
Output-based Adaptive Meshing Using Triangular Cut Cells ∗

Aerospace Computational Design Laboratory Report TR-06-2

Krzysztof J. Fidkowski and David L. Darmofal †

October 10, 2006

Abstract

This report presents a mesh adaptation method for higher-order (p > 1) discontinuous

Galerkin (DG) discretizations of the two-dimensional, compressible Navier-Stokes equations.

The method uses a mesh of triangular elements that are not required to conform to the bound-

ary. This triangular, cut-cell approach permits anisotropic adaptation without the difficulty of

constructing meshes that conform to potentially complex geometries. A quadrature technique

is presented for accurately integrating on general cut cells. In addition, an output-based error

estimator and adaptive method are presented, with emphasis on appropriately accounting for

high-order solution spaces in optimizing local mesh anisotropy. Accuracy on cut-cell meshes

is demonstrated by comparing solutions to those on standard boundary-conforming meshes.

Adaptation results show that, for all test cases considered, p = 2 and p = 3 discretizations

meet desired error tolerances using fewer degrees of freedom than p = 1. Furthermore, an

initial-mesh dependence study demonstrates that, for sufficiently low error tolerances, the

final adapted mesh is relatively insensitive to the starting mesh.
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1 Introduction

Computational Fluid Dynamics (CFD) has become an indispensable tool in analysis and design

applications. In many applications, CFD can be used to reduce the number of expensive exper-

iments required to achieve a reliable design. In many cases, however, CFD is still plagued by

insufficient automation and robustness in the geometry-to-solution process. Mesh generation

can be a bottleneck, as meshes around complex geometries are often constructed manually,

or with significant user input. Solvers may not converge to a solution, or, if they do, the

solution quality cannot be guaranteed. That is, rarely are estimates of the discretization error

available, much less an indication of how the error can be decreased. These shortcomings in

automation and robustness make CFD a risky tool in analysis, with potentially costly con-

sequences ranging from not obtaining an answer to unknowingly obtaining an answer with

large errors. In this report, two ideas are presented for improving automation and robustness

in CFD: triangular, cut-cell, mesh generation and output-based, anisotropic adaptation for

higher-order discretizations.

First, cut cell meshes offer a potentially more automated and robust alternative to boundary-

conforming meshes for complex, curved geometries. In particular, cut cells shift the diffi-

culty from boundary-conforming mesh generation to computational geometry. The Cartesian

method [2, 9, 12] is an example of a cut-cell approach in which elements consist of squares/cubes

on a regular lattice. It has been effective at automating mesh generation, even for very complex

geometries: initial Cartesian meshes can be obtained in seconds without any user involvement.

While computationally fast and memory-lean, the Cartesian method has the drawback that

it becomes inefficient for the full Navier-Stokes equations. This is because the grid-aligned

Cartesian cells are not suited for mesh anisotropy in arbitrary directions, which is required

for practical resolution of boundary layer and wake features. Using triangular/tetrahedral

cut-cells instead of grid-aligned Cartesian cells relieves this inefficiency by allowing anisotropic

adaptation in general directions.

The second idea for improving robustness and automation is an output-based, anisotropic

adaptation method. Error estimates for engineering outputs provide the user with a measure

of solution quality, thereby preventing use of inaccurate solutions. In addition, the error

estimates often come in the form of local error indicators, providing an indication of where mesh

refinement is necessary to improve the solution. Coupled with anisotropic mesh adaptation,

such error estimates can produce an efficient and automated goal-oriented solution method.

While the combination of triangular cut cells and output-based anisotropic adaptation
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can be applied to any discretization, the focus of this report is the discontinuous Galerkin

(DG) finite element method. A particular advantage of the DG method is that the cut cell

implementation does not require changes in the solution representation, which remains in

the form of piecewise discontinuous polynomials, or boundary conditions, which are imposed

weakly. Rather, the main requirement is the creation of integration rules for arbitrarily-cut

elements. The outline for the remainder of this report is as follows. Section 2 presents the

triangular cut-cell method. Sections 3 and 4 describe the output-based error estimator and the

anisotropic adaptation strategy. Results from sample cases are given in Section 5, focusing on

the performance of the cut-cell method in comparison to boundary-conforming meshes in an

h-adaptive setting at various interpolation orders p. For completeness, the DG discretization

is presented in Appendix A.

2 Cut Cells

The main feature of cut-cell meshes is that the mesh generation process does not conform to

the boundary of the geometry. This concept is useful for complex geometries, where generating

meshes of boundary-conforming elements is not trivial. The geometry is used to cut elements

out of the non-boundary conforming mesh, resulting in irregular cut cells at the boundary. The

idea of using cut cells began with the works of Purvis and Burkhalter [29], who used linear

cut-cells based on uniform Cartesian meshes for finite volume solutions of the full potential

equations. This work was extended to the 2D and 3D Euler equations by Clarke et al [11] and

Gaffney et al [15], respectively. 3D presented a problem of heavy isotropic refinement required

for geometries not aligned with the grid. In the late 1980’s Boeing’s TRANAIR [35] became the

first industry code to employ cut cells. A finite element solver for the full potential equations,

TRANAIR is still in active use at Boeing. Leveque and Berger [6] presented an adaptive finite

volume Cartesian method that used a Godunov method for accounting for wave propagation

through more than one cell, thereby relieving the time step restriction caused by small cut

cells. Coirier and Powell [12] applied the Cartesian method “as-is” to the 2D Navier-Stokes

equations, using a diamond-path reconstruction scheme for the viscous term and isotropic

adaptation. They were able to obtain results in 2D but mentioned that isotropic adaptation

would become prohibitive in 3D. Karman [20] considered the 3D Reynolds-averaged Navier-

Stokes equations in his SPLITFLOW code, which generates a Cartesian cut-cell mesh for most

of the domain, but requires a prescribed anisotropic, prismatic, boundary-layer mesh.
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Aftosmis et al developed a 3D Cartesian solver package, Cart3d [2], which emphasizes

fast and fully automated mesh generation using surface geometry triangulation intersections.

Cart3d is currently in use for large scale computations, including space shuttle ascent debris

simulations [23]. Ongoing work continues in computing adjoints and shape sensitivities [24]

and in novel ideas for moving beyond Euler calculations [1].

This report explores the feasibility of using triangular cut-cell meshes in a discontinuous

Galerkin finite element framework. For high-order approximations, the challenge of using cut

cells reduces to accurate integration on cells cut by curved boundaries. The following sections

describe one solution to this challenge.

2.1 Geometry Definition and Initial Mesh

For this proof-of-concept study in 2D, a geometry definition consisting of cubic-splined points

is used. The data structure used allows for corners and for multiple splines. The computational

domain is bounded by a set of points comprising the farfield boundary. A common farfield

boundary is a square box around the embedded object(s). An initial mesh consists of a coarse

uniform triangulation of the farfield-bounded domain, without regard to the embedded objects.

If desired, subsequent geometry-adapted triangulations are constructed by refining elements

that

• contain a spline endpoint or a spline corner,

• are intersected more than once by one or more splines,

• contain a spline segment for which the normal changes in angle by more than ∆θmax

(default is 20o).

The details of geometry adaptation are not crucial, as only a reasonable starting mesh is sought

for the solution-adaptive method.

2.2 Cutting Algorithm

Given an area-filling mesh of the computational domain, and a set of splines defining the ge-

ometry, a cutting algorithm is employed to determine which elements are cut by the splines

and the precise geometry of the cuts. The cutting algorithm proceeds by solving cubic in-

tersection problems (Appendix E) to determine intersections of spline segments with element

edges. Careful attention must be given to conditioning for node or tangency intersections.
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Each spline-element intersection is labeled as an “embedded face,” and is identified by the

two spline arc-length parameters that mark the start and end of the intersection. Elements

and edges completely outside the computational domain are marked as “null.” They are iden-

tified by flagging nodes as inside/outside the domain, starting at the cut elements. No flux

calculation is performed on null edges.
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Figure 1: Mesh improvement for multiply-cut edges (edge 12 and 13) via edge splitting
and element refinement.

