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Abstract
Two extensions to the proper orthogonal decom-

position (POD) technique are considered for steady
aerodynamic applications. The first is to couple the
POD approach with a cubic spline interpolation pro-
cedure in order to develop fast, low-order models that
accurately capture the variation in parameters, such as
the angle of attack or inflow Mach number. The second
extension is a ”gappy” POD technique for the re-
construction of incomplete or inaccurate aerodynamic
data. Gappy POD is shown to be an effective tech-
nique for reconstruction of full flow field data from
limited surface measurements, and thus provides an
effective way to combine experimental and computa-
tional data. A modification of the gappy POD is also
shown to provide a simple, effective method for airfoil
inverse design.

Introduction
The proper orthogonal decomposition (POD), also

known as Karhunen Loéve expansion and principle
components analysis, has been widely used for a broad
range of applications. POD analysis yields a set of
empirical eigenfunctions, which describes the domi-
nant behavior or dynamics of given problem. This
technique can be used for a variety of applications,
including derivation of reduced-order dynamical mod-
els,1 steady analysis and design of inviscid airfoils,2

image processing,3 and pattern recognition.4

Sirovich introduced the method of snapshots as a
way to efficiently determine the POD eigenfunctions
for large problems.5 In particular, the method of snap-
shots has been widely applied to computational fluid
dynamic (CFD) formulations to obtain reduced-order
models for unsteady aerodynamic applications.6–9 A
set of instantaneous flow solutions, or “snapshots”
are obtained from a simulation of the CFD method.
The POD process then computes a set of eigenfunc-
tions from these snapshots, which is optimal in the
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sense that, for any given basis size, the error be-
tween the original and reconstructed data is mini-
mized. Reduced-order models can be derived by pro-
jecting the CFD model onto the reduced space spanned
by the POD eigenfunctions.

While use of POD to capture the time variation
of fluid dynamic problems has been widespread, the
development of reduced-order models to capture para-
metric variation is less common. The POD has been
used to develop reduced-order models for turboma-
chinery flows with sampling in both time and over
a range of interblade phase angles.10 The resulting
models were applied to flows at varying Mach num-
bers, although the snapshot ensemble is computed at
a single Mach number condition. Accurate results were
obtained for Mach numbers close to that used in the
snapshots. The POD has also been used to develop
models for optimization purposes.2 In this case, the
POD modes span a range of airfoil geometries. In an-
other example that includes parametric variation, a
fast computation has been developed that uses a POD
basis to predict the steady-state temperature distribu-
tion of flow in a square cavity as the Rayleigh number
is varied.11 This method is a simple combination of
the POD basis and an interpolation procedure.

A different application of the POD is for the repair of
damaged data and construction of missing or “gappy”
data as introduced in Everson and Sirovich12 for the
characterization of human faces. This idea could be
extended to the prediction of aerodynamic flow fields.
For example, a set of complete flow solutions may be
available from a CFD calculation. One might wish to
use these solutions as an information database in the
reconstruction of partial data, such as that obtained
from experimental measurements.

In this paper, two extensions to the POD for aero-
dynamic applications will be considered. The first is
to combine the POD approach with a cubic spline
interpolation to capture parametric variations. The
second application will apply the gappy POD for data
reconstruction of aerodynamic flows. The paper is
structured as follows. The basic POD method is first
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outlined, followed by a description of the extensions
with interpolation and incomplete data sets. A set of
results will then be presented. The first example con-
siders steady transonic flow past an airfoil with varying
angle of attack and Mach number. Next, using gappy
POD, cases are presented in which a complete flow
pressure field is reconstructed from surface pressure
values and the POD snapshots are constructed from
an incomplete set of aerodynamic data. Finally, the
gappy POD inverse design approach is demonstrated
for a variety of subsonic airfoils.

Proper Orthogonal Decomposition
Theory and Extensions

Proper orthogonal decomposition

The basic POD procedure is summarized briefly
here. The optimal POD basis vectors Φ are chosen
to maximize the cost:1

max
Ψ

〈∣∣(U,Ψ)2
∣∣〉

(Ψ, Ψ)
=

〈∣∣(U, Φ)2
∣∣〉

(Φ, Φ)
(1)

where (U,Φ) is the inner product of the basis vector
Φ with the field U(x, t), x represents the spatial co-
ordinates, t is the time, and <> is the time-averaging
operation. It can be shown that the POD basis vectors
are eigenfunctions of the kernel K given by

K(x, x′) = 〈U(x, t), U∗(x′, t)〉 (2)

The method of snapshots, introduced by Sirovich,5 is
a way of finding the eigenfunctions Φ without explic-
itly calculating the kernel K. Consider an ensemble
of instantaneous solutions, or “snapshots”. It can be
shown that the eigenfunctions of K are linear combi-
nation of the snapshots as follows

Φ =
m∑

i=1

βiU
i (3)

where U i is the solution at a time ti and the number of
snapshots, m, is large. For fluid dynamic applications,
the vector U i contains the flow unknowns at each point
in the computational grid. The coefficients βi can be
shown to satisfy the eigen-problem

Rβ = Λβ (4)

where R is known as the correlation matrix

Rik =
1
m

(
U i, Uk

)
(5)

The eigenvectors of R determine how to construct the
POD basis vectors [using (3)], while the eigenvalues of
R determine the importance of the basis vectors. The
relative “energy” (measured by the 2-norm) captured
by the ith basis vector is given by λi/

∑m
j=1 λj . The

approximate prediction of the field U is then given by
a linear combination of the eigenfunctions

U ≈
p∑

i=1

αiΦi (6)

where p << m is chosen to capture the desired level of
energy, Φi is the ith POD basis vector, and the POD
coefficients αi must be determined as a function of
time.

