Engineering Sketch Pad (ESP)

Training Session 9 Sensitivities

John F. Dannenhoffer, III

jfdannen@syr.edu Syracuse University

Bob Haimes

haimes@mit.edu

Massachusetts Institute of Technology

updated for v1.19

Dannenhoffer

ESP Training - Session 9

- Background / Objective
- Alternative approaches
 - analytic derivatives
 - code differentiation
 - finite differences
- Computed examples
- Application to grid generation
- Computing sensitivities in ESP
- Homework exercise

EP Background/ Objective

• Background

- MDAO environments require calculation of sensitivity of objective function(s) w.r.t. the design parameters
- Many modern CFD systems can produce the objective function sensitivity all the way back to the grid
- Little work has been done in calculating the sensitivity of the grid w.r.t. the design parameters
- Objective
 - Compute sensitivities directly on parametric, CAD-based geometries

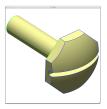
- Geometric sensitivities tell how a point (\vec{x}) on a very smooth configuration would appear to move with respect to the change of any Design Parameter (P)
- For example, consider a cylinder
 - points on the curved Faces would appear to move if the cylinder's location or radius changed
 - points on the curved Faces would NOT appear to change if the cylinder's length changed
- The Geometric sensitivity just has a component normal to the Face (or Edge)

- Tessellation sensitivities tell how points in a grid or tessellation (\vec{x}_i) might move with respect to the change of any Design Parameter (P)
- For example, consider a cylinder
 - points on the curved Faces would appear to move if the cylinder's location, radius, or length changed
- The Tessellation sensitivity has components normal to and along the Face (or Edge)

Possible Approaches

- Analytic derivatives
 - differentiate all operations within the CAD system analytically
 - requires access to CAD system's algorithms
 - produces results that are not susceptible to truncation error
- Code differentiation
 - CAD system source code is automatically differentiated via compiler-like process
 - requires access to CAD system's source code
 - produces results that are not susceptible to truncation error
- Finite differences
 - multiple instances of the configuration are generated and the sensitivities are computed via finite differences
 - requires one to find corresponding points in the configurations
 - picking appropriate step size (or perturbation) requires a trade-off between truncation and round-off errors

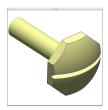
Dannenhoffer


ESP Training - Session 9

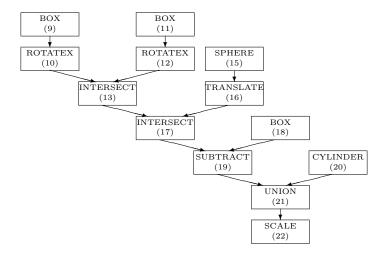
June 2021 6 / 28

Sep Review of Construction Process (1)

bolt example


	# design parameters			
1:	DESPMTR	Thead	1.00	<pre># thickness of head</pre>
2:	DESPMTR	Whead	3.00	# width of head
3:	DESPMTR	Fhead	0.50	# fraction of head that is flat
4:	DESPMTR	Dslot	0.75	# depth of slot
5:	DESPMTR	Wslot	0.25	# width of slot
6:	DESPMTR	Lshaft	4.00	<pre># length of shaft</pre>
7:	DESPMTR	Dshaft	1.00	<pre># diameter of shaft</pre>
8:	DESPMTR	sfact	0.50	<pre># overall scale factor</pre>
	# head			
9:	BOX	0	-Whead/2	-Whead/2 Thead Whead Whead
10:	ROTATEX	90 0	0	
11:	BOX	0	-Whead/2	-Whead/2 Thead Whead Whead
12:	ROTATEX	45 0	0	
13:	INTERSECT			

. . .


