Engineering Sketch Pad (ESP)

Training Session 10 Putting It All Together

John F. Dannenhoffer, III

jfdannen@syr.edu Syracuse University

Bob Haimes

haimes@mit.edu Massachusetts Institute of Technology

updated for v1.19

Dannenhoffer

ESP Training - Session 10

- During the design of an aircraft, various coupled models are needed
 - different disciplines
 - structures
 - controls
 - aerodynamics
 - . . .
 - different fidelities
 - conceptual design
 - preliminary design
 - detailed design

• There needs to be communication between these models

Computational Aircraft Prototype Syntheses (CAPS)

- In order to support multi-fidelity and multi-disciplinary analyses, the CAPS program has been developed
 funded by the AFRL
- CAPS uses geometries (and sensitivities) generated by ESP
- CAPS provides interfaces to many analysis programs, including:
 - aerodynamics (at various fidelities)
 - structures (at various fidelities)
 - . . .
- There is a companion training course for CAPS that can be offered if there is sufficient interest

- One of the strengths of ESP is to be able to have multiple models of a single configuration
 - driven by a single set of Design Parameters
 - attributed so that "common" features could be linked together
- This capability has been used by the CAPS program
 - a set of "views" have been created, which can be used if the model is constructed and annotated in a consistent way
 - for AVL, SansLIP, SU2, Astros, ...
 - implemented as a series of UDCs

- Analysis of Simple Wing (wing1)
 - basic assumptions (orientation, ...)
 - required Bodys
 - required attributes (naming vs. meta-data)
- Analysis of wing with flaps (wing2)
 - required Bodys
 - required attributes (naming vs. meta-data)
- Analysis of wing structure wing3)
 - required Bodys
 - required attributes (naming vs. meta-data)
- Full aircraft model (transport)

wing1.csm

Isolated Wing: Outer Mold Line (OML) Only

- wing:area
- wing:aspect
- wing:taper
- wing:sweep
- wing:thick
- wing. unick
- wing:camber
- wing:washout
 - g.washout J.

- 10.0 wing area
- 6.00 aspect ratio
- 0.60 taper ratio
- 20.0 deg (of leading edge)
- 0.12 thickness ratio, frac of local chord
- 0.04 maximum camber, frac of local chord
- $5.00 \quad \deg (\text{down at tip})$
- wing:dihedral 4.00 deg

"Possible" Analyses (Views) for wing1

- VIEW:Concept conceptual design
- VIEW:VLM vortex lattice method
- VIEW: CFDInviscid inviscid CFD analysis
- VIEW: CFDViscous viscous CFD analysis

- Configuration files defines the necessary Bodys
- Bodys are oriented such that:
 - x points out the tail
 - y points out the right wing
 - z points up

EP Required Bodys (for Aerodynamic Analyses)

- Outer Mold Lines (OMLs) for each component
 - FuseOml (a SolidBody)
 - WingOml (a SolidBody)
 - HtailOml (a SolidBody)
 - VtailOml (a SolidBody)

EP Required Attributes on WingOml

- Body
 - tagComp with value \$leftWing or \$riteWing
- Faces
 - tagComp with value \$leftWing or \$riteWing
 - tagType with value \$root, \$tip, \$upper, \$lower, or \$trailingEdge
- Edges
 - tagType with value \$root, \$leadingEdge (with supporting tagComp), or \$trailingEdge (with supporting tagComp)

- Definition of VIEWs to be supported
- Definition of COMPonents that are defined
- Definition of Design Parameters
- Call to capsHeader
- Construction of WingOml (with attributes)
- Call to capsViews

