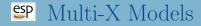
Engineering Sketch Pad (ESP)

Training Session 10 Putting It All Together

John F. Dannenhoffer, III

jfdannen@syr.edu Syracuse University

Bob Haimes


haimes@mit.edu

Massachusetts Institute of Technology

updated for v1.18

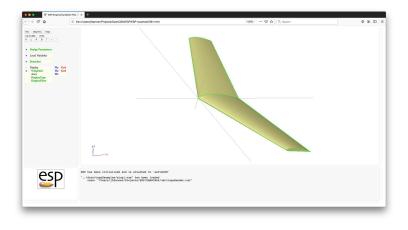
Dannenhoffer

ESP Training - Session 10

- During the design of an aircraft, various coupled models are needed
 - different disciplines
 - structures
 - controls
 - aerodynamics
 - . . .
 - different fidelities
 - conceptual design
 - preliminary design
 - detailed design
- There needs to be communication between these models

Computational Aircraft Prototype Syntheses (CAPS)

- In order to support multi-fidelity and multi-disciplinary analyses, the CAPS program has been developed
 - funded by the AFRL
- CAPS uses geometries (and sensitivities) generated by ESP
- CAPS provides interfaces to many analysis programs, including:
 - aerodynamics (at various fidelities)
 - structures (at various fidelities)
 - . . .
- There is a companion training course for CAPS that can be offered if there is sufficient interest


- One of the strengths of ESP is to be able to have multiple models of a single configuration
 - driven by a single set of Design Parameters
 - attributed so that "common" features could be linked together
- This capability has been used by the CAPS program
 - a set of "views" have been created, which can be used if the model is constructed and annotated in a consistent way
 - for AVL, SansLIP, SU2, Astros, ...
 - implemented as a series of UDCs

- Analysis of Simple Wing (wing1)
 - basic assumptions (orientation, ...)
 - required Bodys
 - required attributes (naming vs. meta-data)
- Analysis of wing with flaps (wing2)
 - required Bodys
 - required attributes (naming vs. meta-data)
- Analysis of wing structure wing3)
 - required Bodys
 - required attributes (naming vs. meta-data)
- Full aircraft model (transport)

wing1.csm

Isolated Wing: Outer Mold Line (OML) Only

- wing:area
- wing:aspect
- wing:taper
- wing:sweep
- wing:thick
- wing:camber
- wing.camper
- wing:washout

- 10.0 wing area
- 6.00 aspect ratio
- 0.60 taper ratio

deg

- $20.0 \quad \text{deg (of leading edge)}$
- 0.12 $\,$ thickness ratio, frac of local chord $\,$
- 0.04 maximum camber, frac of local chord
- $5.00 \quad \deg \text{(down at tip)}$
- wing:dihedral 4.00

"Possible" Analyses (Views) for wing1

- VIEW:Concept conceptual design
- VIEW:VLM vortex lattice method
- VIEW: CFDInviscid inviscid CFD analysis
- VIEW: CFDV isous viscous CFD analysis

- Configuration files defines the necessary Bodys
- Bodys are oriented such that:
 - x points out the tail
 - y points out the right wing
 - z points up

EP Required Bodys (for Aerodynamic Analyses)

- Outer Mold Lines (OMLs) for each component
 - FuseOml (a SolidBody)
 - WingOml (a SolidBody)
 - HtailOml (a SolidBody)
 - VtailOml (a SolidBody)

PRequired Attributes on WingOml

• Body

- tagComp with value \$leftWing or \$riteWing
- Faces
 - tagComp with value \$leftWing or \$riteWing
 - tagType with value \$root, \$tip, \$upper, \$lower, or \$trailingEdge
- Edges
 - tagType with value \$root, \$leadingEdge (with supporting tagComp), or \$trailingEdge (with supporting tagComp)

File can be found at \$ESP_ROOT/training/ESP/data/session10

- Definition of VIEWs to be supported
- Definition of COMPonents that are defined
- Definition of Design Parameters
- Call to capsHeader
- Construction of WingOml (with attributes)
- Call to capsViews

