitivity is consistent with the incident Edge sensitivities

$$\left[\begin{array}{cc} \vec{t_1} \bullet \vec{t_1} & -\vec{t_1} \bullet \vec{t_2} \\ -\vec{t_1} \bullet \vec{t_2} & \vec{t_2} \bullet \vec{t_2} \end{array} \right] \left[\begin{array}{c} A \\ B \end{array} \right] = \left[\begin{array}{cc} ((\partial \vec{x}/\partial P)_2 - (\partial \vec{x}/\partial P)_1) \bullet \vec{t_1} \\ ((\partial \vec{x}/\partial P)_1 - (\partial \vec{x}/\partial P)_2) \bullet \vec{t_2} \end{array} \right]$$

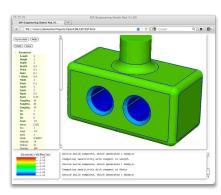
$$\left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{node}} = \left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{edge1}} + A\left(\frac{\partial \vec{x}}{\partial t}\right)_{\text{edge1}}$$

Analytical Sensitivities Example

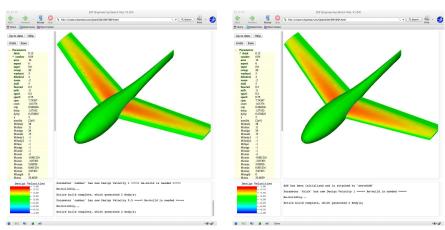
Finite-difference Sensitivities (1)


- Basic strategy:
 - re-create configuration after perturbing a design parameter
 - requires regeneration
 - step-size must be chosen carefully
 - take finite difference of associated points in the configurations
- Assumptions made in previous approaches:
 - dilitation or contraction is related to Face's bounding parametric coordinates
 - local changes have large effect on whole Face
 - geometry's parametrization can be used to map point movement
 - for NURBs, geometry is based upon knot spacings

Finite-difference Sensitivities (2)


- New approach:
 - compute a tessellation in the base configuration
 - discretize the Edges first
 - fill region with triangles only using the Edge points
 - discretize the perturbed Edges
 - use relative arc-lengths
 - find parametric coordinates \vec{u} for adjacent Edges using "Pcurve" evaluations $(\vec{u}(t))$
 - compute perturbation of space coordinates \vec{x} on the Edges
 - for interior points
 - find barycentric coordinates in base coarse tessellation
 - propagate Edge parametric coordinate perturbations from the Edges to the interior
 - compute perturbation of space coordinates

Finite-difference Sensitivity Example (1)


Change in box length

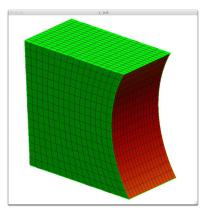
Change in the holes' radii

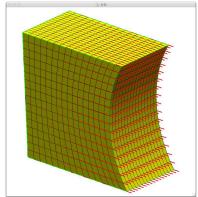
Finite-difference Sensitivity Example (2)

Change in camber

Change in thickness

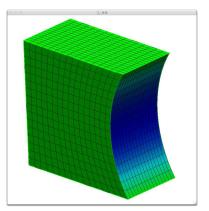
SP Application to Grid Sensitivities

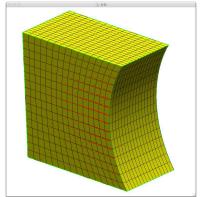

- Use configuration sensitivities to find (normal) change to surface location
- Use derivative of grid generator to find tangential change along surface


$$\left(\frac{d\vec{x}}{dP}\right)_{i,j} = \left(\frac{\partial w}{\partial P}\right)_{i,j} \vec{n}_{i,j} + \left(\frac{\partial \vec{x}}{\partial \vec{u}}\right)_{i,j} \left(\frac{d\vec{u}}{dP}\right)_{i,j}$$

- $d\vec{u}/dP$ in the interior comes from $d\vec{u}/dP$ on the Edges, which come from $d\vec{u}/dP$ at the Nodes
- Process is easily executed by doing Nodes first, then Edges, then Faces

Grid Sensitivities Example (1)





Sensitivity with respect to the length of the box

Grid Sensitivities Example (2)