EP Dissection of wing1.csm (2)

wing1

written by John Dannenhoffer

# deline	che views				
CFGPMTR	VIEW:Concept	1			
CFGPMTR	VIEW:VLM	0			
CFGPMTR	VIEW:CFDInviso	id 0			
CFGPMTR	VIEW:CFDViscou	ıs 0			
<pre># define</pre>	components to b	be used			
CFGPMTR	COMP:Wing	1			
# Design	Parameters for	OML			
DESPMTR	wing:area	10.0	#	wing area	
DESPMTR	wing:aspect	6.00	#	aspect ratio	
DESPMTR	wing:taper	0.60	#	taper ratio	
DESPMTR	wing:sweep	20.0	#	deg (of leading	edge)
DESPMTR	wing:thickr	0.12	#	thickness ratio	at root
DESPMTR	wing:camberr	0.06	#	camber ratio	at root
DESPMTR	wing:thickt	0.16	#	thickness ratio	at tip
DESPMTR	wing:cambert	0.02	#	camber ratio	at tip
DESPMTR	wing:alphat	-5.00	#	setting angle	at tip
DESPMTR	wing:dihedral	4.00	#	deg	
DESPMTR	wing:xroot	0.00	#	xloc at root LE	
DESPMTR	wing:yroot	0.00	#	yloc at root LE	
DESPMTR	wing:zroot	0.00	#	zloc at root LE	

Define length units of the geometry
ATTRIBUTE capsLength \$ft

Dissection of wing1.csm (3)

convert VIEW:* variables into make* variables
UDPRIM \$/capsHeader

wing local variables SET wing:span sqrt(wing:aspect*wing:area) 2*wing:area/wing:span/(1+wing:taper) SET wing:chordr SET wing:chordt wing:chordr*wing:taper SET wing:ytip -wing:span/2 SET wing:xtip -wing:ytip*tand(wing:sweep) SET -wing:vtip*tand(wing:dihedral) wing:ztip SET sqrt(wing:area/wing:aspect) wing:mac # make wing OML **TETHEN** makeWingOml EQ 1 # lav out left wing MARK # root UDPRIM thickness wing:thickr camber wing:camberr sharpte SHARP_TE naca SCALE wing:chordr ROTATEX 90 0 0 # left tip UDPRIM naca thickness wing:thickt camber wing:cambert sharpte SHARP TE SCALE wing:chordt BOTATEX 90 0 0 wing:alphat 0 ROTATEY 0 TRANSLATE wing:xtip wing: ytip wing: ztip RULE. ATTRIBUTE tagComp \$leftWing SET ruledBody @nbody

SELECT FACE ruledBody 1 ATTRIBUTE tagType \$root SELECT FACE ruledBody 2 ATTRIBUTE tagType \$tip SELECT FACE ruledBody 3 ATTRIBUTE tagType \$upper SELECT FACE ruledBody 4 ATTRIBUTE tagType \$lower SELECT EDGE ruledBody 3 ruledBody 4 1 ATTRIBUTE tagComp \$leftWing ATTRIBUTE tagType \$leadingEdge IFTHEN SHARP TE EQ O SELECT FACE ruledBody 5 ATTRIBUTE tagType \$trailingEdge ELSE EDGE ruledBody 3 ruledBody 4 2 SELECT ATTRIBUTE tagComp \$leftWing ATTRIBUTE tagTvpe \$trailingEdge ENDIF

EP Dissection of wing1.csm (5)

```
# right wing too
   STORE
            LeftWing 0 1
   RESTORE LeftWing
       ATTRIBUTE tagComp $riteWing
       SELECT
                 EDGE $tagType $leadingEdge
       TETHEN
                 @iedge GT 0
           SELECT EDGE $tagType $leadingEdge
               ATTRIBUTE tagComp $riteWing
       ENDIF
       SELECT
                 EDGE $tagType $trailingEdge
       IFTHEN
                 @iedge GT 0
           SELECT EDGE $tagType $trailingEdge
               ATTRIBUTE tagComp $riteWing
       ENDIF
       CATBEG
                $edge not found
       CATEND
   MTRROR
             0 1 0
   JOIN
   SELECT
             EDGE ruledBody 3 ruledBody 3 1
       ATTRIBUTE tagType $root
   SELECT
             EDGE ruledBody 4 ruledBody 4 1
       ATTRIBUTE tagType $root
   STORE
             WingOml
ENDIF
# now generate the needed views
```

