

John F. Dannenhoffer, III

jfdannen@syr.edu Syracuse University

Bob Haimes

haimes@mit.edu

Massachusetts Institute of Technology

updated for v1.19

Dannenhoffer

ESP Training - Solutions

June 2021 1 / 133

Session 2 Solutions Solids Fundamentals (1)

U-shaped Bracket with Hole (1)

Dannenhoffer

ESP Training - Solutions

June 2021

Length	length in $(X$ -direction)	4.00
Height	height of the two legs $(Y$ -direction)	3.00
Depth	depth (in Z -direction)	2.50
Dslot	depth of slot (in Y -direction)	2.00
Wslot	width of slot (in X -direction)	2.00
	slot is centered in X -direction	
Dhole	diameter of hole	1.00
	hole is centered in Z -direction	
	center of hole is down Dhole from top	

♥ U-shaped Bracket — Step 1

$\stackrel{\mbox{\footnotesize EP}}{=}$ U-shaped Bracket — Step 2

♥ U-shaped Bracket — Step 3

ESP (Engineering Skot	ch Pad, VI X +		
⊖ → ♂ ☆	Ite:///Users/jfdannen/Projects/OpenCSM/ESP/ESP-localhost7681.html	120% … 🛛 👌	⊪ ⊡ ≌
ra bot beething into the unit was Design Parameters - Design Parameters - Design Variables - Brancha - Br		0	
esp	"/Soc/training 2020/solitions/session37/Dracket.cm" has been loads Entering StepPhru: press 'n" for next, 'p' for previous, 'f' for first Bhowing "Booky 1" sessrated by "Ercl_00002 (boox)' in StepPhru mode Bhowing "Body 2" generated by "Ercl_000021 (boox)' in StepPhru mode Bhowing "Body 3" generated by "Ercl_000024 (subtract)' in StepPhru mode	nd , and "l" for last Se	

P U-shaped Bracket — Step 4

♥ U-shaped Bracket — Step 5

U-shaped Bracket — .csm File

Ubracket

written by John Dannenhoffer

design parameters DESPMTR Length 4.00 # length DESPMTR Height 3.00 # height DESPMTR Depth 2.50 # depth DESPMTR. Dslot 2.00 # depth of slot DESPMTR Wslot 2.00 # width of slot DESPMTR Dhole 1.00 # diameter of hole # bracket shape thick (Length-Wslot)/2 SET BOX 0 0 0 Length Height Depth BOX thick Height-Dslot 0 Length-2*thick Height Depth SUBTRACT # hole CYLINDER Length/2 Height-Dhole Depth/2 \ 3*Length/2 Height-Dhole Depth/2 Dhole/2 SUBTRACT

END

Simple Block (1)

C W The W/Users/p	dannen/Projects/OpenCSM/ESP/ES	SP.html	v C Google	♀ ☆ 自 ♣ 余 目
Up to date Help				
Undo Edit Sa	ve File			
HLRB	T + •			
- Design Paramete	18			
Length	4			
Height	2			
Depth	2		-	
Rhole	0.4	y		
Nhole	2			
Xpole	2			
Ypole	2			
Rpole	0.5			
XangDeg	0		\frown	
YangDeg	0			
ZangDeg	30			
Dx	1			
Dy	0			
Dz	0			
Scale	1.5			
Dist	0.5			
+ Local Variables				
 Branches 				
Brch_000001	box			
Brch_000002	cylinder			
Brch_000003	union			
	nothen			

Dannenhoffer

ESP Training - Solutions

June 2021

Simple Block (2)

Box			
Length	length of box	4.0	
Height	height of box	2.0	
Depth	depth of box	2.0	
	anchored at $X = Z = 0$		
	centered at $Y = 0$		
Holes			
Rhole	radii of the holes	0.4	
Nhole	number of holes	2	
	holes are equally spaced		
Pole			
Xpole	X-location of top of pole	2.0	
Ypole	Y-location of top of pole	2.0	
Rpole	radius of pole	0.5	

Rotation about origin				
XangDeg	X rotation (deg)	0.		
YangDeg	Y rotation (deg)	0.		
ZangDeg	Z rotation (deg)	30.		
Translation				
Dx		1.0		
Dy		0.0		
Dz		0.0		
Scaling				
Scale	overall scaling factor	1.5		

