Engineering Sketch Pad (ESP)

esp

Training Session 7 Sketcher Fundamentals

John F. Dannenhoffer, III

jfdannen@syr.edu
Syracuse University

Bob Haimes

haimes@mit.edu
Massachusetts Institute of Technology
updated for v1.19

esp Overview

- Purpose of Sketches
- Sketching Segments
- Sketching methods
- programmatically
- interactively
- Homework Exercises

esp Purpose of Sketches

- Method for generating a SheetBody, WireBody, or NodeBody
- Sketches are used a basis of grown Bodys
- EXTRUDE, REVOLVE, RULE, and BLEND

esp Sketching Segments

- LINSEG - straight line segment
- CIRARC - circular arc
- ARC - alternative way of specifying a circular arc
- BEZIER - Bezier curve
- SPLINE - cubic spline

esp Sketching Methods

- Programmatically
- can generate Sketch in 3D
- user does all required math
- is very robust
- Interactively
- can generate Sketch only in 2D
- required math is done by solving constraints
- is somewhat fragile

esp Sketching Programmatically

- Begin with a SKBEG statement, which provides an initial point
- Add LINSEG, CIRARC, BEZIER, or SPLINE Segments
- for the BEZIER and SPLINE statements, one curve is created from the point before these statement, using all the BEZIER or SPLINE statements
- an SSLOPE statement before the first and/or after the last SPLINE statement can be used to specify the slope at the beginning or end
- to have two adjacent curves, put a zero-length LINSEG between them
- Ends with a SKEND statement
- if there are no Segments, a NodeBody is created
- if the last Segment does not end at the point specified in the SKBEG statement, a WireBody is created
- if the Sketch is closed, a SheetBody is created (unless the wireonly flag on the SKEND statement is non-zero)

esp Programmatic Sketch Example

esp Steps to Creating a Sketch Interactively

(1) Define the Design Parameters
(2) Create an empty Sketch
(3) Draw the Segments
(9) Constrain the Sketch
(6) Solve the Sketch

esp Creating a Sketch

Step 1: Define the Design Parameters

- Press Design Parameters in the Tree window to create each of the Design Parameters
- Most Design Parameters are a scalar, so that they have only 1 row and 1 column
- Enter nominal value(s) in the box(es) that appears
- Press OK to proceed
- Repeat as needed

ESP Interactive Sketcher Example (1)

Define the Design Parameters

DESPMTR	length	4.0	\# length
DESPMTR	height	2.0	\# height
DESPMTR	rad	1.0	\# radius of cutout

esp Creating a Sketch

Step 2: Create an Empty Sketch

- Press Branches in the Tree window to create a SKBEG Branch
- coordinates should be specified at one point on the boundary of the Sketch
- coordinates can be defined in terms of a Design Parameter
- A SKEND is automatically created for you
- The Sketcher is entered automatically

esp Interactive Sketcher Example (2)

Create an Empty Sketch

esp Creating a Sketch

Step 3: Draw the Segments (1)

- Start drawing the Sketch at the point defined in the SKBEG Branch
- \mathbf{X} and \mathbf{Y} Constraints are automatically generated at the initial point
- these constraints cannot be deleted
- Draw the Segments by proceeding counter-clockwise around the Sketch (which is consistent with the right-hand rule pointing out of the screen)
- Line between previous point and cursor shows proposed position of next Segment
- blue is default color
- if drawn in orange, a vertical (V) or horizontal constraint (H) will be added automatically

esp Creating a Sketch

Step 3: Draw the Segments (2)

- Supported Segment types include:
- (straight) line Segment
- \mathbf{l} or \mathbf{L} or mouse click
- (circular) arc Segment
- cor \mathbf{C}
- Segment turns red until you press the mouse button to set its approximate radius
- cubic spline
- \mathbf{s} or \mathbf{S}
- cubic splines are shown only as straight line Segments in the Sketcher
- Bezier curve control points
- b or B
- ...

esp Creating a Sketch

Step 3: Draw the Segments (3)