UDPRIM \$/capsViews

END

wing:hinge[i,1]
wing:hinge[i,2]
wing:hinge[i,3]
wing:hinge[i,4]
wing:hinge[i,5]
wing:hinge[i,6]
wing:hinge[i,7]
wing:hinge[i,8]
wing:hinge[i,9]

deflection (degrees) x/c at y-min end y/(b/2) at y-min end z/t at y-min end x/c at y-max end y/(b/2) at y-max end z/t at y-max end gap when cutting out for CFD group (used to link controls in VLM)

EP Required Bodys (for Control Analyses)

- Outer Mold Lines (OMLs) for each component
 - FuseOml (a SolidBody)
 - WingOml (a SolidBody)
 - HtailOml (a SolidBody)
 - VtailOml (a SolidBody)
- Hinge lines for each control surface i on each component
 - WingHinge *i* (a WireBody)
 - HtailHinge i (a WireBody)
 - VtailHinge *i* (a WireBody)

EP Required Attributes on WingHinge i

• Body

- (none required)
- Edges
 - tagComp with value \$wing
 - tagType with value \$hinge
 - tagIndex with value *i*
 - deflect with value equal to deflection angle (in degrees), positive according to right-hand rule
 - xoverc1 with value equal to x/c at the y-min end
 - xoverc2 with value equal to x/c at the y-max end
 - gap with value equal to gap size when cutting out control surface for CFD

SP Conceptual View of Control Surfaces

SP Inviscid Model for Control Surfaces

SP Viscous Model for Control Surfaces

- Definition of VIEWs to be supported
- Definition of COMPonents that are defined
- Definition of Design Parameters
- Call to capsHeader
- Construction of WingOml (with attributes)
- Construction of WingHinges (with attributes)
- Call to capsViews

SP Dissection of wing2.csm (2)

# wing2								
# written	by John Danner	nhoffer	r					
# define	the views							
CFGPMTR	VIEW:Concept		1					
CFGPMTR	VIEW:VLM		0					
CFGPMTR	VIEW:CFDInviso	cid	0					
CFGPMTR	VIEW:CFDViscou	15	0					
# define	components to h	oe used	ł					
CFGPMTR	COMP:Wing		1					
CFGPMTR	COMP:Control		0					
# Design	Parameters for	OML						
DESPMTR	wing:area	10.0		#	wing area			
DESPMTR	wing:aspect	6.00		#	aspect ra	tio		
DESPMTR	wing:taper	0.60		#	taper rat	io		
DESPMTR	wing:sweep	20.0		#	deg (of 1	eading	edą	ge)
DESPMTR	wing:thickr	0.12		#	thickness	ratio	at	root
DESPMTR	wing:camberr	0.06		#	camber	ratio	at	root
DESPMTR	wing:thickt	0.16		#	thickness	ratio	at	tip
DESPMTR	wing:cambert	0.02		#	camber	ratio	at	tip
DESPMTR	wing:alphat	-5.00		#	setting a	ngle	at	tip
DESPMTR	wing:dihedral	4.00		#	deg			
DESPMTR	wing:xroot	0.00		#	xloc at r	oot LE		
DESPMTR	wing:yroot	0.00		#	yloc at r	oot LE		
DESPMTR	wing:zroot	0.00		#	zloc at r	oot LE		

Dissection of wing2.csm (3)