17/133

Dannenhoffer

Dannenhoffer

Simple Block — .csm File (1)

block

written by John Dannenhoffer

DESPMTR	Length	4.0
DESPMTR	Height	2.0
DESPMTR	Depth	2.0
DESPMTR	Rhole	0.4
DESPMTR	Nhole	2
DESPMTR	Xpole	2.0
DESPMTR	Ypole	2.0
DESPMTR	Rpole	0.5
DESPMTR	XangDeg	0.
DESPMTR	YangDeg	0.
DESPMTR	ZangDeg	30.
DESPMTR	Dx	1.0
DESPMTR	Dy	0.0
DESPMTR	Dz	0.0
DESPMTR	Scale	1.5
DESPMTR	Dist	0.5

#	base	block
B	XC	0.0

-Height/2 0.0 Length

Height Depth

Simple Block — .csm File (2)

# post CYLINDER UNION	Xpole	0.0	Depth/2	Xpole	Ypole	Depth/2	Rpole
# Nhole ho	oles						
PATBEG	ihole	Nhole					
SET	xhole	Length*ih	ole/(Nhole	+1)			
CYLINDE SUBTRAC	ER xhole CT	0.0	0.0	xhole	0.0	Depth	Rhole
PATEND							
# transfor	rmations						
ROTATEX	XangDeg	0.0	0.0				
ROTATEY	YangDeg	0.0	0.0				
ROTATEZ	ZangDeg	0.0	0.0				
TRANSLATE	Dx	Dy	Dz				
SCALE	Scale						

END

Session 3 Solutions Solids Fundamentals (2)

Dannenhoffer

ESP Training - Solutions

June 2021

27 / 133

Simple Wing (2)

Xroot	X-coordinate of root leading edge	0.00
Yroot	Y-coordinate of root leading edge	0.00
Zroot	Z-coordinate of root leading edge	0.00
croot	chord of root	2.00
troot	thickness/chord of root	0.12
mroot	camber/chord of root	0.04
aroot	angle of attack of root (deg)	7.50
Xtip	X-coordinate of tip leading edge	0.50
Ytip	Y-coordinate of tip leading edge	0.25
Ztip	Z-coordinate of tip leading edge	8.00
ctip	chord of tip	1.75
ttip	thickness/chord of tip	0.08
mtip	camber/chord of tip	0.04
atip	angle of attack of tip (deg)	-5.00

28 / 133

- What happens if you switch from RULE to BLEND?
- What happens if we change the sequence of transformations from SCALE, ROTATEZ, TRANSLATE to ROTATEZ, SCALE, TRANSLATE?
- What happens if we do the TRANSLATE first?
- Could you change the Design Parameters to area, aspectRatio, taperRatio, sweep, and twist?

$$AR = \frac{b^2}{S}$$
 $S = b(c_{\rm tip} + c_{\rm root})/2$ $\tau = \frac{c_{\rm tip}}{c_{\rm root}}$

Simple Wing — .csm File (1)

wing

written by John Dannenhoffer

# design	parameters			
DESPMTR	Xroot	0.00	#	X-coordinte of root leading edge
DESPMTR	Yroot	0.00	#	Y-coordinte of root leading edge
DESPMTR	Zroot	0.00	#	Z-coordinte of root leading edge
DESPMTR	croot	2.00	#	chord of root
DESPMTR	troot	0.12	#	thickness/chord of root
DESPMTR	mroot	0.04	#	camber/chord of root
DESPMTR	aroot	7.50	#	angle of attack of root (deg)
DESPMTR	Xtip	0.50	#	X-coordinte of tip leading edge
DESPMTR	Ytip	0.25	#	Y-coordinte of tip leading edge
DESPMTR	Ztip	8.00	#	Z-coordinte of tip leading edge
DESPMTR	ctip	1.75	#	chord of tip
DESPMTR	ttip	0.08	#	thickness/chord of tip
DESPMTR	mtip	0.04	#	camber/chord of tip
DESPMTR	atip	-5.00	#	angle of attack of tip (deg)

Simple Wing — .csm File (2)