During the development of the adaptive, triangular cut-cell algorithm, a difficulty was

identified related to elements with edges cut more than once by embedded splines as shown

in Figure 1. Specifically, a solution on such a mesh will often result in large errors in these

cells since the cells are attempting to represent possibly very different flow fields with a single

polynomial basis. The subsequent adaptation will tend to refine the mesh at multiply-cut

edges. On the refined mesh, the errors often drop substantially, resulting in a request for

larger elements on the next adaptation, and again producing multiply-cut cells. The result is

an oscillatory behavior of the adaptive method. To eliminate this behavior, multiply-cut edges

are split prior to solution, as indicated in Figure 1.

2.3 Integration

A high-order DG method requires integration over element interiors as well as boundary and

interior edges. One-dimensional integration on interior cut edges and embedded faces is per-

formed by mapping each segment to a reference interval and using numerical quadrature. A

caveat for embedded faces is that each spline segment is mapped to a reference interval sepa-

rately, so as to avoid integration through second-order geometric discontinuities at the spline

knots.

Integration on cut cell interiors is not as straightforward, but it is still tractable. One

approach, used in this work, is outlined below. The goal of this method is to produce for each
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cut cell a set of integration points, xq, and weights, wq, to integrate arbitrary f(x),

∫

κ
f(x)dx ≈

∑

q

wqf(xq).

The key idea is to project f(x) onto a space of high-order basis functions, ζi(x). The basis

functions ζi(x) are chosen to allow for simple computation of the integral
∫
κ ζi(x)dx. In

particular, choosing ζi ≡ ∂kGik leads, by the divergence theorem, to

∫

κ
ζidx =

∫

κ
∂kGikdx =

∫

∂κ
Giknkds,

where nk is the outward-pointing normal. The integrals over the element boundary, ∂κ, are

computed using the interior edge and embedded face quadrature rules. Gik is chosen as

Gik = xkΦi(x), Φi(x) =
∏

k

φik(xk), x = [xk], i = [ik],

where k ∈ [0, .., d− 1] and d is the spatial dimension. The functions φi(x) are well-conditioned

one-dimensional basis functions. In this work, Lagrange basis functions are used, with Gauss

point nodes on the element bounding box intervals (except for certain ill-conditioned cases,

as described at the end of this section). The order of these functions is the desired order of

integration for f(x). This order depends on the equation set and on the solution interpolation

order, p. The same order is used for cut cells as for standard element-interior quadrature rules

[13].

The factors of xk in the definition of Gi ensure that the ζi = ∂kGik = dΦi(x) + xk∂kΦi(x)

span the same complete space as the tensor product functions Φi. This statement can be

proved as follows. Let

xj ≡
∏

k

xjkk , k ∈ [0, .., d − 1],

be the standard monomial basis indexed by j = [jk]. Since the Φi(x) are assumed to form a

complete basis, every monomial can be written as a linear combination of the Φi,

xj = ajiΦi(x).
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Taking the gradient of both sides, dotting with xk, and adding dxj yields

(
∑

k

jk + d

)

xj = aji (dΦi(x) + xk∂kΦi(x))

Since d > 0 and the jk are non-negative, one can divide both sides by (
∑

k jk + d) to arrive at

a representation of each monomial by the ζi functions. Thus, the ζi span the same complete

space as the Φi.

The projection of f(x) onto ζi(x) is performed by minimizing the least-squares error,

E2 =
∑

q

[
∑

i

Fiζi(xq) − f(xq)

]2

.

Specifically, the solution vector, Fi, is found using QR factorization of the matrix ζi(xq),

leading to the following expression for the quadrature weights,

wq = (Rji)
−1Qjq

∫

κ
ζi(x)dx, where ζi(xq) = QqjRji.

The choice of sampling points, xq, affects the conditioning of the QR factorization of ζi(xq).

The points should lie inside the cut cell, so that the integrand remains physical. Multiple

methods exist for choosing these interior points. In this work, two methods were used. The

first consists of picking points randomly in the element bounding box and checking whether or

not they lie inside the element. This inside/outside check is performed by casting a segment

to a point that is known to be inside or outside the element and counting the number of

intersections with the 1D element boundaries. This method is sufficient for elements that

are close to isotropic, and it provides a truly random point selection. However, it becomes

inefficient for elements whose area is small relative to the area of the bounding box. For

such elements, the random points are chosen by casting interior-bound rays from quadrature

points on the 1D element boundary. These rays are directed along the normal direction with a

random variation (default range is ±15o). The closest intersection of each ray with an element

boundary marks where the ray first exits the element. A random interior point is chosen

between the origin of the ray and this exit point.

Since a random set of points may possess unfavorable clusters, conditioning of the QR

factorization generally improves with an increasing number of sampling points, nq. In this

work, nq is set to four times the number of ζi basis functions. In the event of a singular
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error in the QR factorization, another set of sampling points is chosen. In addition, using

an axis-aligned element bounding box to define the Φi(x) may pose conditioning problems

for certain elements. The problematic elements include non-axis-aligned sliver elements as

well as multiply-cut elements with small, disjoint regions, as shown in Figure 2. In these

Figure 2: Cut elements requiring bounding-box adjustment. For non-axis-aligned sliver
cut elements (left), the original bounding box (dashed line) is rotated to obtain
a tighter fit (solid line). For an element cut into disjoint regions (right), separate
bounding boxes are used for each region.

cases, conditioning is improved by adjusting the bounding box. As shown in Figure 2, this

improvement can come from rotation for a tighter fit around the element, or from using a

separate bounding box for each disjoint region. Finally, while better algorithms likely exist for

performing the cut-cell integrations, the one presented here has been sufficient for the problems

considered thus far.

2.4 Implementation

The cut cell method was implemented in an existing DG code, with minimal impact on the

solver and other parts of the code. No change was made to the basic numerical integration

paradigm for residual evaluation, as the cut-cell integrations take the form of quadrature

sums. The cut-cell integration rules are created once in a pre-processing step, and saved,

before beginning solution iteration. Interpolation functions for cut cells are defined not on the

original triangles, but rather on “shadow” triangles taken to be the right triangles associated

with the cut-cell bounding boxes. This choice improves conditioning of the basis for small cut

cells. Even though this work deals with steady-state solution via implicit schemes, an unsteady

term with local time steps is used to improve robustness in the early stages of convergence.

The local time step is chosen using a global CFL number: ∆tκ = CFL(hκ/sκ,max), where hκ

and sκ,max are the element-specific size and maximum wave speed, respectively.
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3 Output-Based Error Estimation

Accurate prediction of an output (e.g. drag, or lift on an airfoil) may depend on resolution

of seemingly un-interesting areas. This is especially the case in hyperbolic problems, where

small variations in one location can have large effects on the solution behavior downstream.

Error estimators based on local criteria often fail to capture the error due to such propaga-

tion effects. Output-based error estimators address this problem by linking local residuals to

outputs through the use of the adjoint solution. Moreover, adapting on several key outputs

often produces a multi-purpose solution that can be used to accurately predict other outputs

in post-processing.

Output-based error estimation and adaption for CFD have been studied extensively in the

literature [3, 5, 16, 18, 21, 22, 28, 34]. In the following analysis, an output error estimate for a

generic weighted residual statement is derived, motivated by the previously cited work. This

estimate is then applied to the DG weighted residual statement.