# Design DIMENSION # DESPMTR	Parameters for wing:hinge wing:hinge	controls 2 9 1 theta "-10.0; +10.0;	ymin 0.75; -0.90; 0.75; 0.50;	0.50; 0.50;	ymax 0.75; - 0.75;	0.50; 0.50; 0.90; 0.50;	gap 0.10; 0.10;	grp 1; \left aileron 2" # rite aileron
<pre># Define ATTRIBUTE</pre>	length units of capsLength	f the geomet \$ft	ry					
# convert UDPRIM	# convert VIEW:* variables into make* variables UDPRIM \$/capsHeader							
# wing lo	cal variables							
SET	wing:span	sqrt(wing:	aspect*wing:an	rea)				
SET	wing:chordr	2*wing:are	a/wing:span/(1	l+wing:ta	per)			
SET	wing:chordt	wing:chord	r*wing:taper					
SET	wing:ytip	-wing:span/	2					
SET	wing:xtip	-wing:ytip*	tand(wing:swee	ep)				
SET	wing:ztip	-wing:ytip*	tand(wing:dihe	edral)				
SET	wing:mac	sqrt(wing:	area/wing:aspe	ect)				

\bigcirc Dissection of wing2.csm (4)

```
# make wing OML
IFTHEN
        makeWingOml EQ 1
   # lav out left wing
   MARK
       # root
       UDPRIM
                         thickness wing:thickr camber wing:camberr sharpte SHARP TE
                naca
       SCALE wing:chordr
       ROTATEX 90 0 0
       # left tip
       UDPRIM
                         thickness wing:thickt camber wing:cambert sharpte SHARP_TE
                naca
       SCALE wing:chordt
       ROTATEX 90 0 0
       ROTATEY wing:alphat 0
                                       0
       TRANSLATE wing: xtip wing: ytip wing: ztip
   BIILE.
       ATTRIBUTE tagComp $leftWing
       ruledBody @nbody
   SET
   SELECT FACE ruledBody 1
       ATTRIBUTE tagType $root
   SELECT
            FACE ruledBody 2
       ATTRIBUTE tagType $tip
   SELECT
            FACE ruledBody 3
       ATTRIBUTE tagTvpe $upper
   SELECT
            FACE ruledBody 4
       ATTRIBUTE tagType $lower
            EDGE ruledBody 3 ruledBody 4 1
   SELECT
       ATTRIBUTE tagComp $leftWing
       ATTRIBUTE tagType $leadingEdge
```

$\stackrel{\text{\tiny CP}}{=}$ Dissection of wing2.csm (5)

```
TETHEN
         SHARP TE EQ O
   SELECT
             FACE ruledBody 5
       ATTRIBUTE tagType $trailingEdge
ELSE.
             EDGE ruledBody 3 ruledBody 4 2
   SELECT
       ATTRIBUTE tagComp $leftWing
       ATTRIBUTE tagType $trailingEdge
ENDIF
# right wing too
STORE
         LeftWing 0 1
RESTORE LeftWing
   ATTRIBUTE tagComp $riteWing
   SELECT EDGE $tagType $leadingEdge
   IFTHEN @iedge GT 0
       SELECT EDGE $tagType $leadingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
   SELECT
             EDGE $tagType $trailingEdge
   IFTHEN
             @iedge GT 0
       SELECT EDGE $tagType $trailingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
   CATBEG
            $edge not found
   CATEND
MTRROR
         0 1 0
JOIN
```

$\stackrel{\text{\tiny CP}}{\longrightarrow}$ Dissection of wing2.csm (6)

```
SELECT
             EDGE ruledBody 3 ruledBody 3 1
       ATTRIBUTE tagType $root
             EDGE ruledBody 4 ruledBody 4 1
   SELECT
       ATTRIBUTE tagType $root
             WingOml
   STORE
ENDIF
# make wing hinge lines
TETHEN
         makeWingOml EQ 1 AND makeWingHinge EQ 1
   PATBEG
             ihinge wing:hinge.nrow
                 v_ibd wing:hinge[ihinge,3]*(-wing:ytip)
        SET
                 -1000 y_ibd -1000 2000 0 2000
       BOX
       RESTORE
                 WingOml
       INTERSECT
       SET
                 x ibd @xmin+wing:hinge[ihinge.2]*(@xmax-@xmin)
       STORE
       BOX
                 x_ibd y_ibd -1000 0 0 2000
       RESTORE
                 WingOml
       INTERSECT
       SET
                 z_ibd
                         @zmin+wing:hinge[ihinge,4]*(@zmax-@zmin)
       STORE
```