SP Review of Construction Process (2)

14:	SET	Rhead (Whead	^2/4+(1-1	Fhead)^2*Thead^2)/(2*Thead*(1-Fhead))	
15: 16: 17:	SPHERE TRANSLATE INTERSECT	0 Thead-Rhead	0 0 0 0	Rhead	
18: 19:	# slot BOX SUBTRACT	Thead-Dslot	-Wslot/2	! -Whead 2∗Thead Wslot 2∗Whead	
20: 21:	# shaft CYLINDER UNION	-Lshaft 0	0 0	0 0 Dshaft/2	
22:	SCALE	sfact			

23: END

$\stackrel{\text{\tiny CP}}{\longrightarrow}$ Review of Construction Process (3)

Sep Analytical Sensitivities

- Differentiate expressions for arguments to various operators
- For each Face
 - determine primitive that created the Face
 - differentiate functions used to generate the Face in its original position
 - apply appropriate transformations to sensitivities
 - return the normal component
- For each Edge
 - compute sensitivities of adjacent Faces
 - find sensitivity that is consistent with them and whose component along the Edge vanishes
- For each Node
 - compute sensitivities of incident Edges
 - find sensitivity that is consistent with them

Separate Analytical Sensitivity for Faces — Example

Differentiate function(s) used to create a point on the Face
for a box (starting at \$\vec{x}_0\$ with a size \$\vec{L}\$)

$$\left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{prim}} = \frac{\partial \overrightarrow{x_0}}{\partial P} + \frac{\partial \vec{L}}{\partial P} \left(\frac{\vec{x}_{\text{prim}} - \overrightarrow{x_0}}{\vec{L}}\right)$$

- Modify the sensitivities based upon transformations traversed in the feature tree
 - for a scaling (by a factor S)

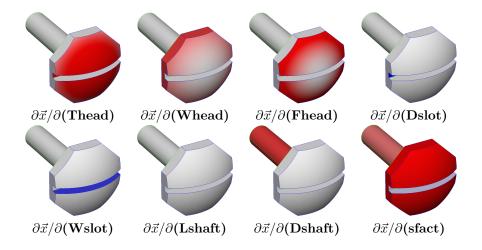
$$\left(\frac{\partial \vec{x}}{\partial P}\right)_{\rm new} = S \left(\frac{\partial \vec{x}}{\partial P}\right)_{\rm prim} + \vec{x} \frac{dS}{dP}$$

• Take normal component

$$\frac{\partial w}{\partial P} \equiv \frac{\partial \vec{x}}{\partial P} \bullet \vec{n}$$

Separation Analytical Sensitivity for Edges and Nodes

• Edge sensitivity is consistent with the adjacent Face sensitivities (but has zero component along the Edge)


$$\begin{bmatrix} n_{x,\text{left}} & n_{y,\text{left}} & n_{z,\text{left}} \\ n_{x,\text{right}} & n_{y,\text{right}} & n_{z,\text{right}} \\ t_{x,\text{edge}} & t_{y,\text{edge}} & t_{z,\text{edge}} \end{bmatrix} \begin{bmatrix} (\partial x/\partial P)_{\text{edge}} \\ (\partial y/\partial P)_{\text{edge}} \\ (\partial z/\partial P)_{\text{edge}} \end{bmatrix} = \begin{bmatrix} (\partial w/\partial P)_{\text{left}} \\ (\partial w/\partial P)_{\text{right}} \\ 0 \end{bmatrix}$$

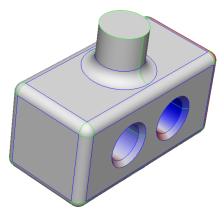
• Node sensitivity is consistent with the incident Edge sensitivities

$$\begin{bmatrix} \vec{t_1} \bullet \vec{t_1} & -\vec{t_1} \bullet \vec{t_2} \\ -\vec{t_1} \bullet \vec{t_2} & \vec{t_2} \bullet \vec{t_2} \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} ((\partial \vec{x}/\partial P)_2 - (\partial \vec{x}/\partial P)_1) \bullet \vec{t_1} \\ ((\partial \vec{x}/\partial P)_1 - (\partial \vec{x}/\partial P)_2) \bullet \vec{t_2} \end{bmatrix}$$