Let u ∈ V be an analytic solution to a set of nonlinear equations given by F (u) = 0. Also,

let uH ∈ VH be the finite element solution to the corresponding weighted residual statement

RH

(
uH ,vH

)
= 0, ∀vH ∈ VH , where RH : WH × WH → R is a semi-linear form, linear in

the second argument. The space WH ≡ VH + V is defined because VH is not required to be a

subspace of V; in particular, this is the case with DG approximation.

Let J (u) be a possibly-nonlinear output of interest. The dual problem reads: find ψ ∈ V
such that,

R̄H(u,uH ;v,ψ) = J̄ (u,uH ;v), ∀v ∈ V,

where the mean value linearizations R̄H : WH ×WH → R and J̄ : WH → R are given by:

R̄H(u,uH ;v,w) =

∫ 1

0
R′
H [θu + (1 − θ)uH ](v,w)dθ,

J̄ (u,uH ;v) =

∫ 1

0
J ′[θu + (1 − θ)uH ](v)dθ,

In the above, the primed notation denotes the Frechét derivative, with linearization performed

about the state within the square brackets. Overbar notation denotes a linearization involving
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the arguments before the semicolon. For v = u− uH ,

R̄H(u,uH ;u− uH ,w) = RH(u,w) −RH(uH ,w),

J̄ (u,uH ;u − uH) = J (u) − J (uH).

ψ is assumed to exist in the same space as u. Assuming RH(u,v) = 0, ∀v ∈ WH , the

output error can be expressed as

J (u) − J (uH) = −RH(uH ,ψ −ψH), (1)

where ψH ∈ VH can be arbitrary at this point. Defining an adjoint residual,

R̄ψ
H(u,uH ;v,w) ≡ R̄H(u,uH ;v,w) − J̄ (u,uH ;v), v,w ∈ WH ,

the output error can also be expressed as

J (u) − J (uH) = −R̄ψ
H(u,uH ;u − uH ,ψH). (2)

As u and ψ are in general not known, two approximations are employed. First, the exact

mean-value linearizations are replaced by approximate linearizations about uH . To minimize

errors in (1) and (2) due to no longer using mean-value linearizations, ψH is set to the finite

element approximation of ψ. That is, ψH satisfies R̄ψ
H(u,uH ;vH ,ψH) = 0, ∀vH ∈ VH .

Second, the exact solutions u and ψ are estimated by creating approximations to u and ψ on

an enriched finite element space, Vh, consisting of a uniformly refined mesh, h = H/2, and

order p + 1 interpolation. The approximations uh and ψh are created by first reconstructing

uH and ψH on Vh. In this work, local H1 patch reconstruction is used, in which the minimized

error on each element κ ∈ Th takes the form

E2
κ(vκ,uH) =

∑

l∈Pκ

(∫

l
(vκ − uH)2dx +

d−1∑

i=0

ci

∫

l
(∂ivκ − ∂iuH)2dx

)
,

where Pκ is the patch of neighboring elements in Th (including κ), vκ ∈ P p+1(Pκ) denotes the

order p + 1 reconstructed solution on the patch, d is the dimension, and the ci are O(∆xi)

scaling coefficients specific to each element, determined by the dimensions of the elemental

bounding boxes. The reconstruction is performed twice so that the center subelement of

each original element receives new information. Specifically, an intermediate reconstruction,
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u∗
h, is defined on each element by u∗

h|κ = v∗
κ, where v∗

κ minimizes E2
κ(v

∗
κ,uH). The final

reconstructed solution, uh is then set according to uh|κ = vκ, where, for each element, vκ

minimizes E2
κ(vκ,u

∗
h). ψh is obtained analogously. To further improve the approximation,

element-Jacobi smoothing is performed on uh and ψh.

Using uh and ψh in place of u and ψ in (1) and (2) yields the following approximations

to the output error (making use of VH ⊂ Vh):

J (u) − J (uH) ≈ −Rh(uH ,ψh −ψH)

= −
∑

κ∈TH

∑

l∈κ

Rh(uH , (ψh −ψH)|l),

J (u) − J (uH) ≈ −R̄ψ
h (uH ;uh − uH ,ψH)

= −
∑

κ∈TH

∑

l∈κ

R̄ψ
h (uH ; (uh − uH)|l,ψH).

In the above expressions, l ∈ Th refers to the subelements of each κ in the uniform refinement,

and |l refers to restriction to element l. A local error indicator on each element is obtained

by summing the sub-elemental contributions to the output error in the expressions above.

Specifically, in this work, the error indicator in each element κ is taken to be

ǫκ =
1

2

∑

l∈κ

(∣∣Rh(uH , (ψh −ψH)|l)
∣∣+
∣∣R̄ψ

h (uH ; (uh − uH)|l,ψH)
∣∣
)
. (3)

For systems of equations, indicators are computed separately for each equation and summed

together. The global output error estimate, ǫ =
∑

κ ǫκ, is not a bound on the actual error in

the output, due to the approximations made in the derivation. However, the validity of the

approximations is expected to increase as uH → u. In the literature, various other indicators

are presented, using either/both the primal-based and dual-based error estimate expressions

[5, 33]. Using a combination of both expressions targets errors in both the primal and the dual

solutions, and has been found sufficiently effective in driving adaptation.

4 Adaptation Strategy

Given a localized error estimate, an adaptive method modifies the computational mesh in

an attempt to decrease and equidistribute the error. In high-order finite element methods,

possible adaptation strategies include p, h, and hp, where p-adaptation refers to changing only
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the order of interpolation, h-adaptation refers to changing only the computational mesh, and

hp-adaptation is a combination of both.

An advantage of p-adaptation is that the computational grid remains fixed and an ex-

ponential error convergence rate with respect to degrees of freedom (DOF) is possible for

sufficiently-smooth solutions. A disadvantage, however, is difficulty in handling singularities

and areas of anisotropy, and the need for a reasonable starting mesh. h-adaptation allows for

the generation of anisotropic (stretched) elements, although the best attainable error conver-

gence rate is algebraic with respect to DOF. hp-adaptation strives to combine the best of both

strategies, employing p-refinement in areas where the solution is smooth, and h refinement

near singularities or areas of anisotropy. Implemented properly, hp-adaptation can isolate

singularities and yield exponential error convergence with respect to DOF. The difficulty of

hp-adaptation methods in practice lies in making the decision between h- and p-refinement, a

decision that requires either a solution regularity estimate or a heuristic algorithm. Houston

and Suli [19] present a review of commonly used methods for making this decision.

The adaptation strategy chosen for this work is h-adaptation at a constant p. This strategy

does not take advantage of the cost savings offered by hp-adaptation, but avoids the regularity

estimation decision. The h-adaptation method consists of high-order anisotropy detection and

mesh optimization.

4.1 Anisotropy in High-Order Solutions

An important ingredient in making h-adaptation efficient for aerodynamic computations is

the ability to generate stretched elements in areas where the solution exhibits anisotropy. For

p = 1, the dominant method for detecting anisotropy involves estimating the Hessian matrix

of a scalar solution u [10, 17, 26],

Hij =
∂2u

∂xi∂xj
, i, j ∈ [0, .., d − 1].

The second derivatives can be estimated by, for example, a quadratic reconstruction of the

linear solution. For the Euler or Navier-Stokes equations, the Mach number has been found to

perform well as the scalar quantity, u. Of course, other quantities may also be suitable, and

perhaps the most effective choice is an average or minimum of several quantities [10]. In this

work, using the Mach number has produced acceptable results.

The eigenvectors of H correspond to the directions of the maximum and minimum values of
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the second derivative of u, while their respective eigenvalues, λi, are the values of the second

derivatives in those directions. Since H is symmetric, the eigenvectors are orthogonal, and

yield the principal stretching directions. The magnitudes of stretching in each direction are

related via hi/hj = (|λj |/|λi|)1/2. In “pure” Hessian-based adaptation, the absolute magnitude

of stretching is controlled by an arbitrary global scaling factor [10]. Venditti and Darmofal use

an output-based error indicator to determine the length magnitude, leading to a more robust

adaptation process [34]. Formaggia et al [14] have combined Hessian-based interpolation error

estimates with output-based a posteriori error analysis to arrive at output-based anisotropic

error estimates.