Dissection of wing1.csm (2)

written by John Dannenhoffer # define the views VIEW:Concept CFGPMTR. 1 CFGPMTR. VIEW: VLM 0 VIEW CFDInviscid 0 CEGPMTR CFGPMTR. VIEW: CFDViscous 0 # define components to be used CFGPMTR COMP:Wing 1 # Design Parameters for OML DESPMTR wing:area 10.0 # wing area DESPMTR. wing:aspect 6.00 # aspect ratio DESPMTR. wing:taper 0.60 # taper ratio DESPMTR wing:sweep 20.0 # deg (of leading edge) DESPMTR wing:thickr 0.12 # thickness ratio at root wing:camberr 0.06 DESPMTR # camber ratio at root DESPMTR wing:thickt 0.16 # thickness ratio at tip DESPMTR wing:cambert 0.02 # camber ratio at tip DESPMTR wing:alphat -5.00# setting angle at tip DESPMTR wing:dihedral 4.00 # deg DESPMTR wing:xroot 0.00 # xloc at root LE DESPMTR wing:yroot 0.00 # yloc at root LE DESPMTR wing:zroot 0.00 # zloc at root LE

Define length units of the geometry
ATTRIBUTE capsLength \$ft

wing1

Dissection of wing1.csm (3)

convert VIEW:* variables into make* variables
UDPRIM \$/capsHeader

wing local variables SET wing:span sqrt(wing:aspect*wing:area) 2*wing:area/wing:span/(1+wing:taper) SET wing:chordr SET wing:chordt wing:chordr*wing:taper SET wing:ytip -wing:span/2 SET wing:xtip -wing:ytip*tand(wing:sweep) SET -wing:vtip*tand(wing:dihedral) wing:ztip SET sqrt(wing:area/wing:aspect) wing:mac # make wing OML **TETHEN** makeWingOml EQ 1 # lav out left wing MARK # root UDPRIM thickness wing:thickr camber wing:camberr sharpte SHARP_TE naca SCALE wing:chordr ROTATEX 90 0 0 # left tip UDPRIM naca thickness wing:thickt camber wing:cambert sharpte SHARP TE SCALE wing:chordt BOTATEX 90 0 0 wing:alphat 0 ROTATEY 0 TRANSLATE wing:xtip wing:ytip wing:ztip RULE. ATTRIBUTE tagComp \$leftWing SET ruledBody @nbody

SELECT FACE ruledBody 1 ATTRIBUTE tagTvpe \$root SELECT FACE ruledBody 2 ATTRIBUTE tagType \$tip SELECT FACE ruledBody 3 ATTRIBUTE tagType \$upper SELECT FACE ruledBody 4 ATTRIBUTE tagType \$lower SELECT EDGE ruledBody 3 ruledBody 4 1 ATTRIBUTE tagComp \$leftWing ATTRIBUTE tagType \$leadingEdge IFTHEN SHARP TE EQ O SELECT FACE ruledBody 5 ATTRIBUTE tagType \$trailingEdge ELSE EDGE ruledBody 3 ruledBody 4 2 SELECT ATTRIBUTE tagComp \$leftWing ATTRIBUTE tagType \$trailingEdge ENDIF

EP Dissection of wing1.csm (5)

```
# right wing too
   STORE
            LeftWing 0 1
   RESTORE LeftWing
       ATTRIBUTE tagComp $riteWing
       SELECT
                 EDGE $tagType $leadingEdge
       TETHEN
                 @iedge GT 0
           SELECT EDGE $tagType $leadingEdge
               ATTRIBUTE tagComp $riteWing
       ENDIF
       SELECT
                 EDGE $tagType $trailingEdge
       IFTHEN
                 @iedge GT 0
           SELECT EDGE $tagType $trailingEdge
               ATTRIBUTE tagComp $riteWing
       ENDIF
       CATBEG
                $edge not found
       CATEND
   MTRROR
             0 1 0
   JOTN
   SELECT
             EDGE ruledBody 3 ruledBody 3 1
       ATTRIBUTE tagTvpe $root
   SELECT
             EDGE ruledBody 4 ruledBody 4 1
       ATTRIBUTE tagType $root
   STORE
             WingOml
ENDIF
# now generate the needed views
UDPR.TM
         $/capsViews
```