Sensitivity with respect to the depression distance

- Sensitivities of a parametric, CAD-generated configuration w.r.t. design parameters can be robustly and efficiently found using a combination of techniques
 - Analytic derivatives are used whenever possible
 - efficient do not require regeneration of configuration
 - accurate not susceptible to truncation error
 - automatic code differentiation can be used when source code is available and derivatives are too hard to compute by hand
 - Finite differences are used when necessary
 - require regeneration of perturbed configuration
 - the original tessellation is reused to ensure proper point matching between base and perturbed geometries

- Configuration sensitivity is computed locally based upon a point's initial location in space
 - returns motion normal to Faces and Edges
 - is insensitive to surface parametrization
- Grid sensitivities can be found using just the configuration sensitivities and a knowledge of the grid generation scheme
- Tools are now available to produce the sensitivity of MDAO objective function(s) w.r.t. the engineer's design parameters

^{ESP} Computing Configuration Sensitivities in ESP

- Build a model with Design Parameters
- For simple sensitivities (that is, with respect to one Design Parameter at a time)
 - select (edit) the Design Parameter
 - press Compute Sensitivity
 - configuration will automatically be rebuilt and display will change
 - minimum and maximum sensitivities will be reported in Messages window
 - configuration will be colored in Graphics window
 - Key window will contain the color key, whose limits can be changed by clicking in the Key window

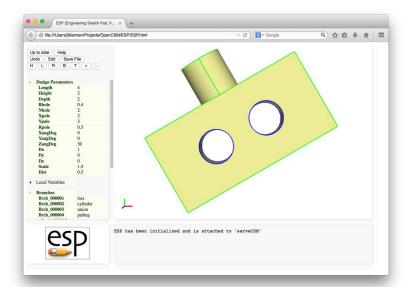
Computing Configuration Sensitivities in ESP

- The meaning of the various colors is:
 - red (positive sensitivity) are regions where a positive change in the Design Parameter would move the surface in the direction of the local outward-facing surface normal
 - blue (negative sensitivity) are regions where a negative change in the Design Parameter would move the surface in a direction opposite the local outward-facing surface normal
- Example for a cylindrical feature:
 - for a post-like feature, the sensitivity with respect to the diameter would be positive
 - for a hole-like feature, the sensitivity with respect to the diameter would be negative

^{ESP} Computing Configuration Sensitivities in ESP

- To find the sensitivity with respect to a multi-valued Design Parameter
 - select (edit) the multi-valued Design Parameter
 - press Clear Design Velocities
 - press Set Design Velocity
 - answer 1 for the entity for which you want the sensitivity
 - answer **0** (the default) for all other entities

Computing Configuration Sensitivities in ESP


- To find the sensitivity with respect to a several Design Parameters at the same time (for example, in the direction of the gradient proposed by an optimizer)
 - select any Design Parameter
 - press Clear Design Velocities
 - for each Design Parameter whose component to the gradient direction is non-zero
 - press Set Design Velocity
 - enter the associated component of the gradient vector
 - press Press to Re-build
 - Note: the key window will say d(norm)/d(***) to indicate that the sensitivity is with respect to some combination of Design Parameters

Computing Tessellation Sensitivities in ESP

- Process is same as for Configuration sensitivities, except:
 - serveCSM must be started with the -sensTess command line option
 - sensitivities are shown both with the color map and with superimposed tufts
 - the lengths of the tufts can be changes by changing the magnitude of the Design Parameter velocities

Box			
Length	length of box	4.0	
Height	height of box	2.0	
Depth	depth of box	2.0	
	anchored at $X = Z = 0$		
	centered at $Y = 0$		
Holes			
Rhole	radii of the holes	0.4	
Nhole	number of holes	2	
	holes are equally spaced		
Pole			
Xpole	X-location of top of pole	2.0	
Ypole	Y-location of top of pole	2.0	
Rpole	radius of pole	0.5	

Simple Block (3)

Rotation about origin				
XangDeg	X rotation (deg)	0.		
YangDeg	Y rotation (deg)	0.		
ZangDeg	Z rotation (deg)	30.		
Translation				
Dx		1.0		
Dy		0.0		
Dz		0.0		
Scaling				
Scale	overall scaling factor	1.5		

Simple Block (4)

- Starting file is at \$ESP_ROOT/training/ESP/data/session09/simpleBlock.csm
- What is the configuration sensitivity to each Design Parameter?
- What is the configuration sensitivity if you change two Design Parameters at the same time?
- What is the tessellation sensitivity to each Design Parameter?