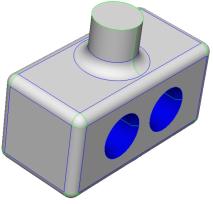
$$\left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{node}} = \left(\frac{\partial \vec{x}}{\partial P}\right)_{\text{edge1}} + A\left(\frac{\partial \vec{x}}{\partial t}\right)_{\text{edge1}}$$

SP Analytical Sensitivities Example

\subseteq Finite-difference Sensitivities (1)

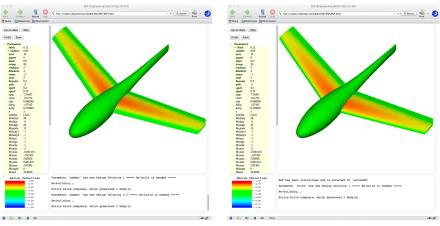

- Basic strategy:
 - re-create configuration after perturbing a design parameter
 - requires regeneration
 - step-size must be chosen carefully
 - take finite difference of associated points in the configurations
- Assumptions made in previous approaches:
 - dilitation or contraction is related to Face's bounding parametric coordinates
 - local changes have large effect on whole Face
 - geometry's parametrization can be used to map point movement
 - for NURBs, geometry is based upon knot spacings

SP Finite-difference Sensitivities (2)


- New approach:
 - compute a tessellation in the base configuration
 - discretize the Edges first
 - fill region with triangles only using the Edge points
 - discretize the perturbed Edges
 - use relative arc-lengths
 - find parametric coordinates \vec{u} for adjacent Edges using "Pcurve" evaluations $(\vec{u}(t))$
 - compute perturbation of space coordinates \vec{x} on the Edges
 - for interior points
 - find barycentric coordinates in base coarse tessellation
 - propagate Edge parametric coordinate perturbations from the Edges to the interior
 - compute perturbation of space coordinates

• See AIAA-2015-1370, available from acdl.mit.edu/ESP

$\stackrel{\mbox{\scriptsize EP}}{\longrightarrow}$ Finite-difference Sensitivity Example (1)



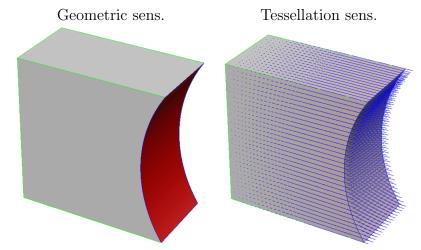
Change in box length

Change in the holes' radii

$\stackrel{\text{\tiny \sc end}}{\longrightarrow}$ Finite-difference Sensitivity Example (2)

Change in camber

Change in thickness


EP Computing Tessellation Sensitivities

- Use geometric sensitivities to find (normal) change to surface location
- Use derivative of (surrogate) grid generator to find tangential change along surface

$$\left(\frac{d\vec{x}}{dP}\right)_{i,j} = \left(\frac{\partial w}{\partial P}\right)_{i,j} \vec{n}_{i,j} + \left(\frac{\partial \vec{x}}{\partial \vec{u}}\right)_{i,j} \left(\frac{d\vec{u}}{dP}\right)_{i,j}$$

- $d\vec{u}/dP$ in the interior comes from $d\vec{u}/dP$ on the Edges, which come from $d\vec{u}/dP$ at the Nodes
- Process is easily executed by doing Nodes first, then Edges, then Faces

Sensitivity w.r.t. Length of box

Sensitivity with respect to the length of the box

Dannenhoffer

ESP Training - Session 9

Sensitivity w.r.t. depression radius

Sensitivity with respect to the depression distance

Dannenhoffer

ESP Training - Session 9

\bigcirc Geometric Sensitivities in ESP (1)