END

wing:hinge[i,1]
wing:hinge[i,2]
wing:hinge[i,3]
wing:hinge[i,4]
wing:hinge[i,5]
wing:hinge[i,6]
wing:hinge[i,7]
wing:hinge[i,8]
wing:hinge[i,9]

deflection (degrees) x/c at y-min end y/(b/2) at y-min end z/t at y-min end x/c at y-max end y/(b/2) at y-max end z/t at y-max end gap when cutting out for CFD group (used to link controls in VLM)

EP Required Bodys (for Control Analyses)

• Outer Mold Lines (OMLs) for each component

- FuseOml (a SolidBody)
- WingOml (a SolidBody)
- HtailOml (a SolidBody)
- VtailOml (a SolidBody)

• Hinge lines for each control surface i on each component

- WingHinge *i* (a WireBody)
- HtailHinge *i* (a WireBody)
- VtailHinge *i* (a WireBody)

Sequired Attributes on WingHinge i

• Body

- (none required)
- Edges
 - tagComp with value \$wing
 - tagType with value \$hinge
 - tagIndex with value *i*
 - deflect with value equal to deflection angle (in degrees), positive according to right-hand rule
 - xoverc1 with value equal to x/c at the y-min end
 - xoverc2 with value equal to x/c at the y-max end
 - gap with value equal to gap size when cutting out control surface for CFD

File can be found at \$ESP_ROOT/training/ESP/data/session10

- Definition of VIEWs to be supported
- Definition of COMPonents that are defined
- Definition of Design Parameters
- Call to capsHeader
- Construction of WingOml (with attributes)
- Construction of WingHinges (with attributes)
- Call to capsViews

SP Dissection of wing2.csm (2)

# wingz		
# written by John Danner	hoffer	
# define the views		
CFGPMTR VIEW:Concept	1	
CFGPMTR VIEW:VLM	0	
CFGPMTR VIEW:CFDInviso	id 0	
CFGPMTR VIEW:CFDViscou	ıs 0	
# define components to b	e used	
CFGPMTR COMP:Wing	1	
CFGPMTR COMP:Control	0	
# Design Parameters for	OML	
DESPMTR wing:area	10.0	# wing area
DESPMTR wing:aspect	6.00	# aspect ratio
DESPMTR wing:taper	0.60	# taper ratio
DESPMTR wing:sweep	20.0	<pre># deg (of leading edge)</pre>
DESPMTR wing:thickr	0.12	# thickness ratio at root
DESPMTR wing:camberr	0.06	<pre># camber ratio at root</pre>
DESPMTR wing:thickt	0.16	# thickness ratio at tip
DESPMTR wing:cambert	0.02	# camber ratio at tip
DESPMTR wing:alphat	-5.00	<pre># setting angle at tip</pre>
DESPMTR wing:dihedral	4.00	# deg
DESPMTR wing:xroot		# xloc at root LE
DESPMTR wing:yroot	0.00	# yloc at root LE
DESPMTR wing:zroot		
U U		

wing?

Dissection of wing2.csm (3)

<pre># Design Parameters : DIMENSION wing:hinge #</pre>		
DESPMTR wing:hinge	"-10.0; 0.75; -0.90; 0.50; 0.75; -0.50; 0.50; 0.10; 1; \ left aileron	
	+10.0; 0.75; 0.50; 0.50; 0.75; 0.90; 0.50; 0.10; 2" # rite ailero	n
<pre># Define length unit ATTRIBUTE capsLength</pre>	of the geometry \$ft	
<pre># convert VIEW:* var UDPRIM \$/capsHead</pre>	ables into make* variables r	
# wing local variable	8	
SET wing:span	<pre>sqrt(wing:aspect*wing:area)</pre>	
SET wing:chord	2*wing:area/wing:span/(1+wing:taper)	
SET wing:chord	wing:chordr*wing:taper	
SET wing:ytip	-wing:span/2	
SET wing:xtip	-wing:ytip*tand(wing:sweep)	
SET wing:ztip	-wing:ytip*tand(wing:dihedral)	
SET wing:mac	sqrt(wing:area/wing:aspect)	