Anisotropy detection based on the standard Hessian matrix is not suited for p > 1 interpo-

lation, due to the linear interpolation assumption used in the derivation of the Hessian-matrix

method. That is, the second derivatives govern, to leading order, the inability of a linear func-

tion to interpolate u. On the other hand, for general p, the p + 1st derivatives of u govern the

inability of the basis functions to interpolate the exact solution. An example demonstrating

this observation is given in Appendix B. Thus, the stretching ratios, hi/hj , and principal

directions, ei, should be based on estimates of the p + 1st derivatives.

For p = 1, the principal directions, ei, are orthogonal. For p > 1, one method for calculating

orthogonal directions proceeds as follows: let e0 be the direction of maximum p+1st derivative;

let ei, for i > 0, be the direction of maximum p+1st derivative in the plane orthogonal to every

ej, j < i. Under this definition, the final direction ed−1 is fully determined by the previous

directions.

By construction, the ei directions are orthogonal, and hence suitable for specifying a metric

tensor of directional sizes. Equidistributing the error in each direction yields the relationships,

hi
hj

=
(
u

(p+1)
ej /u

(p+1)
ei

)1/(p+1)
, (4)

where u
(p+1)
ei

is the p + 1st derivative in the direction ei. (4) provides only the relative mesh

sizing; the absolute values for hi are based on the error indicator, as described in the following

section.

4.2 Mesh Optimization

In h-adaptation, mesh optimization refers to deciding which elements to refine or coarsen

and/or the amount of refinement or coarsening. The optimization has important implications
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for practical simulations: too little refinement at each adaptation iteration may result in an

unnecessary number of iterations; too much refinement may ask for an expensive solve on an

overly-refined mesh.

Many of the current adaptation strategies rely on some variation of the fixed fraction

method [18, 19, 31], in which a prescribed fraction of elements with the highest error indicator

is refined. While adequate for testing and small cases, this method poses an automation and

efficiency problem for practical simulations due to the often ad-hoc fixed fraction parameter.

More sophisticated optimization strategies attempt to meet the global tolerance while equidis-

tributing the error among elements. Zienkiewicz and Zhu [36] define a permissible element

error eκ = e0/N at each adaptation iteration, where e0 is the global tolerance, and N is the

current number of elements. Coupled with an a priori error estimate, this “refinement pre-

diction” method yields element sizing at each adaptation iteration. Venditti and Darmofal

[33, 34], employ a similar approach and extend it to anisotropic sizing using the Hessian ma-

trix. Compared to the fixed fraction method, refinement prediction has the advantage that it

specifies the magnitude of refinement in each element.

For elliptic problems, Rannacher et al [5, 30], present another mesh optimization strategy in

which an optimal mesh size function hopt(x) is constructed continuously over the entire domain.

The construction is based on solving a constrained minimization problem with a Lagrangian

method. Details can be found in the references, and in an earlier work by Brandt [8]. Key to

this method is an assumption regarding the existence of a mesh-independent function in an

expression for the global error. The authors note that this is a heuristic assumption, and that

the existence of this function can be rigorously justified only under very restrictive conditions

[5].

In the interest of generality, the starting point for this work is the relatively straightforward

refinement prediction method of Zienkiewicz and Zhu. One drawback of this method is the fact

that error equidistribution is performed over the current mesh, as opposed to some reasonable

prediction of the adapted mesh. While in the asymptotic limit, the current and the predicted

meshes will converge, by attempting to equidistribute the error on the predicted mesh, adaptive

convergence can be accelerated. An example demonstrating this acceleration is provided in

Appendix C.

Equidistributing the error on the adapted mesh involves a prediction of the number of ele-

ments, Nf , in the adapted (fine) mesh. Let nκ be the number of fine-mesh elements contained

in element κ. nκ need not be an integer, and nκ < 1 indicates coarsening. Denoting the current
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element sizes of κ by hci , and the requested element sizes by hi, nκ can be approximated as,

nκ =
∏

i

(hci/hi) . (5)

The current sizes hci are approximated by the singular values of the mapping from a unit

equilateral triangle to element κ. This procedure is similar to the grid-implied metric used by

Venditti [32]. The details are described in Appendix D.

To satisfy error equidistribution, each fine-mesh element is allowed an error of e0/Nf , which

means that each element κ is allowed an error of nκe0/Nf . By relating changes in element

size to expected changes in the local error, an expression for nκ is obtained, from which the

absolute element sizes, hi, follow. In this work, an a priori estimate for the output error serves

as this relation,

ǫκ
ǫcκ

=

(
h0

hc0

)p̄κ+1

, (6)

where ǫcκ is the current error indicator, ǫκ is the expected error indicator, p̄κ = max(pκ, γκ),

and γκ is the lowest order of any singularity within κ [34]. This a priori estimate is valid

for many common engineering outputs, including forces and pressure distribution norms. In

this estimate, the error is assumed to scale with h0, which corresponds to the direction of

maximum p + 1st derivative. Equating the allowable error with the expected error from the a

priori estimate yields

nκ
e0

Nf︸ ︷︷ ︸
allowable error

= ǫcκ

(
h0

hc0

)p̄κ+1

︸ ︷︷ ︸
a priori estimate

. (7)

Expressing h0

hc
0

in terms of nκ and the known relative sizes (4) yields a relation between nκ

and Nf . Substituting into Nf =
∑

κ nκ yields an equation for Nf . If all the p̄κ are equal,

this equation can be solved directly. Otherwise, it is solved iteratively. With Nf known, (7)

yields nκ, from which the hi are calculated using (5) and (4). Adaptation iterations stop when

ǫ ≡∑κ ǫκ ≤ e0, where e0 is the requested global error tolerance.

In practice, two parameters are used to control the behavior of the optimization and adap-

tation algorithm: the target error fraction, 0 < ηt ≤ 1, and the adaptation aggressiveness,
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0 ≤ ηa < 1. Specifically, instead of e0 in (7), a modified requested error level, ẽ0 is used, where

ẽ0 = max (ηaǫ, ηte0) .

ηt prevents the adaptation convergence from stalling as the error estimate, ǫ, approaches the

tolerance, e0. The aggressiveness parameter, ηa controls how quickly the error is reduced when

the error estimate is far from e0. A value close to zero indicates aggressive adaptation, which

has the danger of over-refinement, while a value close to 1 may require an excessive number of

adaptation iterations to converge. Default values for these parameters that have been found

to work well over a variety of cases are ηt = 0.7 and ηa = 0.25.

4.3 Implementation

An adaptive solution procedure starts by solving the primal and dual problems on an initial

coarse mesh and calculating a local error indicator on each element. The local error indicators

are converted to mesh size requests using the mesh optimization algorithm, and the domain is

re-meshed using the new metric. The solution on the new mesh is initialized by a transfer of

the solution from the old mesh, and the process repeats. The primal problem is solved using

a line-preconditioned Newton GMRES method, and the dual problem is solved sequentially,

costing one extra linear solve (or more for multiple outputs).

Meshing of the domain is done using the Bi-dimensional Anisotropic Mesh Generator

(BAMG) [7], which takes as input a mesh with the requested metric defined at the input

mesh nodes and produces a new mesh based on the requested metric. Since BAMG expects

the metric prescribed at the nodes, an averaging process is required to convert the element-

based metric to a node-based metric. As this averaging may smooth out small mesh size

requests, the input mesh is uniformly refined twice before the call to BAMG.

For robustness, and to speed up convergence, the solution on the new mesh is initialized

via a transfer of the solution from the previous mesh. The transfer is performed via an L2

projection of the state. For solutions with large inter-element jumps (e.g. on coarse meshes),

such a projection may produce a non-physical state on the new mesh. In such cases, a p = 0

restriction of the solution from the previous mesh is performed.