- Supported Segment types include:
- zero-length Segment
- \mathbf{z} or \mathbf{Z}
- constraints automatically set
- leave Sketch open (and switch mode to "Constraining. ..")
- o or \mathbf{O}
- When Sketch is closed, its interior is filled with gray (and the mode is switched to "Constraining. . .")
- Pressing the Undo button will remove the last Segment

esp Interactive Sketcher Example (3a)

Draw the Segments

- Line horizontally to the right (orange)
- Line up and to the right (blue)
- Line up and to the left (blue)
- Circle down and to the left (concave)
- Line horizontally to the left (orange)
- Line back to the beginning (target circle lights up)

ESP Interactive Sketcher Example (3b)

Draw the Segments

esp Creating a Sketch

Step 4: Constrain the Sketch (1)

- As many constraints (ncon) must be defined as there are degrees of freedom (ndof) in the Sketch
- these values are listed in the Key window
- the fill turns to light green when they match (ncon=ndof)
- having them match is necessary, but not sufficient, for a Sketch to be properly constrained

esp Creating a Sketch

Step 4: Constrain the Sketch (2)

- Constraints that can be applied to Segments:
- set the Segment's length
- \mathbf{l} or \mathbf{L}
- make the Segment horizontal $\left(y_{\mathrm{beg}}=y_{\text {end }}\right)$
- \mathbf{h} or \mathbf{H}
- might be automatically created if Segment was orange when created
- make the Segment vertical $\left(x_{\text {beg }}=x_{\text {end }}\right)$
- \mathbf{v} or \mathbf{V}
- might be automatically created if Segment was orange when created
- set the inclination in degrees (measured counter-clockwise from the right horizontal)
- \mathbf{i} or \mathbf{I}

esp Creating a Sketch

Step 4: Constrain the Sketch (3)

- Constraints that can be applied to circular arcs:
- acute radius (positive if convex when drawing counter-clockwise)
- \mathbf{r} or \mathbf{R}
- X-coordinate at arc center
- \mathbf{x} or \mathbf{X}
- Y-coordinate at arc center
- \mathbf{y} or \mathbf{Y}
- sweep angle in degrees (positive if convex when drawing counter-clockwise)
- \mathbf{s} or \mathbf{S}

esp Creating a Sketch

Step 4: Constrain the Sketch (4)

- Constraints that can be applied to points:
- specify X-coordinate
- \mathbf{x} or \mathbf{X}
- specify Y-coordinate
- \mathbf{y} or \mathbf{Y}
- adjacent Segments are perpendicular
- \mathbf{p} or \mathbf{P}
- adjacent Segment are tangent (parallel)
- \mathbf{t} or \mathbf{T}
- turning angle between adjacent Segments in degrees (positive if turning to the left)
- a or A

esp Creating a Sketch

Step 4: Constrain the Sketch (5)

- Constraints that can be applied to a pair of points:
- specify width $\left(x_{\text {end }}-x_{\text {beg }}\right)$ between two points
- w or W
- if first point is toward the left, a positive value should be specified
- if first point is toward the right, a negative value should be specified
- specify depth $\left(y_{\text {end }}-y_{\text {beg }}\right)$ between two points
- d of D
- if first point is toward the bottom, a positive value should be specified
- if first point is toward the top, a negative value should be specified

esp Creating a Sketch

Step 4: Constrain the Sketch (6)

- Other options:
- remove Constraints
- <
- if more than one constraint is present, you are asked which constraint to remove
- inquire about constraints at current point or Segment
- ?
- Pressing the Undo button will remove/restore the last constraint

esp Creating a Sketch

Step 4: Constrain the Sketch (7)

- Special shortcuts
- ::L[i] is the length of the Segment i
- ::I[i] is the inclination of Segment i (in degrees)
- $:: \mathrm{R}[\mathrm{i}]$ is the radius of CIRARC Segment i
- : : $\mathrm{S}[\mathrm{i}]$ is the sweep of CIRARC Segment i (in degrees)
- Segment numbers can be determined by pressing ? near the center of a Segment

esp Creating a Sketch

Step 4: Constrain the Sketch (8)

- If you need help during the constraint process
- Press the yellow Constraining... button
- Redundant constraints are shown in red
- Use the < key to remove a redundant constraint
- Suggested new constraints are shown in green
- Add the constraint using a key that matches the hint

ESP Interactive Sketcher Example (4a)

Constrain the Sketch - Result of pressing Constraining...

esp Interactive Sketcher Example (4b)

Constrain the Sketch - Result of pressing Constraining...