MARK

```
# rite wing tip
UDPRIM
        naca
              thickness ttip camber mtip
SCALE ctip
ROTATEZ -atip 0 0
TRANSLATE Xtip Ytip -Ztip
# wing root
UDPRIM
        naca
              thickness troot camber mroot
SCALE croot
ROTATEZ -aroot 0
                    0
TRANSLATE Xroot Yroot Zroot
# left wing tip
UDPRIM
        naca
              thickness ttip camber mtip
SCALE ctip
ROTATEZ -atip
              0
                    0
TRANSLATE Xtip Ytip Ztip
```

ruled surface
RULE

END

DESPMTR	area	30.00	# wing area
DESPMTR	aspect	8.533	<pre># aspect ratio</pre>
DESPMTR	taper	0.875	# taper ratio
DESPMTR	sweep	3.583	<pre># wing sweep (deg)</pre>
DESPMTR	dihedral	1.791	<pre># dihedral (deg)</pre>

SET	span	<pre>sqrt(area*aspect)</pre>
SET	cmean	area/span
SET	croot	2*cmean/(1+taper)
SET	ctip	croot*taper
SET	Xtip	<pre>span/2*sind(sweep)</pre>
SET	Ytip	<pre>span/2*sind(dihedral)</pre>
SET	Ztip	span/2

Simple Fuselage (1)

• Fuselage by blending a series of super-ellipses (SUPELLs), where the dimensions of the X-sections are provided in arrays

ESP Training - Solutions

xloc	width	zcent	height	power
0.0	0.0	0.0	0.0	2
1.0	1.0	0.1	1.0	2
4.0	1.6	0.4	2.0	3
8.0	1.6	0.4	2.0	3
12.0	1.0	0.3	1.2	2
16.0	0.8	0.2	0.4	2

- Can you make the radius at the nose 0.2 in a top view and 0.1 in a side view?
- Can you make the fuselage between the two sections whose power is 3 have a constant cross-section?
- Can you create a SheetBody that has a plane of symmetry and cross-sections at every y, starting at y = 1/2 and spaced with $\Delta y = 1$?
- Can you color the odd-numbered bulkheads red and even-numbered bulkheads blue?
- Can you color the Edges at the intersections of the symmetry plane and bulkheads white?

Simple Fuselage (4)

Dannenhoffer

ESP Training - Solutions

June 2021

49/133

⊖ → ୯ @	🛈 file///Users/fdanner/Projects/OpenCSW/ESP/ESP-localhost/681.html 🛛 😗 👘 🐨 👽	άr	<u>*</u>	IIV 🖽	1
The first insertion (eq.) the second of the second of th	Either select one of these options Composessmathy Set Desgn Velocity Clear Desgn Velocities Delete Parameter Cancel OK or edit the current Parameter				
esp	EEF has been initialized and is attached to 'serveCEW' "/dec/training_2020/wolunicss/seesion3)/fueslage.cma" has been loaded Durning flying mode OM				

$\stackrel{\mbox{\scriptsize \sc split}}{\longrightarrow}$ Simple Fuselage — Step 2

$\stackrel{\mbox{\scriptsize \sc split}}{\longrightarrow} Simple Fuselage - Step 7$

$\stackrel{\mbox{\scriptsize SP}}{\longrightarrow}$ Simple Fuselage — Step 20

ESP Training - Solutions

Simple Fuselage — Step 24

Simple Fuselage — .csm File (1)

fuselageAlone

written by John Dannenhoffer

<pre># fuselage</pre>	e design Parameters						
CFGPMTR		fuse	lage:n	umXsec	t 6		
DIMENSION	fuselage:xloc	fuse	lage:nu	umXsec	t 1		
DIMENSION	fuselage:zloc	fuse	lage:nu	umXsec	t 1		
DIMENSION	fuselage:width	fuse	lage:n	umXsec	t 1		
DIMENSION	fuselage:height	fuse	lage:n	umXsec	t 1		
DIMENSION	fuselage:power	fuse	lage:nu	umXsec	t 1		
DIMENSION	fuselage:noselist	2			4		
DESPMTR	fuselage:xloc	"0;	1.0;	4.0;	8.0;	12.0;	16.0;"
DESPMTR	fuselage:zloc	"0;	0.1;	0.4;	0.4;	0.3;	0.2;"
DESPMTR	fuselage:width	"0;	1.0;	1.6;	1.6;	1.0;	0.8;"
DESPMTR	fuselage:height	"0;	1.0;	2.0;	2.0;	1.2;	0.4;"
DESPMTR	fuselage:power	"2;	2;	3;	3	3;	3;"
DESPMTR	fuselage:noselist	"0.2	; 0; 1	; 0;\			
		0.1	; 0; 0	; 1;"			
CFGPMTR	buildStruct	0 1	# set †	to 1 t	o buil	d struc	ture