Error estimation on cut cells remains almost unchanged from that on standard cells, except

that care is required to make sure the patch reconstruction does not cross null edges. Cut-

cell meshes readily allow for estimates of geometric singularities that affect p̄κ in (6), because
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corners can be ascribed to individual cut cells. p̄κ on these cells can then be lowered accordingly

(to 0 in practice), resulting in isolation of the singularities with fewer adaptation iterations.

Metric definition on null elements, which do not possess a solution, is performed by using

the grid-implied metric of the current mesh. Due to inherent smoothing that takes place in a

transfer of the metric from elements to nodes for use in the mesher, the metric on null elements

is influenced by the solution on neighboring cut elements, resulting in a smooth transition of

the metric from cells with a solution to null cells.

5 Results

The adaptation scheme is applied to several representative aerodynamic cases, using orders

p = 1 to p = 3. Comparisons of the adapted meshes and the error convergence histories

are given for both boundary-conforming and cut-cell meshes. Degrees of freedom (DOFs) are

computed as the total number of unknowns, excluding the equation-specific multiplier (e.g. 4

for 2D Euler or Navier Stokes). In computing the DOF count for cut cell meshes, null cells

are not included.

5.1 Inviscid NACA 0012, M = 0.5, α = 2o

The computational domain for this case consists of a NACA 0012 airfoil contained within a

farfield box, a distance of 100 chord lengths away from the airfoil. The NACA geometry is

modified to close the trailing edge gap,

y = ±0.6(0.2969
√

x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1036x4). (8)

The performance of the isotropic adaptation algorithm is tested using drag as the output,

with a tolerance of 0.1 drag counts. Drag is calculated from the static pressure distribution

on the airfoil surface with the pressure calculated using only the tangential velocity, vt: ps =

(γ−1)(ρE−0.5ρ|vt|2). The “exact” output value is taken as the drag computed on a p = 3 run

adapted to 10−3 drag counts, as boundary effects of the finite farfield contribute to a nonzero

drag value at steady state.

Figure 3 shows the initial 235-element boundary-conforming mesh, as well as the initial 205-

element cut-cell mesh. In the boundary-conforming meshes, elements adjacent to the airfoil

surface are represented using cubic (q = 3) curved elements. These elements have to be curved
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(a) Boundary-Conforming: 235 ele-
ments

(b) Cut-Cell: 205 elements

Figure 3: Initial NACA 0012 meshes.

at every adaptation iteration, since BAMG produces linear meshes. For the isotropic elements

in this case, this curving does not pose a problem.

Figure 4 summarizes the results of the adaptation runs. The plots show the output error

versus DOF at each adaptation iteration for every run. The horizontal dashed line marks

the error tolerance of 0.1 drag counts. All runs produce final meshes with errors below this

tolerance. The performance of the cut-cell meshes is quite similar to that of the boundary-

conforming meshes. In both the boundary-conforming and cut-cell methods, the p = 3 runs

achieve the desired accuracy with the fewest degrees of freedom. The advantage is roughly a

factor of 2 over p = 2 and a factor of 10 over p = 1.

5.2 NACA 0012, M = 0.5, Re = 5000, α = 2o

In this case, the full Navier-Stokes solution is computed around a NACA 0012 at Mach number

0.5, Reynolds number 5000, and angle of attack of 2o. The initial meshes are the same as

in the inviscid case (Figure 3). Mesh optimization is performed with anisotropic elements,

to efficiently resolve the boundary layer and wake. In the presence of anisotropic elements

near the airfoil boundary, the boundary-curving step in post-processing the linear boundary-

conforming meshes is prone to failure. That is, the curved boundary may intersect interior
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(b) Cut-Cell

Figure 4: Drag error vs. degrees of freedom for the inviscid NACA 0012 runs.

edges, leading to unallowable elements. This mode of failure was observed for some of the

runs. When such a failure occurred, the adaptation was re-run with slightly perturbed values

for adaptation aggressiveness. No such mesh-robustness problems were encountered for the

cut-cell method.

5.2.1 Drag Adaptation

The adaptation algorithm was first tested using drag as the output, with tolerance of 0.1

counts. A force output for a viscous simulation consists of two components: a pressure force

and a viscous shear force, fv. The viscous force is obtained from the viscous flux, F v
ki, with a

dual-consistent correction,

[
fvx

fvy

]

=
∑

σbf∈Γout

∫

σbf

[
−F v

2ini + ηbfδbf2i ni

−F v
3ini + ηbfδbf3i ni

]

ds (9)

where F v
2i and F v

3i are viscous flux component, and δbfki in the correction is the auxiliary variable

presented in the discretization (Appendix A). Not including this correction leads to an adjoint

solution that is not well-behaved at the boundary, Γout [21].

The “true” drag of 568.84 counts was computed on a p = 3 cut cell mesh, adapted to an

error of 10−3 counts. The boundary-conforming and cut-cell runs converge to the same drag

value. The corresponding drag error convergence histories are plotted in Figure 5. For the
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(b) Cut-Cell

Figure 5: Drag error vs. degrees of freedom for the viscous NACA 0012 runs. Dashed line
indicates prescribed tolerance of 0.1 drag counts.

boundary-conforming method, p = 3 requires about a factor of 10 fewer DOFs than p = 1,

and 2.5 fewer DOFs than p = 2, to achieve an error of 0.1 counts. For the cut-cell meshes, the

spread is smaller, with p = 3 performing slightly better than p = 2, which requires a factor of

6 fewer DOFs than p = 1. Overall, the cut-cell and boundary-conforming results are close.

Figures 6 and 7 show the final adapted meshes for p = 1 and p = 3. Clearly, the final drag-

adapted meshes are significantly finer for p = 1 compared to p = 3. Areas of high refinement

include the boundary layer, a large extent of the wake, and the flow in front of the airfoil. In

the cut-cell meshes, the elements in the computational domain are very similar to those in the

boundary-conforming meshes, and the metric on the null cells transitions smoothly near the

airfoil boundary.

5.2.2 Lift Adaptation

A second test of the adaptation algorithm was performed using lift as the output. Each test

case was adapted to 1 count of lift. The “true” lift of 369.4 counts was taken from a solution

on a cut-cell mesh, adapted to 0.01 counts. The lift output error, relative to the true value,

is shown for all adaptation runs in Figure 8. All runs converged to error levels below the

requested tolerance. For both methods, at the requested error level, p = 1 adaptation is less

efficient than p = 2 or p = 3 adaptation, in terms of error per DOF. The final lift-adapted
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(a) Boundary-Conforming: 37344 ele-
ments

(b) Cut-Cell: 32636 elements

Figure 6: Final p = 1 meshes adapted on drag.

(a) Boundary-Conforming: 1233 ele-
ments

(b) Cut-Cell: 1531 elements

Figure 7: Final p = 3 meshes adapted on drag.
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Figure 8: Degree of freedom vs. lift output error comparison for p = 1 to p = 3. Dashed
line indicates prescribed tolerance of 1 lift count.

meshes are shown for in Figures 9 and 10 for p = 1 and p = 3, respectively. Areas targeted

for refinement (boundary layer and portions of the wake) are similar to the drag-adaptation

case. Anisotropy is very much present in both p = 1 and p = 3 meshes.

A question of engineering interest is how, for example, lift behaves on drag-adapted meshes,

or vice-versa. Figure 11 shows the lift error for solutions computed on the drag-adapted meshes.

For both p = 2 and p = 3, the lift error drops below 1 count on the final meshes. This result

suggests that meshes adapted to one output may serve well for the prediction of other (similar)

outputs.