esp Dissection of wing2.csm (7)

```
SET
                 y_obd
                         wing:hinge[ihinge,6]*(-wing:ytip)
       BOX
                 -1000 y_obd -1000 2000 0 2000
       RESTORE
                 WingOml
       INTERSECT
        SET
                 x_obd
                         @xmin+wing:hinge[ihinge,5]*(@xmax-@xmin)
        STORE
       BOX
                 x_obd y_obd -1000 0 0 2000
       RESTORE
                 WingOml
       INTERSECT
       SET
                         @zmin+wing:hinge[ihinge,7]*(@zmax-@zmin)
                  z obd
       STORE
        SKREG
                  x_ibd y_ibd z_ibd
           LINSEG x_obd y_obd z_obd
       SKEND
        SELECT
                  EDGE 1
           ATTRIBUTE tagComp $wing
           ATTRIBUTE tagType $hinge
           ATTRIBUTE tagIndex !val2str(wing:hinge[ihinge.9].0)
           ATTRIBUTE deflect wing:hinge[ihinge,1]
           ATTRIBUTE xoverc1 wing:hinge[ihinge,2]
           ATTRIBUTE xoverc2 wing:hinge[ihinge.5]
           ATTRIBUTE gap
                               wing:hinge[ihinge.8]
           ATTRIBUTE compIndex !val2str(ihinge,0)
               WingHinge ihinge
       STORE
   PATEND
# now generate the needed views
         $/capsViews
```

UDPRTM END

ENDIF

wing3.csm

Isolated Wing: OML and Structures

wing:spar1 0.20 location of fwrd spar wing:spar2 0.70 location of rwrd spar wing:nrib 3.00 number of ribs per wing

"Possible" Analyses (Views) for wing3

- VIEW:Concept conceptual design
- VIEW:Structure built-up element model

EP Required Bodys (for Structural Analyses)

• Outer Mold Lines (OMLs) for each component

- FuseOml (a SolidBody)
- WingOml (a SolidBody)
- HtailOml (a SolidBody)
- VtailOml (a SolidBody)
- Waffle for each component
 - FuseWaffle (a SheetBody) not yet supported
 - WingWaffle (a SheetBody)
 - HtailWaffle (a SheetBody) not yet supported
 - VtailWaffle (a SheetBody) not yet supported

EP Required Attributes of WingWaffle

- Body
 - (none required)
- Faces
 - tagComp with value \$leftwing, \$riteWing, or \$wing (if on
 symmetry plane)
 - tagType with value \$spar or \$rib
 - tagIndex with different value for each spar and rib

SP Dissection of wing3.csm (1)

wing3

written by John Dannenhoffer

<pre># define</pre>	the views							
CFGPMTR	VIEW:Concept		1					
CFGPMTR	VIEW:VLM		0					
CFGPMTR	VIEW:CFDInvisc	id	0					
CFGPMTR	VIEW:CFDViscou	s	0					
CFGPMTR	VIEW:OmlStruct	ure	0					
CFGPMTR	VIEW:ClampedSt	ructure	0					
CFGPMTR	VIEW:SupportSt	ructure	0					
CFGPMTR	VIEW:BoxStruct	ure	0					
<pre># define</pre>	components to b	e used						
CFGPMTR	COMP:Wing	1						
# Design	Parameters for	OML						
DESPMTR	wing:area	10.0		#	wing area			
DESPMTR	wing:aspect	6.00		#	aspect ratio			
DESPMTR	wing:taper	0.60		#	taper ratio			
DESPMTR	wing:sweep	20.0		#	deg (of leadir	ıg (edg	ge)
DESPMTR	wing:thickr	0.12		#	thickness rati	.0	at	root
DESPMTR	wing:camberr	0.06		#	camber rati	0	at	root
DESPMTR	wing:thickt	0.16		#	thickness rati	.0	at	tip
DESPMTR	wing:cambert	0.02		#	camber rati	.0	at	tip
DESPMTR	wing:alphat	-5.00		#	setting angle	;	at	tip
DESPMTR	wing:dihedral	4.00		#	deg			
DESPMTR	wing:xroot	0.00		#	xloc at root I	Æ		
DESPMTR	wing:yroot	0.00		#	yloc at root I	Æ		
DESPMTR	wing:zroot	0.00		#	zloc at root I	Æ		