Dissection of wing2.csm (4)

```
# make wing OML
IFTHEN
        makeWingOml EQ 1
   # lav out left wing
   MARK
       # root
       UDPRIM
                         thickness wing:thickr camber wing:camberr sharpte SHARP TE
                naca
       SCALE wing:chordr
       ROTATEX 90 0 0
       # left tip
       UDPRIM
                         thickness wing:thickt camber wing:cambert sharpte SHARP_TE
                naca
       SCALE wing:chordt
       ROTATEX 90 0 0
       ROTATEY wing:alphat 0
                                       0
       TRANSLATE wing: xtip wing: ytip wing: ztip
   BIILE.
       ATTRIBUTE tagComp $leftWing
   SET ruledBody @nbody
   SELECT FACE ruledBody 1
       ATTRIBUTE tagType $root
   SELECT
            FACE ruledBody 2
       ATTRIBUTE tagType $tip
            FACE ruledBody 3
   SELECT
       ATTRIBUTE tagTvpe $upper
   SELECT
            FACE ruledBody 4
       ATTRIBUTE tagType $lower
            EDGE ruledBody 3 ruledBody 4 1
   SELECT
       ATTRIBUTE tagComp $leftWing
       ATTRIBUTE tagType $leadingEdge
```

Dissection of wing2.csm (5)

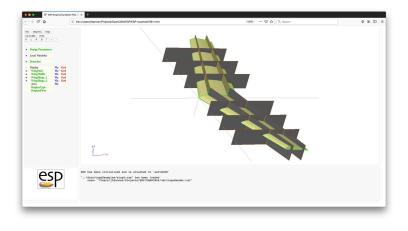
```
IFTHEN
         SHARP TE EQ O
    SELECT
             FACE ruledBody 5
       ATTRIBUTE tagType $trailingEdge
ELSE
             EDGE ruledBody 3 ruledBody 4 2
   SELECT
       ATTRIBUTE tagComp $leftWing
       ATTRIBUTE tagType $trailingEdge
ENDIF
# right wing too
STORE
         LeftWing 0 1
RESTORE LeftWing
   ATTRIBUTE tagComp $riteWing
   SELECT EDGE $tagType $leadingEdge
   IFTHEN @iedge GT 0
       SELECT EDGE $tagType $leadingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
   SELECT
             EDGE $tagType $trailingEdge
   IFTHEN
             @iedge GT 0
       SELECT EDGE $tagTvpe $trailingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
   CATBEG
            $edge not found
   CATEND
MTRROR
         0 1 0
JOIN
```

Dissection of wing2.csm (6)

```
SELECT
             EDGE ruledBody 3 ruledBody 3 1
       ATTRIBUTE tagType $root
   SELECT
             EDGE ruledBody 4 ruledBody 4 1
       ATTRIBUTE tagType $root
             WingOml
   STORE
ENDIF
# make wing hinge lines
TETHEN
         makeWingOml EQ 1 AND makeWingHinge EQ 1
   PATBEG
             ihinge wing:hinge.nrow
       SET
                 y_ibd wing:hinge[ihinge,3]*(-wing:ytip)
                 -1000 y_ibd -1000 2000 0 2000
        BOX
                 WingOml
       RESTORE
       INTERSECT
       SET
                 x ibd
                         Qxmin+wing:hinge[ihinge.2]*(@xmax-@xmin)
       STORE
       BOX
                 x_ibd y_ibd -1000 0 0 2000
       RESTORE
                 WingOml
       INTERSECT
       SET
                         @zmin+wing:hinge[ihinge,4]*(@zmax-@zmin)
                 z_ibd
       STORE
```