5.2.3 Sensitivity to Initial Mesh

For the adaptation method to be practical, the final adapted meshes should not be highly

sensitive to the starting meshes. The sensitivity is tested for a drag-adapted viscous NACA

0012, with an error tolerance of 1 drag count. Runs are performed with several different cut-

cell starting meshes, including a set of uniform triangulations of the entire domain, as well as

two meshes adapted on geometry to different levels of fineness (see Figure 12).

Figure 13 shows the adaptation histories of the runs for p = 1, 2, 3. For the finer, uniform

starting meshes, the DOFs decrease rapidly in the first adaptation iteration, due to coarsening
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(a) Boundary-Conforming: 18522 elements (b) Cut-Cell: 21880 elements

Figure 9: Final p = 1 meshes adapted on lift.

(a) Boundary-Conforming: 1557 elements (b) Cut-Cell: 1419 elements

Figure 10: Final p = 3 meshes adapted on lift.
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Figure 11: Lift output error for runs adapted on drag.

of the mesh away from the airfoil, where the mesh is initially relatively too fine.

The adaptation histories appear somewhat scattered for the first several iterations, but then

converge as the error decreases. For a given p, the final adapted meshes are close not only in

DOF count, but also in DOF spatial distribution. This observation is made by qualitatively

comparing locations of refinement and element aspect ratio. In summary, the histories show

that for a low-enough error tolerance, the final meshes generated by the adaptation algorithm

are relatively insensitive to the initial mesh.

5.3 NACA 0005, M = 0.4, Re = 50000, α = 0o

This case considers a thin airfoil in a subsonic, high Re flow. The NACA 0005 geometry

is given by (8) with 0.25 for the leading coefficient instead of 0.6. Only cut-cell meshes are

presented for this case, as boundary conforming meshes readily yielded invalid elements upon

curving the highly-stretched boundary elements. The initial mesh for this case, Figure 14,

was created by starting from a p = 2, Re = 5000 solution mesh and adapting several times

to a coarse drag error requirement. The resulting 946 element mesh is relatively coarse, but

contains adequate resolution to allow for initial p = 2 and p = 3 solves at the high Re.

The adaptation algorithm was tested using drag as the output, with a strict tolerance of
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Figure 12: Initial meshes for sensitivity study.

0.04 counts. The “true” drag was computed on a p = 3 solution on a mesh obtained by

uniformly refining the final p = 2 mesh. The drag error histories for p = 1, 2, 3 are shown in

Figure 14. p = 3 converges rapidly, and attains a low drag error under .002 counts with about

15,000 DOF. p = 2 exhibits slightly poorer performance, but is still greatly superior to p = 1,

which requires over 100, 000 DOF to drop below the tolerance.

The final adapted meshes are shown in Figure 15 for p = 1 and p = 3. Clearly, p = 3

yields a much coarser mesh. Highly-anisotropic elements are present in the boundary layer

and the wake. This high anisotropy makes the boundary-conforming meshes prone to failure,

as curving such thin boundary elements inevitably produces invalid elements.

5.4 Diamond airfoil, M = 1.5, α = 0o

This case considers a diamond airfoil in an inviscid, supersonic flow. The wedge half-angle of

the airfoil is 4.995o, and the farfield is 100 chord lengths away from the airfoil. High-order

shock capturing was performed using artificial viscosity and an entropy-based indicator, in a

fashion similar to the work of Persson and Peraire [27]. The output of interest in this case

is the pressure distribution caused by the sonic boom far away from the airfoil (Figure 17).

Specifically, the output chosen is the integral of the pressure along the line segment of interest
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Figure 13: Adaptation histories for p = 2 and p = 3, starting from various initial meshes
shown in Figure 12.
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Figure 14: Initial Mesh for NACA 0005 case: 946 elements
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Figure 15: Degree of freedom vs. drag output error comparison for p = 1 to p = 3. Dashed
line indicates prescribed tolerance of .04 drag counts
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(a) p = 1: 45037 elements (b) p = 3: 1403 elements

Figure 16: Final cut-cell meshes adapted on drag.

(x0 − x1),

J =

∫ x1

x0

p(x)dx. (10)

The initial diamond airfoil meshes are shown in Figure 18. The boundary-conforming mesh is

coarse, but the cut-cell mesh is even coarser, with only 74 elements.

p(x)

x
0

x
1

M > 1

shock fan shock

Figure 17: Setup for diamond airfoil case.

For the adaptation runs, the pressure was measured along a line with x0 = (17.5, 20).
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(a) Boundary-Conforming: 206 ele-
ments

(b) Cut-Cell: 74 elements

Figure 18: Initial diamond airfoil meshes.

x1 = (27.5, 20), measured in chord lengths. The requested output error for the pressure

integral was set to .0075, normalized by the freestream static pressure and the chord length.

The “true” pressure distribution was taken to be the one from a p = 2 solution on a 30, 000-

element mesh, which was obtained by uniformly refining an adapted mesh. The L2 pressure

error, normalized by the freestream static pressure and the chord, is plotted in Figure 19. For

all runs, the L2 error decreases with adaptation iteration, which suggests that the pressure

integral output leads to pressure matching in distribution. The performance of p = 3 is

comparable to p = 2 in both methods, while p = 1 is less efficient.

The pressure distributions on the intermediate and final meshes at p = 1, 2, 3 are shown

in Figure 20 for the cut-cell meshes. The distributions for the boundary-conforming meshes

are similar. The pressure in these plots has been normalized by the static freestream pressure.

The exact distribution is shown as a dashed line. Oscillations near the pressure discontinuities

appear on some of the p = 2 and p = 3 solutions, but they are not significant in the final

adapted solutions.

Figures 21 and 22, show the final adapted meshes for p = 1 and p = 3. Each figure

shows a distant view of the airfoil and adapted shocks, as well as two closeups: one near the

pressure integral line, and one near the airfoil. The heavy refinement of the shocks for the

p = 1 mesh becomes lighter for p = 3. Near the airfoil, the grid also becomes coarser from
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(b) Cut-Cell

Figure 19: Normalized L2 pressure error vs. degrees of freedom for the supersonic diamond
airfoil case.
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Figure 20: Evolution of pressure distributions on the test line, for the cut-cell runs. Plots
show last four adapted grids for each order.
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(a) Boundary-Conforming: 8011 ele-
ments

(b) Cut-Cell: 9131 elements

Figure 21: Final p = 1 meshes.

(a) Boundary-Conforming: 985 ele-
ments

(b) Cut-Cell: 1024 elements

Figure 22: Final p = 3 meshes.
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p = 1 to p = 3. The p = 1 solutions contain significant anisotropic refinement behind the

diamond airfoil, which is not present for the p = 2 or p = 3 runs. This effect could be due to

a wake caused by the increased dissipation of the p = 1 discretization.

6 Conclusions

This report presents a complete output-based mesh adaptation procedure for higher-order dis-

continuous Galerkin discretizations in two dimensions. While the target application is aerody-

namics, the adaptation method is readily extendable to different equation sets. Similarly, while

this work considered only two dimensions, most of the ideas are extendable to three dimensions.

Specifically, the output-based error estimation and mesh optimization strategy can be readily

extended from two to three dimensions. Regarding cut cells, the required three-dimensional

intersection problems certainly become more difficult. However, the idea of tetrahedral cut

cells offers an alternative to the difficult problem of generating boundary-conforming meshes

around intricate, curved three-dimensional geometries.

From the two-dimensional results given in this work, several conclusions can be drawn

about the performance of the adaptation algorithm. First, the output-based error estimate,

while not a bound on the error, successfully drives the adaptation on the cases tested to

produce solutions that meet the prescribed error tolerance on the output. Second, adaptation

on p = 2 and p = 3 is observed to produce final meshes that more efficiently use degrees of

freedom compared to p = 1 meshes. The difference in degrees of freedom is largest for the

smooth, inviscid case, and still remains significant for the viscous and supersonic cases. Third,

by running the adaptation algorithm using a variety of initial meshes, the conclusion can be

made that the final meshes are relatively insensitive to the starting meshes, given a low enough

error tolerance.