- Build a model with Design Parameters
- For simple sensitivities (that is, with respect to one Design Parameter at a time)
 - select (edit) the Design Parameter
 - press Compute geom sens
 - configuration will automatically be rebuilt and display will change
 - minimum and maximum sensitivities will be reported in MessageWindow
 - configuration will be colored in GraphicsWindow
 - KeyWindow will contain the color key, whose limits can be changed by clicking in the KeyWindow

\bigcirc Geometric Sensitivities in ESP (2)

- The meaning of the various colors is:
 - red (positive sensitivity) are regions where a positive change in the Design Parameter would move the surface in the direction of the local outward-facing surface normal
 - blue (negative sensitivity) are regions where a negative change in the Design Parameter would move the surface in a direction opposite the local outward-facing surface normal
- Example for a cylindrical feature:
 - for a post-like feature, the sensitivity with respect to the diameter would be positive (red)
 - for a hole-like feature, the sensitivity with respect to the diameter would be negative (blue)

$\stackrel{\text{\tiny CP}}{\longrightarrow}$ Geometric Sensitivities in ESP (3)

- To find the sensitivity with respect to a multi-valued Design Parameter
 - select (edit) the multi-valued Design Parameter
 - press Clear Design Velocities
 - set the velocities in the lower part of the form
 - 1 for the entity for which you want the sensitivity
 - 0 (the default) for all other entities
 - press Compute geom sens or Compute tess sens

 \bigcirc Geometric Sensitivities in ESP (4)

- To find the sensitivity with respect to a several Design Parameters at the same time (for example, in the direction of the gradient proposed by an optimizer)
 - select any Design Parameter
 - press Clear Design Velocities
 - for each Design Parameter whose component to the gradient direction is non-zero, put a **1** in the velocity table(s)
 - press **Press to Re-build**
 - Note: the KeyWindow will say d(norm)/d(***) to indicate that the sensitivity is with respect to some combination of Design Parameters

Simple Block (1)

) 🕲 file:///Users/jf	dannen/Projects/OpenCSM/ESP/ESP.html	∀ C ⁱ Google	9 ☆ 自 ♣ 余
Jp to date Help			
Indo Edit Sa	ve File		
ILR B	T + -		
Design Paramete	15		
Length	4		
Height	2		
Depth	2		
Rhole	0.4		
Nhole	2		
Xpole	2		
Ypole	2		
Rpole	0.5		
XangDeg	0		
YangDeg	0		
ZangDeg	30		
Dx	1		
Dy	0		
Dz	0		
Scale	1.5		
Dist	0.5		
Local Variables			
Branches			
Brch_000001	box		
Brch_000002	cylinder		
Brch_000003	union		
Brch_000004	patbeg	· · · · · · · · · · · · · · · · · · ·	

Dannenhoffer

ESP Training - Session 9

June 2021

Simple Block (2)

Box				
Length	length of box	4.0		
Height	height of box	2.0		
Depth	depth of box	2.0		
	anchored at $X = Z = 0$			
	centered at $Y = 0$			
Holes				
Rhole	radii of the holes	0.4		
Nhole	number of holes	2		
	holes are equally spaced			
Pole				
Xpole	X-location of top of pole	2.0		
Ypole	Y-location of top of pole	2.0		
Rpole	radius of pole	0.5		

Rotation about origin				
XangDeg	X rotation (deg)	0.		
YangDeg	Y rotation (deg)	0.		
ZangDeg	Z rotation (deg)	30.		
Translation				
Dx		1.0		
Dy		0.0		
Dz		0.0		
Scaling				
Scale	overall scaling factor	1.5		

- Starting file is at \$ESP_ROOT/training/ESP/data/session09/simpleBlock.csm
- What is the geometric sensitivity to each Design Parameter?
- What is the geometric sensitivity if you change two Design Parameters at the same time?
- What is the tessellation sensitivity to each Design Parameter?