SP Dissection of wing3.csm (2)

# Design H	Parameters for	structure	
DESPMTR	wing:spar1	0.20	# location of fwrd spar
DESPMTR	wing:spar2	0.70	# location of rwrd spar
CFGPMTR	wing:nrib	3.00	# number of ribs per wing
# Define 1	Length units of	the geome	try
ATTRIBUTE	capsLength	\$ft	
# convert	VIEW:* variabl	es into ma	Ke* variables
UDPRIM	\$/capsHeader		
# wing loo	cal variables		
SET	wing:span sqrt	(wing:aspe	ct*wing:area)
SET	wing:chordr	2*wing:ar	ea/wing:span/(1+wing:taper)
SET	wing:chordt	wing:chor	dr*wing:taper
SET	wing:ytip	-wing:span	/2
SET	wing:xtip	-wing:ytip	<pre>*tand(wing:sweep)</pre>
SET	wing:ztip	-wing:ytip	<pre>*tand(wing:dihedral)</pre>
SET	wing:mac	sqrt(wing	area/wing:aspect)

Dissection of wing3.csm (3)

```
# make wing OML
TETHEN
         makeWingOml EQ 1
   # lay out left wing
   MARK
       # root
       UDPRIM
                naca
                          thickness wing:thickr camber wing:camberr sharpte SHARP TE
       SCALE
                wing:chordr
       ROTATEX 90 0 0
       # left tip
       UDPRIM
                          thickness wing:thickt camber wing:cambert sharpte SHARP_TE
                naca
       SCALE wing:chordt
       BOTATEX 90 0 0
       ROTATEY wing:alphat 0
                                        0
       TRANSLATE wing: xtip wing: vtip wing: ztip
   BIILE.
       ATTRIBUTE tagComp $leftWing
             ruledBody @nbody
   SET
   SELECT
          FACE ruledBody 1
       ATTRIBUTE tagType $root
   SELECT
             FACE ruledBody 2
       ATTRIBUTE tagTvpe $tip
       ATTRIBUTE tagIndex $1
   SELECT
             FACE ruledBody 3
       ATTRIBUTE tagType $upper
   SELECT
            FACE ruledBody 4
       ATTRIBUTE tagType $lower
```

EP Dissection of wing3.csm (4)

```
SELECT
         EDGE ruledBody 3 ruledBody 4 1
   ATTRIBUTE tagComp $leftWing
   ATTRIBUTE tagType $leadingEdge
         SHARP_TE EQ 0
TETHEN
   SELECT
             FACE ruledBody 5
       ATTRIBUTE tagType $trailingEdge
ELSE.
   SELECT
             EDGE ruledBody 3 ruledBody 4 2
       ATTRIBUTE tagComp $leftWing
       ATTRIBUTE tagTvpe $trailingEdge
ENDIF
# right wing too
STORE
        LeftWing 0 1
RESTORE LeftWing
   ATTRIBUTE tagComp $riteWing
   SELECT
             FACE $tagType $tip
   ATTRIBUTE tagIndex $2
   SELECT
             EDGE $tagType $leadingEdge
   IFTHEN @iedge GT 0
       SELECT EDGE $tagType $leadingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIE
   SELECT
             EDGE $tagType $trailingEdge
   IFTHEN
             @iedge GT 0
       SELECT EDGE $tagType $trailingEdge
           ATTRIBUTE tagComp $riteWing
   ENDIF
   CATBEG
             $edge not found
   CATEND
MTRROR
         0 1 0
TOTN
```