Finally, the cut cell method is shown to produce the same results on qualitatively similar

grids as compared to the boundary-conforming method. Moreover, increased robustness of

the cut-cell method is observed for anisotropic adaptation, in which the boundary-conforming

meshes are prone to failure in post-processing of the curved boundaries. These results support

the concept of using triangular cut cells for automated, robust, and efficient meshing.
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A Compressible Navier-Stokes Discretization

While the error estimation, adaptation, and cut-cell methods presented are valid for general

equations, the target application is the compressible Navier-Stokes equations. For complete-

ness, this appendix presents the discretization used. The compressible Navier-Stokes equations

written using index notation read

∂iFki − ∂iF
v
ki = 0, (11)

where i and j index the spatial dimension, while k and l index the physical state vector

(e.g. size 4 for Navier-Stokes in two dimensions). Fki and F v
ki are inviscid and viscous flux

components, respectively. In two dimensions [25],

Fki =





ρu

ρu2 + p

ρuv

ρuH

,

ρv

ρvu

ρv2 + p

ρvH





F v
ki =





0
2
3µ(2∂u∂x − ∂v

∂y )

µ(∂u∂y + ∂v
∂x)

2
3µ(2∂u∂x − ∂v

∂y )u + µ(∂u∂y + ∂v
∂x)v + κT ∂T∂x

,

0

µ(∂u∂y + ∂v
∂x)

2
3µ(2∂v∂y − ∂u

∂x)
2
3µ(2∂v∂y − ∂u

∂x)v + µ(∂u∂y + ∂v
∂x)u + κT ∂T∂y




.

Relevant physical quantities are density (ρ), velocity (u, v), total energy (E), total enthalpy

(H), pressure (p), temperature (T ), gas constant (R), specific heat ratio (γ), dynamic viscosity

(µ), and thermal conductivity (κT ). These quantities are related via

H = E + p/ρ,

p = (γ − 1)

(
ρE − 1

2
ρ(u2 + v2)

)
.

Sutherland’s law is used for µ. The fluxes are non-linear functions of the state variables, uk.

It is convenient to make use of the linear dependence of F v
ki on the spatial gradients ∂jul by
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writing

F v
ki = Akilj∂jul, (12)

where Akilj is a tensor that is a nonlinear function of uk.

The discretization of (11) proceeds in standard finite-element fashion by triangulating the

computational domain, Ω, into elements κ and searching for a solution in a finite-dimensional

space, Vph, for which the weak form is satisfied. In this work, the space of piecewise polynomials

of order p over the elements is used. For clarity, the weak form is presented here for one element

κ with boundary ∂κ. The discrete semi-linear form Rh follows by summing over all elements.

In the equations that follow, vk ∈ Vph denotes an arbitrary test function. To lighten notation,

uk henceforth refers to the approximate solution in Vph. On ∂κ, the notation ()+, ()− refers to

quantities taken from the interior, exterior of κ, respectively.

The contribution of the inviscid flux term to the weak form is

Eκ = −
∫

κ
∂ivkFkidx +

∫

∂κ
vkF̂ki(u

+, u−)nids,

where ni is the outward pointing normal, and F̂ki is an approximate characteristic-based flux

function (Roe-averaged flux in this work). Boundary conditions are imposed by setting F̂ki

appropriately when ∂κ is on ∂Ω. Details are given in [25].

The viscous flux term contribution is discretized using the second form of Bassi & Rebay

(BR2) [4]. In this form, the Navier-Stokes equations are re-written as a system of first order

equations by introducing Qki,

∂iFki − ∂iQki = 0,

Qki − Akilj∂jul = 0.

Discretizing both equations and using integration by parts yields the viscous contribution to

the weak form,

Vκ =

∫

κ
∂ivkAkilj∂juldx −

∫

∂κ
∂iv

+
k

(
A+
kilju

+
l − Âkiljul

)
njds −

∫

∂κ
v+
k Q̂kinids,

where ·̂ denotes flux averaging for discontinuous quantities. The choice of averaging is not

unique, but only certain choices produce discretizations that are both consistent, dual-consistent,

and compact [21]. The set of fluxes used in this work is shown in Table 1.
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Table 1: Viscous fluxes

Q̂ki Âkiljul

Interior {Akilj∂jul} − ηf{δf
ki} A+

kilj{ul}
Boundary, Dirichlet A+

kilj∂ju
+

l − ηbfδbf
ki Ab

kilju
b
l

Boundary, Neumann
(
Akilj∂jul

)b

A+

kilju
+

l

The operator {·} denotes the mean, {·} = 1
2

(
(·)+ +(·)−

)
, the superscript b indicates values

taken from states appropriately constructed using boundary conditions, and ηf and ηbf are

stability coefficients that could depend on the triangulation [25]. δfki, δ
bf
ki ∈ [Vph]2 are auxiliary

variables for interior and boundary faces, respectively, that satisfy, ∀τki ∈ [Vph]2,
∫

κ+

δf+
ki τkidx +

∫

κ−
δf−ki τkidx =

∫

σf

{τkiAkilj}
(
u+
l − u−

l

)
njds,

∫

κ
δbfki τkidx =

∫

σbf

τkiA
b
kilj

(
u+
l − ubl

)
njds,

where σf and σbf denote interior and boundary faces, respectively, and κ+, κ− are elements

on either side of σf . This viscous discretization yields a compact stencil in that the element-

to-element influence is only nearest neighbor. A weighted residual statement over the entire

domain is obtained by summing the Eκ and Vκ contributions from each element, and setting

that sum to zero,

Rh

(
uh,vh

)
=
∑

κ

(Eκ + Vκ) = 0,

where uh and vh denote the collection of uk and vk over all elements κ.

B Adapting for p > 1 Interpolation

The following example shows the problem of using the Hessian matrix for measuring high-order

anisotropy.

Consider the following function u on [0, 1] × [0, 1]:

u = 1.0 + (x2 + 16y2) + ǫ(64x3 + y3), (13)
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where ǫ << 1. The Hessian matrix is

H =

[
2 0

0 32

]

+ O(ǫ). (14)

Ignoring O(ǫ) terms, the required element aspect ratio (AR) is calculated to be

AR ≡ ∆x

∆y
=

√
32

2
= 4.0.

To test how interpolation accuracy varies with grid AR, a sequence of three grids, AR = 0.25,

AR = 1.0, and AR = 4.0 was constructed, each with 32 elements (Figure 23).

AR = 0.25 AR = 1 AR = 4

Figure 23: Three grids used for the interpolation of the function u in (13). Hessian-based
analysis predicts AR = 4.0 as the ideal for interpolation.

The L2 norm of the interpolation error on each grid was calculated for p = 1 and p = 2

interpolation. ǫ = 10−4 was used for the calculations. Table 2 shows the results. As expected

Table 2: L2 norm of interpolation error on each grid for p = 1 and p = 2. ǫ = 10−4.

p = 1 p = 2
AR = 0.25 2.31E-1 2.19E-7
AR = 1.0 5.91E-2 1.42E-6
AR = 4.0 2.37E-2 1.14E-5

from the Hessian matrix analysis, for p = 1, the grid with AR = 4.0 shows the smallest

interpolation error. For p = 2, however, AR = 0.25 produces the smallest interpolation error

per degree of freedom, out of the three cases tested. AR = 4.0 produces an error 50 times
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larger. Thus, using the results from the Hessian matrix for high order interpolation can produce

a clearly sub-optimal grid.