P Dissection of wing2.csm (7)

```
SET
                 y_obd wing:hinge[ihinge,6]*(-wing:ytip)
       BOX
                 -1000 v obd -1000 2000 0 2000
       RESTORE
                 WingOml
       INTERSECT
       SET
                         Qxmin+wing:hinge[ihinge.5]*(@xmax-@xmin)
                 x obd
       STORE
                 x_obd y_obd -1000 0 0 2000
       BOX
       RESTORE
                 WingOml
       INTERSECT
       SET
                 z obd
                         @zmin+wing:hinge[ihinge,7]*(@zmax-@zmin)
       STORE
       SKBEG
                  x_ibd y_ibd z_ibd
           LINSEG x_obd y_obd z_obd
       SKEND
       SELECT
                 EDGE 1
           ATTRIBUTE tagComp $wing
           ATTRIBUTE tagTvpe $hinge
           ATTRIBUTE tagIndex !val2str(wing:hinge[ihinge.9].0)
           ATTRIBUTE deflect wing:hinge[ihinge,1]
           ATTRIBUTE xoverc1 wing:hinge[ihinge.2]
           ATTRIBUTE xoverc2 wing:hinge[ihinge,5]
                               wing:hinge[ihinge,8]
           ATTRIBUTE gap
           ATTRIBUTE compIndex !val2str(ihinge,0)
       STORE
               WingHinge ihinge
   PATEND
# now generate the needed views
```


UDPRIM \$/capsViews

END

ENDIF

wing3.csm

Isolated Wing: OML and Structures

wing:spar1 0.20 wing:spar2 0.70 wing:nrib 3.00

location of fwrd spar
 location of rwrd spar
 number of ribs per wing

"Possible" Analyses (Views) for wing3

- VIEW:Concept conceptual design
- VIEW:Structure built-up element model

EP Required Bodys (for Structural Analyses)

• Outer Mold Lines (OMLs) for each component

- FuseOml (a SolidBody)
- WingOml (a SolidBody)
- HtailOml (a SolidBody)
- VtailOml (a SolidBody)
- Waffle for each component
 - FuseWaffle (a SheetBody) not yet supported
 - WingWaffle (a SheetBody)
 - HtailWaffle (a SheetBody) not yet supported
 - VtailWaffle (a SheetBody) not yet supported

EP Required Attributes of WingWaffle

- Body
 - (none required)
- Faces
 - tagComp with value \$leftwing, \$riteWing, or \$wing (if on
 symmetry plane)
 - tagType with value \$spar or \$rib
 - tagIndex with different value for each spar and rib

EP Dissection of wing3.csm (1)

wing3

written by John Dannenhoffer

<pre># define</pre>	the views							
CFGPMTR	VIEW:Concept		1					
CFGPMTR	VIEW:VLM		0					
CFGPMTR	VIEW:CFDInvisci	d	0					
CFGPMTR	VIEW:CFDViscous	3	0					
CFGPMTR	VIEW:OmlStructu	ire	0					
CFGPMTR	VIEW:ClampedStr	ucture	0					
CFGPMTR	VIEW:SupportStr	ucture	0					
CFGPMTR	VIEW:BoxStructu	ire	0					
<pre># define</pre>	components to be	e used						
CFGPMTR	COMP:Wing	1						
# Design	Parameters for (DML						
DESPMTR	wing:area	10.0		#	wing area			
DESPMTR	wing:aspect	6.00		#	aspect rat	io		
DESPMTR	wing:taper	0.60			taper rati			
DESPMTR	wing:sweep	20.0		#	deg (of le	ading	edg	ge)
DESPMTR	wing:thickr	0.12		#	thickness	ratio	at	root
DESPMTR	wing:camberr	0.06		#	camber	ratio	at	root
DESPMTR	wing:thickt	0.16		#	thickness	ratio	at	tip
DESPMTR	wing:cambert	0.02		#	camber	ratio	at	tip
DESPMTR	wing:alphat -	-5.00		#	setting an	ıgle	at	tip
DESPMTR	wing:dihedral	4.00		#	deg			
DESPMTR	wing:xroot	0.00		#	xloc at ro	ot LE		
DESPMTR	wing:yroot	0.00		#	yloc at ro	ot LE		
DESPMTR	wing:zroot	0.00		#	zloc at ro	ot LE		