Dannenhoffer

ESP Training - Solutions

Simple Fuselage — .csm File (2)

```
# build fuselage OML
MARK

# sharp or rounded nose
SET isect 1
IFTHEN fuselage:width[isect] eq 0 and fuselage:height[isect] eq 0
POINT fuselage:xloc[isect] 0 fuselage:zloc[isect]

# blunt nose
ELSE
UDPRIM supell rx fuselage:width[isect]/2 \
ry fuselage:height[isect]/2 \
n fuselage:power[isect]
BOTATEY 90 0 0
```

TRANSLATE fuselage:xloc[isect] 0 fuselage:zloc[isect] ENDIF

Simple Fuselage — .csm File (3)

```
# intermediate sections
PATBEG jsect fuselage:numXsect-2
   SET isect jsect+1
```

```
UDPRIM supell rx fuselage:width[isect]/2 ry fuselage:height[isect]/2 n fusela
ROTATEY 90 0 0
TRANSLATE fuselage:xloc[isect] 0 fuselage:zloc[isect]
PATEND
```

```
# sharp or rounded tail
SET isect fuselage:numXsect
IFTHEN fuselage:width[isect] eq 0 and fuselage:height[isect] eq 0
POINT fuselage:xloc[isect] 0 fuselage:zloc[isect]
```

```
# blunt tail
ELSE
    UDPRIM supell rx fuselage:width[isect]/2 ry fuselage:height[isect]/2 n fusela
    ROTATEY 90 0 0
    TRANSLATE fuselage:xloc[isect] 0 fuselage:zloc[isect]
ENDIF
```

blend the sections into the fuselage BLEND fuselage:noselist

Dannenhoffer

Simple Fuselage — .csm File (4)

optionally build the structure
IFTHEN buildStruct EQ 1

get the fuselage bounding box SET xmin @xmin SET xmax @xmax SET ymin @ymin SET ymax @ymax SET zmin @zmin SET zmax @zmax

store OML for later use
STORE fuseOML

```
# create a waffle that is "1" bigger than the OML
UDPRIM waffle depth zmax-zmin+2 filename <<
    # symmetry plane
    POINT A AT xmin-1 0
    POINT B AT xmax+1 0
    LINE . A B tagType=symmetry
    # make the bulkheads
    PATBEG ibulk xmax-xmin-1
    POINT C AT ibulk+1/2 ymin-1
    POINT C AT ibulk+1/2 ymin-1
    POINT D AT x@C ymax+1
    LINE . C D tagType=bulkhead tagIndex=!val2str(ibulk,0)
    PATEND
```

>>

Simple Fuselage — .csm File (6)

```
# translate the waffle down and store it
TRANSLATE 0 0 zmin-1
STORE fuseWaffle
```

trim the waffle to the fuselage
RESTORE fuseOML
RESTORE fuseWaffle
INTERSECT

alternate the bulkhead colors red/blue/red/...
SET color \$red
PATBEG ibulk 99
SELECT FACE \$tagType \$bulkhead \$tagIndex val2str(ibulk,0)
ATTRIBUTE _color color
IFTHEN color EQ \$red
SET color \$blue
ELSE
SET color \$red
ENDIF
PATEND

Simple Fuselage — .csm File (7)

```
# this will get called when we run out of bulkheads
CATBEG $face_not_found
CATEND
```

make the bulkhead/symmetry Edges white UDPRIM editAttr filename << EDGE ADJ2FACE tagType=bulkhead AND ADJ2FACE tagType=symmetry SET _____color=white

>>

ENDIF

END

Session 5 Solutions CSM Language (2)

\subseteq Rectangular Plate with Holes (1)

Dannenhoffer

ESP Training - Solutions

June 2021

82 / 133

SP Rectangular Plate with Holes (2)

nx	number of holes in X -direction	3.00
ny	number of holes in Y -direction	2.00
rad	radius of each hole	0.30
	distance between hole centers	1.00

EP Rectangular Plate with Holes (3)

- Can you make a single hole in the center of the plate?
- Can you change your solution to have the holes spaced so that they fill the plate?
- What if you make the radius of the hole too big?