'a' (angle) (width) 'd' (depth)
'w' (width) 'd' (depth)
valid constraints on segments
'h' (horiz) 'v', (vertical
'i' (incline)
valid constraints on cirarcs

ESP Interactive Sketcher Example (4c)

Constrain the Sketch - After constraining sketch

esp Creating a Sketch

Step 5: Solve the Sketch

- Press Press to Solve
- if successful, Sketch will change on screen
- if unsuccessful, read about error in Messages window to help you diagnose the problem
- Press Sketch \rightarrow Save to return to normal (non-Sketching) mode
- Press Press to Re-build to see the completed Sketch

ESP Interactive Sketcher Example (5a)

Solve the Sketch

esp Interactive Sketcher Example (5b)

Adding V on left side and pressing Constraining...

esp Interactive Sketcher Example (5c)

Removing \mathbf{P} on top-left and redefining a length

ESP Interactive Sketcher Example (5d)

After Sketch \rightarrow Save and Press to Re-build

esp Editing an Existing Sketch

- Select one of the Branches between the SKBEG and SKEND Branches (inclusive) and press Enter Sketcher
- Follow directions given above

esp Deleting an Existing Sketch

- Select each of the Branches between the SKBEG and SKEND and press Delete Branch for each. Then delete the SKEND and SKBEG Branches.
- Select the SKBEG Branch and press Delete Branch (to delete whole sketch at once)

esp Image Manipulation in the Sketcher

- Recenter Sketch
- H button
- Move the Sketch to the left
- L button or \leftarrow key
- Move the Sketch to the right
- \mathbf{R} button or \rightarrow key
- Move the Sketch to the bottom
- B button or \downarrow key
- Move the Sketch to the top
- \mathbf{T} button or \uparrow key
- Zoom in
- PgUp key or + button
- Zoom out
- PgDn key or - button

esp Sketching Best Practices

- Try to start the Sketch at a point with known coordinates
- Proceed around the sketch in a counter-clockwise direction
- Constrain the X-coordinate at one or more points (or arc centers)
- Constrain the Y-coordinate at one of more points (or arc centers)
- Specify the orientation of one or more Segments
- this is sometimes done by specifying the coordinates of both ends
- Avoid redundancies, such as:
- points at which angles are constrained and which are adjacent to Segments in which the inclination is constrained
- dimensions specified for both a series of Segments as well as their combination

esp Homework Exercises

- U-shaped bracket (version 1)
- U-shaped bracket (version 2)
- oval
- bi-convex airfoil (with arcs)
- swivel base
- V-slide plate
- bi-convex airfoil (with splines)
- fuselage cross-section (with Beziers)

ESP Example: U-bracket (version 1)

Hint: move mouse until blue line turns orange to automatically generate horizontal and vertical constraints

esp Example: U-bracket (version 2)

Hint: You can specify the length of a Segment to be equal to Segment 5's length with ::L[5] (where the Segment number can be obtained with the "?" command).

esp Example: Oval

Hint: tangency constraints may be useful for this case

esp Example: Biconvex airfoil (with arcs)

Hint: the radius () function can be used if one knows the bounding coordinates and the "dip" (see "Help" for details)

Measurements:
chord $=2.00$
thick $=0.10$
Note:
Circular Arcs

esp Example: Swivel Base

Hint: nested Sketches can be generated with a series of Sketches

esp Example: Biconvex Airfoil (with splines)

Hint: adjacent splines (with slope discontinuities) can be obtained by putting a zero-length line Segments between them

esp Example: Fuselage X-section (with Beziers)

Hint: the Bezier control points are constrained in the same way as any other point