Dissection of wing3.csm (2)

Design Parameters for structure DESPMTR wing:spar1 0.20 # location of fwrd spar 0.70 # location of rwrd spar DESPMTR wing:spar2 CEGPMTR wing:nrib 3.00 # number of ribs per wing # Define length units of the geometry ATTRIBUTE capsLength \$ft # convert VIEW:* variables into make* variables UDPRTM \$/capsHeader # wing local variables SET wing:span sqrt(wing:aspect*wing:area) SET wing:chordr 2*wing:area/wing:span/(1+wing:taper) SET wing:chordt wing:chordr*wing:taper SET -wing:span/2 wing:ytip SET -wing:ytip*tand(wing:sweep) wing:xtip SET wing:ztip -wing:vtip*tand(wing:dihedral) SET wing:mac sqrt(wing:area/wing:aspect)

Dissection of wing3.csm (3)

```
# make wing OML
         makeWingOml EQ 1
TETHEN
   # lav out left wing
   MARK
       # root
       UDPRIM
                          thickness wing:thickr camber wing:camberr sharpte SHARP TE
                naca
       SCALE
                wing:chordr
       ROTATEX 90 0 0
       # left tip
       UDPRIM
                          thickness wing:thickt camber wing:cambert sharpte SHARP_TE
                naca
       SCALE wing:chordt
       BOTATEX 90 0 0
       ROTATEY wing:alphat 0
                                        0
       TRANSLATE wing: xtip wing: ytip wing: ztip
   BIILE.
       ATTRIBUTE tagComp $leftWing
             ruledBody @nbody
   SET
            FACE ruledBody 1
   SELECT
       ATTRIBUTE tagType $root
   SELECT
            FACE ruledBody 2
       ATTRIBUTE tagTvpe $tip
       ATTRIBUTE tagIndex $1
   SELECT FACE ruledBody 3
       ATTRIBUTE tagType $upper
   SELECT
             FACE ruledBody 4
       ATTRIBUTE tagType $lower
```

Dissection of wing3.csm (4)

```
SELECT
         EDGE ruledBody 3 ruledBody 4 1
   ATTRIBUTE tagComp $leftWing
   ATTRIBUTE tagType $leadingEdge
         SHARP_TE EQ 0
TETHEN
    SELECT
             FACE ruledBody 5
       ATTRIBUTE tagType $trailingEdge
ELSE
             EDGE ruledBody 3 ruledBody 4 2
   SELECT
       ATTRIBUTE tagComp $leftWing
       ATTRIBUTE tagType $trailingEdge
ENDIF
# right wing too
STORE LeftWing 0 1
RESTORE LeftWing
   ATTRIBUTE tagComp $riteWing
   SELECT FACE $tagType $tip
   ATTRIBUTE tagIndex $2
   SELECT EDGE $tagType $leadingEdge
   IFTHEN @iedge GT 0
       SELECT EDGE $tagTvpe $leadingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
   SELECT
             EDGE $tagType $trailingEdge
   IFTHEN
             @iedge GT 0
       SELECT EDGE $tagType $trailingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
             $edge not found
   CATREG
   CATEND
MTRROR
         0 1 0
TOTN
```

Dissection of wing3.csm (5)

```
SELECT
              EDGE ruledBody 3 ruledBody 3 1
        ATTRIBUTE tagType $root
    SELECT
              EDGE ruledBody 4 ruledBody 4 1
        ATTRIBUTE tagType $root
              WingOml
    STORE
ENDIF
# make wing waffle
          makeWingWaffle EQ 1
TETHEN
    RESTORE
              WingOml
    SET
              xmin
                         @xmin-0.1
    SET
                         @xmax+0.1
              xmax
    SET
              vmin
                         0
    SET
              vmax
                         @vmax+0.1
    SET
                         @zmin-0.1
              zmin
    SET
                         @zmax+0.1
              zmax
    STORE
    UDPARG
              waffle
                         depth wing:nrib
                                              # ensures rebuild
    UDPARG
              waffle
                         depth wing:spar1
    UDPARG
              waffle
                         depth wing:spar2
    UDPR.TM
              waffle
                         depth zmax-zmin filename <<
```