SP Rectangular Plate with Holes (4)

# rect_pat	C					
# written	by John I	Dannenhof	fer			
	-					
DESPMTR	nx	3				
DESPMTR	ny	2				
DESPMTR	rad	0.30				
DESPMTR	space	1.00				
# base pla	ate (big e	enough to	o contain a	all hole	es)	
BOX	0.00 0.	.00 -0.1	10 space	*nx+1	space*ny+1	0.20
# 2D array	y of holes	s (with g	given spac:	ing)		
PATBEG ix	nx					
PATBEG	iy ny					
CYL	INDER iz	x*space	iy*space	-0.20 \	\	
	iz	x*space	iy*space	+0.20	rad	
SUB	TRACT					
PATEND						
PATEND						

END

EP Round Plate with Holes (1)

Dannenhoffer

ESP Training - Solutions

June 2021

Rplate	radius or plate	4.50
thick	thickness of plate	0.20
space	distance between hole centers	2.00
Rhole	radius of holes	0.80
	number of holes selected	
	automatically	

SP Round Plate with Holes (3)

round_pat # written by John Dannenhoffer # default design parameters Rplate 4.5000 DESPMTR # radius of plate DESPMTR thick 0.2000 # thickness of plate DESPMTR space 2.0000 # distance between hole centers DESPMTR Rhole 0.8000 # radius of holes # make sure holes do not intersect with each other IFTHEN space LT 2*Rhole THROW 999 ENDIF # overall plate

CYLINDER 0 0 -thick/2 0 0 +thick/2 Rplate

SP Round Plate with Holes (4)

```
# pattern for holes
SET nr int(Rplate/space)
PATBEG iv 1+2*nr
   PATBEG ix 1+2*nr
      SET xc "(ix-nr-1)*space + (iy-nr-1)*space*cosd(60)"
                               "(iy-nr-1)*space*sind(60)"
      SET yc
      SET r hypot(xc,yc)+Rhole
      # mask hole if not within circle
      IFTHEN r LT Rplate-0.001
         CYLINDER xc yc -thick xc yc +thick Rhole
         SUBTRACT
      ENDIF
   PATEND
PATEND
```

END

$\stackrel{\text{\tiny CP}}{\longrightarrow}$ Overlapping Bodys (1)

Dannenhoffer

ESP Training - Solutions

June 2021 90 / 133

- Write .csm file to:
 - set overlap1 to 1 if Bodys 1 and 4 overlap, otherwise set it to 0
 - set overlap2 to 1 if Bodys 2 and 4 overlap, otherwise set it to 0
 - set overlap3 to 1 if Bodys 3 and 4 overlap, otherwise set it to 0 $\,$
- Try to use a pattern to do this compactly

$\stackrel{\text{ep}}{\longrightarrow}$ Overlapping Bodys (3)

overlapping # written by John Dannenhoffer # Body 1 2 2 BOX 0 0 0 1 STORE body 1 # Body 2 1 2 BOX 2 0 0 2 STORE body 2 # Body 3 4 0 0 1 2 2 BOX STORE body 3 # Body 4 CYLINDER 0 1 1 3 1 1 0.5 STORE body 4

```
# determine which or Bodys 1, 2, 3 intersect Body 4
PATREG
             ibody 3
             !$overlap+ibody 1
   SET
   RESTORE
             body ibody
   RESTORE
             body 4
   INTERSECT
   CATBEG
             $did_not_create_body
      SET
             !$overlap+ibody 0
   CATEND
   STORE
             . . .
PATEND
```

Sector Overlapping Bodys (5)

show Bodys RESTORE body 1 ATTRIBUTE _name \$Body1 RESTORE body 2 ATTRIBUTE _name \$Body2 RESTORE body 3 ATTRIBUTE _name \$Body3 RESTORE body 4 ATTRIBUTE _name \$Body4

END

Session 7 Solutions Sketcher Fundamentals

U-bracket (version 1)

$\stackrel{\mbox{\footnotesize esp}}{\longrightarrow}$ U-bracket (version 1)

Programmatic Solution

DESPMTR	length 4	1.00000	
DESPMTR	height 3	3.00000	
DESPMTR	thick	0.50000	
SKBEG	0.0	0.0	0.
LINSEG	length	0.0	0.
LINSEG	length	height	0.
LINSEG	length-thi	ck height	0
LINSEG	length-thi	ck thick	0
LINSEG	thick	thick	0
LINSEG	thick	height	0
LINSEG	0.0	height	0
LINSEG	0.0	0.0	0
SKEND			

