Engineering Sketch Pad (ESP)

Training Session 7 Sketcher Fundamentals

John F. Dannenhoffer, III

jfdannen@syr.edu Syracuse University

Bob Haimes

haimes@mit.edu

Massachusetts Institute of Technology

updated for v1.19

Dannenhoffer

ESP Training - Session 7

- Purpose of Sketches
- Sketching Segments
- Sketching methods
 - programmatically
 - interactively
- Homework Exercises

- Method for generating a SheetBody, WireBody, or NodeBody
- Sketches are used a basis of grown Bodys
 - EXTRUDE, REVOLVE, RULE, and BLEND

- LINSEG straight line segment
- CIRARC circular arc
- ARC alternative way of specifying a circular arc
- BEZIER Bezier curve
- SPLINE cubic spline

• Programmatically

- can generate Sketch in 3D
- user does all required math
- is very robust
- Interactively
 - can generate Sketch only in 2D
 - required math is done by solving constraints
 - is somewhat fragile

Sketching Programmatically

- $\bullet\,$ Begin with a SKBEG statement, which provides an initial point
- Add LINSEG, CIRARC, BEZIER, or SPLINE Segments
 - for the BEZIER and SPLINE statements, one curve is created from the point before these statement, using all the BEZIER or SPLINE statements
 - an SSLOPE statement before the first and/or after the last SPLINE statement can be used to specify the slope at the beginning or end
 - to have two adjacent curves, put a zero-length LINSEG between them
- Ends with a SKEND statement
 - if there are no Segments, a NodeBody is created
 - if the last Segment does not end at the point specified in the SKBEG statement, a WireBody is created
 - if the Sketch is closed, a SheetBody is created (unless the wireonly flag on the SKEND statement is non-zero)

Dannenhoffer

ESP Training - Session 7

Programmatic Sketch Example

sketch

DESPMTR	L	2.0		
DESPMTR	Н	1.0		
DESPMTR	Z	3.0		
SET	s?	1/sart	t(2)	
511	52	1, 241	0(2)	
SKBEG	1.0		2.0	Z
LINSEG	1.0+L		2.0	Z
CIRARC	1.0+L-(1-s	s2)*H	2.0+s2*H	Ζ\
	1.0+L-H		2.0+H	Z
LINSEG	1.0		2.0+H	Z
LINSEG	1.0		2.0	Z
SKEND				

END

Steps to Creating a Sketch Interactively

- Define the Design Parameters
- **2** Create an empty Sketch
- **O** Draw the Segments
- Constrain the Sketch
- Solve the Sketch

- Press **Design Parameters** in the Tree window to create each of the Design Parameters
- Most Design Parameters are a scalar, so that they have only 1 row and 1 column
- Enter nominal value(s) in the box(es) that appears
- Press **OK** to proceed
- Repeat as needed

SP Interactive Sketcher Example (1) Define the Design Parameters

DESPMTR	length	4.0	#	length		
DESPMTR	height	2.0	#	height		
DESPMTR	rad	1.0	#	radius	of	cutout

- Press **Branches** in the Tree window to create a SKBEG Branch
 - coordinates should be specified at one point on the boundary of the Sketch
 - coordinates can be defined in terms of a Design Parameter
- A SKEND is automatically created for you
- The Sketcher is entered automatically

SP Interactive Sketcher Example (2) Create an Empty Sketch

)→ ୯ ଜ	file:///Users/jfdannen/Projects/OpenCSM/ESP/ESP-localhost7681.html	120% 🖾 🕁	In 🖽
Excell Starting Ingeneration (1) (
of=2 ncon=2 id commands are: 1' add lineeg o' add ciraro b' add parier z' add zero-length s o' complete (open) s	<pre>MP has been initialized and is attached to 'sarvaCdm' "dran/hasic/identhin.cm' has been loaded Broch (type-shkey) has been added> Re-build is needed> work</pre>		