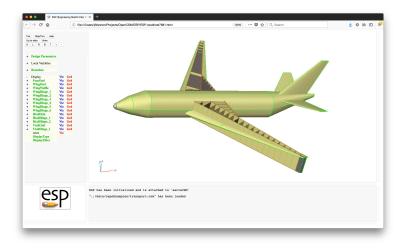
Dissection of wing3.csm (6)

<pre># construction</pre>	lines for spars
CPOINT A AT	0+wing:spar1*wing:chordr 0
CPOINT B AT	wing:xtip+wing:spar1*wing:chordt -wing:ytip
CPOINT C AT	0+wing:spar2*wing:chordr 0
CPOINT D AT	wing:xtip+wing:spar2*wing:chordt -wing:ytip
CLINE AB	A B
CLINE CD	C D
<pre># rite spars</pre>	
POINT E ON	AB YLOC ymin
POINT F ON	AB YLOC ymax
LINE EF E	F tagComp=riteWing tagType=spar tagIndex=1
POINT G ON	CD YLOC ymin
POINT H ON	CD YLOC ymax
LINE GH G	H tagComp=riteWing tagType=spar tagIndex=2
<pre># rite ribs</pre>	
PATBEG irib	wing:nrib
CPOINT I	AT xmin -wing:ytip*irib/(wing:nrib+1)
CPOINT J	AT xmax y@I
LINE .	I J tagComp=riteWing tagType=rib tagIndex=!val2str(irib,0)
PATEND	

P Dissection of wing3.csm (7)

```
# root rib
       CPOINT I AT xmin 0
       CPOINT J AT xmax y@I
       LINE . I J tagComp=rootWing tagTvpe=rib tagIndex=0
       # left spars
       POINT E AT x@E -v@E
       POINT F AT x@F -v@F
       LINE FE F
                    E tagComp=leftWing tagType=spar tagIndex=1
       POINT G AT x@G -v@G
       POINT H AT x@H -y@H
             HG H G tagComp=leftWing tagType=spar tagIndex=2
       LINE
       # left ribs
       PATBEG irib wing:nrib
          CPOINT I AT xmin wing:ytip*irib/(wing:nrib+1)
          CPOINT J AT xmax v@I
               . I J tagComp=leftWing tagType=rib tagIndex=!val2str(irib,0)
          L.TNE
       PATEND
   TRANSLATE 0 0 zmin
            WingWaffle
   STORE
ENDIF
# now generate the needed views
UDPRIM
        $/capsViews
```

END


>>

SP Full Transport Configuration File found at **\$ESP_ROOT/training/ESP/data/session10**

- Design Parameters associated with fuselage and tail
 similar to wing
 - Construction of foodland or
- Construction of fuselage and tail
 - similar to wing

transport.csm

Isolated Transport: OML, Structures, and Controls

- ESP is a powerful geometry-generating system that was designed for the analysis of complex configurations
 - supports multiple linked models
 - supports persistent attribution
 - provides sensitivities
 - can easily be coupled with other systems
- For CAPS, a set of "views" were defined; but these are only an example
- Each organization will want to develop a set of rules and conventions that are consistent with the rest of the organization's design systems

- ESP is freely available for download from acdl.mit.edu/ESP
- Based upon user requests, new and improved features are added continually
- Send bug reports to jfdannen@syr.edu or haimes@mit.edu
- Also send success stories to jfdannen@syr.edu or haimes@mit.edu
- Thank you for attending; send comments about the course to jfdannen@syr.edu or haimes@mit.edu