U-bracket (version 1) Sketcher Solution

U-bracket (version 2) Problem

\bigcirc U-bracket (version 2)

Programmatic Solution

DESPMTR	height	3.00	0000	
DESPMTR	thick	0.50	0000	
DESPMTR	slot	2.00	0000	
SET	length	slot	:+2*thic	z
SKBEG	0.0		0.0	0.0
LINSEG	length		0.0	0.0
LINSEG	length		height	0.0
LINSEG	length-th:	ick	height	0.0
LINSEG	length-th:	ick	thick	0.0
LINSEG	thick		thick	0.0
LINSEG	thick		height	0.0
LINSEG	0.0		height	0.0
LINSEG	0.0		0.0	0.0
SKEND				

SP U-bracket (version 2)

Sketcher Solution

Problem

D					CT	
1)	an	n	en	0	Ħ	er

Programmatic Solution

DESPMTR	rad	0.50	0.50000					
SKBEG	0.0	0.0	0.0					
LINSEG	rad	0.0	0.0					
CIRARC	2*rad	rad	0.0	rad	2*rad	0.0		
LINSEG	-rad	2*rad	0.0					
CIRARC	-2*rad	rad	0.0	-rad	0.0	0.0		
LINSEG	0.0	0.0	0.0					
SKEND								

Sketcher Solution

Biconvex airfoil (with arcs)

Problem

Measurements:

 $\frac{1}{1}$

Note:

Circular Arcs

Biconvex airfoil (with arcs)

Programmatic Solution

DESPMTR	chord	2.0000	С			
DESPMTR	thick	0.10000	C			
SET	rad	radius	(0,0,1	thick,c	hord,))
SKBEG	0.0	0.0	0.0			
CIRARC	chord/2 ·	-thick	0.0	chord	0.0	0.0
CIRARC	chord/2	thick	0.0	0.0	0.0	0.0
SKEND						

Biconvex airfoil (with arcs)

Problem

Dannenhoffer

ESP Training - Solutions

June 2021 108 / 133

Sketcher Solution

Biconvex Airfoil (with splines)

	х	y
A:	.255	.075
B:	.500	.100
C:	.745	.075
D:	1.00	0.00

Dannenhoffer

ESP Training - Solutions

June 2021 1

110 / 133

Biconvex Airfoil (with splines) Sketcher Solution

Problem Fuselage X-section (with Beziers)

EP Fuselage X-section (with Beziers) Sketcher Solution

ESP Training - Solutions

Problem

Sketcher Solution

ESP Training - Solutions

115 / 133

Session 8 Solutions Selection & Attribution

SP Wing with structure

Structure is not shown

Dannenhoffer

ESP Training - Solutions

June 2021

117 / 133

SP Wing with structure

Structure is shown for right wing

ESP Training - Solutions

$\stackrel{\text{\tiny CP}}{\longrightarrow}$ Attribution Scheme (1)

- Right wing upper skin panels (Faces)
 - tagComp=riteWing
 - tagType=upper
- Right wing lower skin panels (Faces)
 - tagComp=riteWing
 - tagType=lower
- Right wing leading edge (Edge)
 - tagComp=riteWing
 - tagType=leadingEdge
- Right wing trailing edge panels (Faces)
 - tagComp=riteWing
 - tagType=trailingEdge
- Right wing tip panels (Faces)
 - tagComp=riteWing
 - tagType=tip

$\stackrel{\text{\tiny CP}}{\longrightarrow}$ Attribution Scheme (2)

- Right wing spars (Faces)
 - tagComp=riteWing
 - tagType=spar
 - tagIndex=1 for forward spar or tagIndex=2 for rearward spar
- Right wing ribs (Faces)
 - tagComp=riteWing
 - tagType=rib
 - tagIndex=1 for inboard rib, ..., tagIndex=3 for outboard rib
- Left wing is attributed similarly to right wing (Faces & Edges)
- Ribs at the wing root (Faces)
 - tagComp=rootWing
 - tagType=rib
 - tagIndex=0

\mathfrak{SP} wingStruct.csm (1)