- Start drawing the Sketch at the point defined in the SKBEG Branch
 - X and Y Constraints are automatically generated at the initial point
 - these constraints cannot be deleted
- Draw the Segments by proceeding counter-clockwise around the Sketch (which is consistent with the right-hand rule pointing out of the screen)
- Line between previous point and cursor shows proposed position of next Segment
 - blue is default color
 - if drawn in orange, a vertical (V) or horizontal constraint (H) will be added automatically

- Supported Segment types include:
 - (straight) line Segment
 - $\bullet~l~{\rm or}~L~{\rm or}$ mouse click
 - (circular) arc Segment
 - c or C
 - Segment turns red until you press the mouse button to set its approximate radius
 - cubic spline
 - s or \mathbf{S}
 - cubic splines are shown only as straight line Segments in the Sketcher
 - Bezier curve control points
 - **b** or **B**
 - . . .

• Supported Segment types include:

- zero-length Segment
 - $\bullet~\mathbf{z}~\mathrm{or}~\mathbf{Z}$
 - constraints automatically set
- leave Sketch open (and switch mode to "Constraining...")
 o or O
- When Sketch is closed, its interior is filled with gray (and the mode is switched to "Constraining...")
- Pressing the Undo button will remove the last Segment

- Line horizontally to the right (orange)
- Line up and to the right (blue)
- Line up and to the left (blue)
- Circle down and to the left (concave)
- Line horizontally to the left (orange)
- Line back to the beginning (target circle lights up)

SP Interactive Sketcher Example (3b) Draw the Segments

- As many constraints (**ncon**) must be defined as there are degrees of freedom (**ndof**) in the Sketch
 - these values are listed in the Key window
 - the fill turns to light green when they match (**ncon=ndof**)
 - having them match is necessary, but not sufficient, for a Sketch to be properly constrained

- Constraints that can be applied to Segments:
 - set the Segment's length
 - $\bullet~l~{\rm or}~L$
 - make the Segment horizontal $(y_{\text{beg}} = y_{\text{end}})$
 - $\bullet \ \mathbf{h} \ \mathrm{or} \ \mathbf{H}$
 - might be automatically created if Segment was orange when created
 - make the Segment vertical $(x_{beg} = x_{end})$
 - $\bullet~\mathbf{v}~\mathrm{or}~\mathbf{V}$
 - might be automatically created if Segment was orange when created
 - set the inclination in degrees (measured counter-clockwise from the right horizontal)
 - i or I

- Constraints that can be applied to circular arcs:
 - acute radius (positive if convex when drawing counter-clockwise)
 - r or **R**
 - X-coordinate at arc center
 - \mathbf{x} or \mathbf{X}
 - Y-coordinate at arc center
 - y or Y
 - sweep angle in degrees (positive if convex when drawing counter-clockwise)
 - s or S

• Constraints that can be applied to points:

- specify X-coordinate
 - x or X
- specify *Y*-coordinate
 - y or **Y**
- adjacent Segments are perpendicular
 - p or P
- adjacent Segment are tangent (parallel)

• t or \mathbf{T}

- turning angle between adjacent Segments in degrees (positive if turning to the left)
 - a or A

• Constraints that can be applied to a pair of points:

- specify width $(x_{end} x_{beg})$ between two points
 - w or W
 - if first point is toward the left, a positive value should be specified
 - if first point is toward the right, a negative value should be specified
- specify depth $(y_{end} y_{beg})$ between two points
 - d of D
 - if first point is toward the bottom, a positive value should be specified
 - if first point is toward the top, a negative value should be specified

- Other options:
 - remove Constraints
 - <
 - if more than one constraint is present, you are asked which constraint to remove
 - inquire about constraints at current point or Segment
 ?
- Pressing the **Undo** button will remove/restore the last constraint

• Special shortcuts

- ::L[i] is the length of the Segment i
- :::I[i] is the inclination of Segment i (in degrees)
- ::R[i] is the radius of CIRARC Segment i
- ::S[i] is the sweep of CIRARC Segment i (in degrees)
- Segment numbers can be determined by pressing ? near the center of a Segment

- If you need help during the constraint process
 - Press the yellow **Constraining...** button
- Redundant constraints are shown in red
 - Use the < key to remove a redundant constraint
- Suggested new constraints are shown in green
 - Add the constraint using a key that matches the hint

SP Interactive Sketcher Example (4a) Constrain the Sketch — Result of pressing Constraining...