$\stackrel{\text{\tiny CP}}{\longrightarrow}$ Dissection of wing3.csm (5)

```
SELECT
              EDGE ruledBody 3 ruledBody 3 1
        ATTRIBUTE tagType $root
    SELECT
              EDGE ruledBody 4 ruledBody 4 1
        ATTRIBUTE tagType $root
    STORE
              WingOml
ENDIF
# make wing waffle
TETHEN
          makeWingWaffle EQ 1
    RESTORE
              WingOml
    SET
              xmin
                         @xmin-0.1
    SET
              ymay
                         0xmax+0.1
    SET
              vmin
                         0
    SET
                         @ymax+0.1
              ymax
    SET
                         @zmin-0.1
              zmin
    SET
                         @zmax+0.1
              zmax
    STORE
    UDPARG
              waffle
                         depth wing:nrib
                                              # ensures rebuild
    UDPARG
              waffle
                         depth wing:spar1
    UDPARG
                         depth wing:spar2
              waffle
    IIDPRTM
              waffle
                         depth zmax-zmin filename <<
```

Dissection of wing3.csm (6)

construction lines for spars
CPOINT A AT 0+wing:spar1*wing:chordr 0
CPOINT B AT wing:xtip+wing:spar1*wing:chordt -wing:ytip
CPOINT C AT 0+wing:spar2*wing:chordr 0
CPOINT D AT wing:xtip+wing:spar2*wing:chordt -wing:ytip
CLINE AB A B
CLINE CD C D
rite spars
POINT E ON AB YLOC ymin
POINT F ON AB YLOC ymax
LINE EF E F tagComperiteWing tagType=spar tagIndex=1
POINT G ON CD YLOC vmin
POINT H ON CD YLOC ymax
LINE GH G H tagComperiteWing tagType=spar tagIndex=2
rite ribs
PATBEG irib wing:nrib
CPOINT I AT xmin -wing:vtip*irib/(wing:nrib+1)
CPOINT J AT xmax v@I
LINE I J tagComperiteWing tagType=rib tagIndex=!val2str(irib.0)
PATEND

Dissection of wing3.csm (7)

```
# root rib
       CPOINT I AT xmin 0
       CPOINT J AT xmax v@I
       LINE . I J tagComp=rootWing tagType=rib tagIndex=0
       # left spars
       POINT E AT x@E -y@E
       POINT F
                AT x@F -y@F
       LINE FE F
                    E tagComp=leftWing tagTvpe=spar tagIndex=1
       POINT G AT x@G -y@G
       POINT H AT x@H -v@H
             HG H G tagComp=leftWing tagType=spar tagIndex=2
       LINE
       # left ribs
       PATBEG irib wing:nrib
          CPOINT I AT xmin wing: ytip*irib/(wing:nrib+1)
          CPOINT J AT xmax y@I
                  . I J tagComp=leftWing tagTvpe=rib tagIndex=!val2str(irib.0)
          LINE
       PATEND
   TRANSLATE 0 0 zmin
   STORE
            WingWaffle
ENDIF
# now generate the needed views
UDPRIM $/capsViews
```

END

>>

SP Full Transport Configuration File found at **\$ESP_ROOT/training/ESP/data/session10**

- Design Parameters associated with fuselage and tail
 similar to wing
- Construction of fuselage and tail
 - similar to wing

EP transport.csm

Isolated Transport: OML, Structures, and Controls

- ESP is a powerful geometry-generating system that was designed for the analysis of complex configurations
 - supports multiple linked models
 - supports persistent attribution
 - provides sensitivities
 - can easily be coupled with other systems
- For CAPS, a set of "views" were defined; but these are only an example
- Each organization will want to develop a set of rules and conventions that are consistent with the rest of the organization's design systems

- ESP is freely available for download from acdl.mit.edu/ESP
- Based upon user requests, new and improved features are added continually
- Send bug reports to jfdannen@syr.edu or haimes@mit.edu
- Also send success stories to jfdannen@syr.edu or haimes@mit.edu
- Thank you for attending; send comments about the course to jfdannen@syr.edu or haimes@mit.edu