0

#	Design	Parameters for	OML
DE	SPMTR	wing:area	10.0
DE	SPMTR	wing:aspect	6.00
DE	SPMTR	wing:taper	0.60
DE	SPMTR	wing:sweep	20.0
DE	SPMTR	wing:thickr	0.12
DE	SPMTR	wing:camberr	0.06
DE	SPMTR	wing:thickt	0.16
DE	SPMTR	wing:cambert	0.02
DE	SPMTR	wing:alphat	-5.00
DE	SPMTR	wing:dihedral	4.00
DE	SPMTR	wing:xroot	0.00
DE	SPMTR	wing:yroot	0.00
DE	SPMTR	wing:zroot	0.00

CFGPMTR SHARP_TE

wing area
aspect ratio
taper ratio
deg (of leading edge)
thickness ratio at root
camber ratio at root
thickness ratio at tip
camber ratio at tip
setting angle at tip
deg
xloc at root LE
yloc at root LE
zloc at root LE

make the trailing edge blunt

# Design	Parameters for	structure	
DESPMTR	wing:spar1	0.20	<pre># location of fwrd spar</pre>
DESPMTR	wing:spar2	0.70	<pre># location of rwrd spar</pre>
CFGPMTR	wing:nrib	3.00	# number of ribs per wing
# wing lo	cal variables		
SET	wing:span	sqrt(wing	:aspect*wing:area)
SET	wing:chordr	2*wing:ar	ea/wing:span/(1+wing:taper
SET	wing:chordt	wing:chore	dr*wing:taper
SET	wing:ytip	-wing:span,	/2
SET	wing:xtip	-wing:ytip	<pre>*tand(wing:sweep)</pre>

wing:ztip

wing:mac

SET

SET

-wing:ytip*tand(wing:dihedral)

sqrt(wing:area/wing:aspect)

)

SP wingStruct.csm (3)

```
# make wing OML
# lay out left wing
MARK
   # root
   UDPRIM
                       thickness wing:thickr camber wing:camberr\
             naca
                       sharpte SHARP TE
   SCALE
             wing:chordr
   ROTATEX
             90 0 0
   # left tip
   UDPRTM
                       thickness wing:thickt camber wing:cambert\
             naca
                       sharpte SHARP TE
   SCALE
             wing:chordt
   ROTATEX 90 0 0
   ROTATEY
             wing:alphat 0
                                     0
   TRANSLATE wing: xtip wing: ytip wing: ztip
RULE.
   ATTRIBUTE tagComp $leftWing
SET
         ruledBody @nbody
```

SELECT FACE ruledBody 1 ATTRIBUTE tagType \$root SELECT FACE ruledBody 2 ATTRIBUTE tagType \$tip SELECT FACE ruledBody 3 ATTRIBUTE tagType \$upper SELECT FACE ruledBody 4 ATTRIBUTE tagType \$lower SELECT EDGE ruledBody 3 ruledBody 4 1 ATTRIBUTE tagComp \$leftWing ATTRIBUTE tagType \$leadingEdge SHARP_TE EQ O IFTHEN SELECT FACE ruledBody 5 ATTRIBUTE tagType \$trailingEdge ELSE EDGE ruledBody 3 ruledBody 4 2 SELECT ATTRIBUTE tagComp \$leftWing ATTRIBUTE tagType \$trailingEdge ENDIF

$\stackrel{\text{\tiny \ensuremath{\text{\tiny SP}}}}{\operatorname{wingStruct.csm}}(5)$

```
# right wing too
STORE LeftWing 0 1
RESTORE LeftWing
   ATTRIBUTE tagComp $riteWing
   SELECT EDGE $tagType $leadingEdge
   IFTHEN @iedge GT 0
       SELECT EDGE $tagType $leadingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
   SELECT EDGE $trailingEdge
            @iedge GT 0
   IFTHEN
       SELECT EDGE $trailingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
          $edge not found
   CATBEG
   CATEND
         0 1 0
MTRROR.
JOTN.
         EDGE ruledBody 3 ruledBody 3 1
SELECT
   ATTRIBUTE tagType $root
SELECT
         EDGE ruledBody 4 ruledBody 4 1
   ATTRIBUTE tagType $root
STORE
         WingOml
```

# make wing waffle				
RESTORE	WingOml			
SET	xmin	@xmin-0.1		
SET	xmax	@xmax+0.1		
SET	ymin	0		
SET	ymax	@ymax+0.1		
SET	zmin	@zmin-0.1		
SET	zmax	@zmax+0.1		
STORE				
UDPARG	waffle	depth wing:nrib	<pre># ensures rebuild</pre>	
UDPARG	waffle	depth wing:spar1		
UDPARG	waffle	depth wing:spar2		
UDPRIM	waffle	depth zmax-zmin	filename <<	