Considering the third order derivatives in (13) gives insight into the AR expected for p = 2

interpolation. Specifically, uxxx = 384ǫ and uyyy = 6ǫ. For this problem, these values happen

to be the maximum and minimum third-order derivatives, and they also happen to occur in

orthogonal directions (x and y). Thus, elements that equidistribute the interpolation error in

these directions should have:

uxxx(∆x)3 = uyyy(∆y)3 ⇒ AR =
∆x

∆y
=

(
uyyy
uxxx

)1/3

=

(
6ǫ

384ǫ

)1/3

= .25

This is the AR that produced the smallest p = 2 interpolation error out of the three cases

tested (c.f. Table 2).

C Refinement Prediction Example

One drawback of Zienkiewich and Zhu’s standard refinement prediction method [36] lies in

its error equidistribution capability. In particular, the method may lead to over-refinement

of elements with large error indicators, and under-refinement of elements with small error

indicators. This problem occurs due to the use of error equidistribution on the current mesh

rather than on some reasonable prediction of the final mesh. To illustrate the significance of

this problem, consider a two-element one-dimensional mesh, with error indicators ǫ0 = 1 and

ǫ1 = 16, and a global error target of e0 = 1.0. Assume that the error indicators are additive

(e.g. L1 norm of error), and that the a priori error estimate is ǫk ∼ h1
k.

Using the refinement prediction method with N = 2, the permissible error on each element

is ē0 = e0/N = 1.0/2 = 0.5. Calculation of the new hk via the a priori estimate leads to

element 0 being split into 2 children and element 1 being split into 32 children, for a total of

34 elements in the new grid (lower left in Figure 24). Assuming the a priori estimate is exact,

the global error target is met, since each of the areas covered by the original two elements

contributes 0.5 to the global error. However, the error is not equidistributed on the new grid.

Each child of element 0 has an error of 0.5/2 = 0.25, while each child of element 1 has an error

of 0.5/32 = 0.015625. That is, element 1 has been over-refined while element 0 has not been

refined enough to satisfy error equidistribution on the resulting mesh.

Now consider a refinement obtained using the technique described in Section 4.2, which

calls for element 0 being split into 5 elements and element 1 being split into 20 elements. The
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Original Grid

Standard Ref. Pred. Modified Ref. Pred.

ε
0
 = 1.0 ε

1
 = 16.0

Figure 24: Example of global mesh modification on a 1D mesh using standard refinement
prediction (lower left) and using the technique described in Section 4.2 (lower
right).

total is 25 elements in the new mesh (lower right in Figure 24). Altogether, the children of

element 0 now contribute 1/5 to the global error, so each contributes 1/52 = 1/25. Also,

the children of element 1 contribute a cumulative 16/20 = 4/5 to the global error, so each

contributes (4/5)/20 = 1/25. The global error target is met (1/5+4/5 = 1.0), and the error is

equidistributed on the final mesh. Finally, the number of elements in this mesh is fewer than

the 34 obtained from refinement prediction.

D Grid-Implied Metric Calculation

In calculating anisotropic mesh sizing, the existing (grid-implied) metric is required for each

element. This metric is calculated via a mapping, M, from a unit equilateral triangle to the

element in question. The motivation for using this mapping is that it describes stretching and

rotation associated with the current element.

One way to calculate M that makes use of existing functions in the code is to write

M = JκJ
−1
E ,
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where Jκ is the Jacobian matrix for triangle κ and JE is the Jacobian matrix for the unit

equilateral triangle. Geometrically, the Jacobian Jκ maps the reference unit right triangle to

κ. Thus, JκJ
−1
E maps the unit equilateral triangle to κ, as shown in Figure 25.

JKEJ
−1

Figure 25: Mapping from unit equilateral triangle to triangle κ.

Writing the singular value decomposition of M,

M = UΣVT ,

gives insight into the rotation and stretching for triangle κ. Specifically, the two singular values

in Σ dictate the amount of stretching in each of the principal directions (h1 and h2), while the

rotation U dictates the orientation of these principal directions (θ1 and θ2).

E Cubic Spline Intersection

The intersections between a cubic spline segment and an ordinary line can be found analytically.

Consider a spline segment between two knots (1 and 2), as shown in Figure 26.

The spline information provides, at each knot, the knot coordinates as well as the derivatives

of each coordinate with respect to the arc length parameter, s. Specifically, at knot 1, we have

S1,X1, Y1,XS1, Y S1, where XS ≡ dx/ds, Y S ≡ dy/ds, and similarly for knot 2. The (x, y)

coordinates along the curved spline segment can be written as

x(t) = tX2 + (1 − t)X1 + (t − t2)
[
(1 − t)CX1 − tCX2

]
,

y(t) = tY2 + (1 − t)Y1 + (t − t2)
[
(1 − t)CY1 − tCY2

]
,

where ∆s = S2 − S1, t = (s − S1)/∆s, and

CX1 = XS1∆s − (X2 − X1),

CX2 = XS2∆s − (X2 − X1).
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S
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knot 1:
S
X , Y
XS , YS

1

1 1

1 1

ax+by+c = 0

Figure 26: Intersection between a spline segment and a line. The root-finding formula is
used to determine where a spline segment cuts an interior edge.

CY1 and CY2 are defined similarly. A line segment is defined as points x, y that satisfy

ax + by + c = 0. Thus, a spline/line intersection must satisfy

0 = ax(t) + by(t) + c

=
[
a(CX1 + CX2) + b(CY1 + CY2)

]
t3 +

[
a(−2CX1 − CX2) + b(−2CY1 − CY2)

]
t2

+
[
a(X2 − X1 + CX1) + b(Y 2 − Y1 + CY1)

]
t +

[
aX1 + bY1 + c

]

≡ a3t
3 + a2t

2 + a1t + a0. (15)

Thus, an intersections is a solution to a cubic polynomial. Analytical formulas for cubic

solutions exist. However, one must be careful of special cases and numerical conditioning. An

example of a cubic-root formula is as follows: given a cubic equation in t,

t3 + b2t
2 + b1t + b0 = 0, (16)

define

Q ≡ 3b1 − b2
2

9
, R ≡ 9b2b1 − 27b0 − 2b3

2

54
, D ≡ Q3 + R2.
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• if D = 0: All roots are real, and at least two are the same:

t0 = −b2/3 + 2R1/3,

t1 = t2 = −b2/3 − R1/3.

• if D > 0: One real root:

t0 = −b2/3 +
(
R +

√
D
)1/3

,

• if D < 0: Note this implies Q < 0. Let θ ≡ cos−1
[
R/(−Q)3/2

]
. Three distinct roots:

t0 = 2
√

−Q cos(θ/3) − b2/3

t1 = 2
√

−Q cos((θ + 2π)/3) − b2/3

t3 = 2
√

−Q cos((θ + 4π)/3) − b2/3

The above cubic formula assumes that the leading coefficient (t3) is 1. However, a straight-

forward division by a3 in (15) may not be well-conditioned if a3 is small, which is often the case

when a spline segment is close to linear. Ideally, we would like the bi coefficients to be neither

much smaller nor much larger than unity. A transformation that has worked in practice is to

solve for r = a
1/3
3 t. Substituting for t in (15) yields:

r3 + a2a
−2/3
3 r2 + a1a

−1/3
3 r + a0 = 0.

t is then obtained as t = a
−1/3
3 r. The special case of |a3| close to machine precision reduces

the equation to a quadratic (at most), which is solved via a similar conditioning scaling.

Valid solutions consist of those t that are between 0 and 1 and for which the associated

(x, y) lie within the line segment bounding box (the desired intersections are generally for finite

line segments not infinite lines). Double roots, or tangency intersections are not counted as

intersections, while triple roots are. Node intersections near spline-segment endpoints have

to be handled carefully, especially for near-tangency intersections. Specifically, if the cubic

solution yields t close to 0 or 1, t = 0 or t = 1 are tried to see if they yield a better answer (in

terms of equation residual).
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