EP Interactive Sketcher Example (4b) Constrain the Sketch — Result of pressing **Constraining...**

EP Interactive Sketcher Example (4c) Constrain the Sketch — After constraining sketch

• Press **Press to Solve**

- if successful, Sketch will change on screen
- if unsuccessful, read about error in Messages window to help you diagnose the problem
- Press **Sketch→Save** to return to normal (non-Sketching) mode
- Press **Press to Re-build** to see the completed Sketch

Solve the Sketch

P Interactive Sketcher Example (5b)

Adding V on left side and pressing Constraining...

EP Interactive Sketcher Example (5c) Removing P on top-left and redefining a length

Sep Interactive Sketcher Example (5d) After Sketch \rightarrow Save and Press to Re-build

Editing an Existing Sketch

- Select one of the Branches between the SKBEG and SKEND Branches (inclusive) and press Enter Sketcher
- Follow directions given above

Deleting an Existing Sketch

- Select each of the Branches between the SKBEG and SKEND and press **Delete Branch** for each. Then delete the SKEND and SKBEG Branches.
- Select the SKBEG Branch and press **Delete Branch** (to delete whole sketch at once)

SP Image Manipulation in the Sketcher

- Recenter Sketch
 - **H** button
- Move the Sketch to the left
 - L button or \leftarrow key
- Move the Sketch to the right
 - **R** button or \rightarrow key
- Move the Sketch to the bottom
 - **B** button or \downarrow key
- Move the Sketch to the top
 - **T** button or \uparrow key
- Zoom in
 - **PgUp** key or + button
- Zoom out
 - \mathbf{PgDn} key or button

Sketching Best Practices

- Try to start the Sketch at a point with known coordinates
- Proceed around the sketch in a counter-clockwise direction
- Constrain the X-coordinate at one or more points (or arc centers)
- Constrain the Y-coordinate at one of more points (or arc centers)
- Specify the orientation of one or more Segments
 - this is sometimes done by specifying the coordinates of both ends
- Avoid redundancies, such as:
 - points at which angles are constrained and which are adjacent to Segments in which the inclination is constrained
 - dimensions specified for both a series of Segments as well as their combination

- U-shaped bracket (version 1)
- U-shaped bracket (version 2)
- oval
- bi-convex airfoil (with arcs)
- swivel base
- V-slide plate
- bi-convex airfoil (with splines)
- fuselage cross-section (with Beziers)

$\stackrel{\mbox{\scriptsize esc}}{=}$ Example: U-bracket (version 1)

Hint: move mouse until blue line turns orange to automatically generate horizontal and vertical constraints

$\stackrel{\mbox{\footnotesize esp}}{=}$ Example: U-bracket (version 2)

Hint: You can specify the length of a Segment to be equal to Segment 5's length with ::L[5] (where the Segment number can be obtained with the "?" command).

Example: Oval

Hint: tangency constraints may be useful for this case

D				0	
Da	nnr	nen	h	off	\mathbf{er}

Example: Biconvex airfoil (with arcs) Hint: the radius() function can be used if one knows the bounding coordinates and the "dip" (see "Help" for details)

Measurements:

chord = 2.00thick = 0.10

Note: Circular Arcs

Example: Swivel Base

Hint: nested Sketches can be generated with a series of Sketches

Example: Biconvex Airfoil (with splines)

Hint: adjacent splines (with slope discontinuities) can be obtained by putting a zero-length line Segments between them

	х	y
A:	.255	.075
B:	.500	.100
C:	.745	.075
D:	1.00	0.00

Example: Fuselage X-section (with Beziers) Hint: the Bezier control points are constrained in the same way as any other point