# const	truct	tion	lines for spars			spars		
CPOINT	Α	AT			0+	wing:spar1	*wing:chordr	0
CPOINT	В	AT	wiı	ng: 2	ktip+	wing:spar1	*wing:chordt	-wing:ytip
CPOINT	С	AT			0+	wing:spar2	*wing:chordr	0
CPOINT	D	AT	wiı	ng: 2	ctip+	wing:spar2	*wing:chordt	-wing:ytip
CLINE	AB		A	В				
CLINE	CD		С	D				
# rite	spai	rs						
POINT	Е	ON	AB	Ŋ	LOC	ymin		
POINT	F	ON	AB	Ŋ	LOC	ymax		
LINE	EF	Е	F	tag	gComp	=riteWing	tagType=spar	tagIndex=1
POINT	G	ON	CD	Ŋ	LOC	ymin		
POINT	Н	ON	CD	Ŋ	LOC	ymax		
LINE	GH	G	Η	tag	gComp	=riteWing	tagType=spar	tagIndex=2

SP wingStruct.csm (8)

```
# rite ribs
PATBEG irib wing:nrib
   CPOINT I AT xmin -wing:ytip*irib/(wing:nrib+1)
   CPOINT J AT xmax y@I
   LINE . I J tagComp=riteWing tagType=rib tagIndex=!val2str(irib,0)
PATEND
# root rib
CPOINT I AT xmin O
CPOINT J AT xmax y@I
LINE . I J tagComp=rootWing tagType=rib tagIndex=0
# left spars
POINT E AT x@E -y@E
POINT F AT x@F -y@F
      EF E
             F tagComp=leftWing tagType=spar tagIndex=1
LINE
POINT
      G AT x@G -y@G
     H AT x@H -y@H
POINT
LINE
      GH G
             H tagComp=leftWing tagType=spar tagIndex=2
```

```
# left ribs
PATBEG irib wing:nrib
CPOINT I AT xmin wing:ytip*irib/(wing:nrib+1)
CPOINT J AT xmax y@I
LINE . I J tagComp=leftWing tagType=rib tagIndex=!val2str(irib,0)
PATEND
>>
TRANSLATE 0 0 zmin
STORE WingWaffle
```

trim the waffle to be the ribs and spars
RESTORE WingOml
RESTORE WingWaffle
INTERSECT

score the wing skin with the waffle
RESTORE WingOml
RESTORE WingWaffle
SUBTRACT
EXTRACT 0

combine the two
UNION

• Put the Attribute LoadPoint=leftTip on the Node that is at the intersection of the forward spar, wing tip, and upper skin on the left wing

```
UDPRIM
          editAttr
                    filename <<
    NODE
          AD.12FACE
                    tagComp=leftWing
                                                     tagIndex=1
                                       tagType=spar
                    tagComp=leftWing
                                       tagType=upper
    AND
          AD.12FACE
    AND
          ADJ2FACE
                    tagComp=leftWing
                                       tagType=tip
    SET
                    LoadPoint=leftTip
```

>>

SP Attributing: Right skin panels red

• For the upper and lower skin panels on the rite wing that are between the first and second rib, make their color red and their grid white

```
editAttr
                    filename <<
UDPRTM
   FACE
         HAS
                    tagComp=riteWing tagType=upper
    AND
          ADJ2FACE
                    tagType=rib tagIndex=1
    AND
          AD.12FACE
                    tagType=rib tagIndex=2
   SET
                    _color=red
   SET
                    bcolor=red
   SET
                    _gcolor=white
   FACE
          HAS
                    tagComp=riteWing tagType=lower
    AND
          ADJ2FACE
                    tagType=rib tagIndex=1
    AND
          ADJ2FACE
                    tagType=rib tagIndex=2
   SET
                    color=red
   SET
                    _bcolor=red
   SET
                    _gcolor=white
```

• Make the Edges blue that are between two red panels

UDPRIM	editAttr	filename <<
EDGE	ADJ2FACE	_color=red
AND	ADJ2FACE	tagType=spar
SET		_color=blue
EDGE AND SET	HAS ADJ2FACE	tagType=leadingEdge _color=red _color=blue

>>