POD with interpolation

The basic POD procedure outlined in the previous
section considered time-varying flows by taking a series
of flow solutions at different instants in time. The
procedure could also be applied in parameter space as
in Epureanu et al.,10 that is, obtaining flow snapshots
while allowing a parameter to vary. Assume that the
parameter of interest is denoted by δ. This could, for
example, be the flow freestream Mach number or airfoil
angle of attack.

A procedure for rapid prediction of the flow solution
U at any value of δ is as follows:

1. Let
{
Uδi

}m

i=1
be the set of snapshots correspond-

ing to the set of parameter values {δi}m
i=1.

2. Perform the basic POD procedure described
above on

{
Uδi

}m

i=1
to get the orthonormal POD

basis
{
Φk

}m

k=1
.

3. The reconstruction of each snapshot is given by

Uδi =
p∑

j=1

αδi
j Φj (7)

where p < m is the number of eigenfunctions used
in the reconstruction. The POD coefficients αδi

j

are given by
αδi

j =
(
Φj , U δi

)
(8)

4. If
{

αδi
j

}m

i=1
is a smooth function of δ, interpo-

lation can be used to determine the POD coeffi-
cients for intermediate values of δ that were not
included in the original ensemble. The prediction
of U δ at any value of δ via the POD expansion is
given by (6)

Uδ =
p∑

j=1

αδ
jΦ

j (9)

where the coefficients αδ
j are found by cubic spline

interpolation of the set
{

αδi
j

}m

i=1
. Note that no

discussion of a smoothness requirement was given
by Hung;11 however, this is important for the in-
terpolation result to be reliable.
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Gappy POD for reconstruction of missing data

In CFD applications, the POD has predominantly
been used for deriving reduced-order models via pro-
jection of the governing equations onto the reduced
space spanned by the basis vectors. Here, we consider
a different application of the method, which is based
on the gappy POD procedure developed by Everson
and Sirovich12 for the reconstruction of human face
images from incomplete data sets. In this paper, the
gappy POD methodology will be extended for consid-
eration of fluid dynamic applications. The gappy POD
procedure is first described.

The first step is to define a “mask” vector, which
describes for a particular flow vector where data is
available and where data is missing. For the flow solu-
tion Uk, the corresponding mask vector nk is defined
as follows:

nk
i = 0 if Uk

i is missing or incorrect
nk

i = 1 if Uk
i is known

where Uk
i denotes the ith element of the vector Uk.

For convenience in formulation and programming, zero
values are assigned to the elements of the vector Uk

where the data is missing, and pointwise multiplication
is defined as

(
nk, Uk

)
i
= nk

i Uk
i . Then the gappy inner

product is defined as (u, v)n = ((n, u), (n, v)), and the
induced norm is (‖v‖n)2 = (v, v)n.

Let
{
Φi

}m

i=1
be the POD basis for the snapshot set{

U i
}m

i=1
, where all snapshots are completely known.

Let g be another solution vector that has some el-
ements missing, with corresponding mask vector n.
Assume that there is a need to reconstruct the full or
“repaired” vector from the incomplete vector g. As-
suming that the vector g represents a solution whose
behavior can be characterized with the existing snap-
shot set, an expansion of the form (6) can be used to
represent the intermediate repaired vector g̃ in terms
of p POD basis functions as follows:

g̃ ≈
p∑

i=1

biΦi (10)

To compute the POD coefficients bi, the error, E,
between the original and repaired vectors must be min-
imized. The error is defined as

E = ‖g − g̃‖2n (11)

using the gappy norm so that only the original existing
data elements in g are compared. The coefficients bi

that minimize the error E can be found by differenti-
ating (11) with respect to each of the bi in turn. This
leads to the linear system of equations

Mb = f (12)

where Mij =
(
Φi,Φj

)
n

and fi =
(
g, Φi

)
n
. Solving

equation (12) for b and using (10), the intermediate re-
paired vector g̃ can be obtained. Finally, the complete

g is reconstructed by replacing the missing elements
in g by the corresponding repaired elements in g̃, i.e.
gi = g̃i if ni = 0.

Gappy POD with an incomplete snapshot set

The gappy POD procedure can be extended to the
case where the snapshots themselves are not com-
pletely known. In this case, the POD basis can be
constructed using an iterative procedure. Consider a
collection of incomplete data

{
gk

}m

k=1
, with an asso-

ciated set of masks
{
nk

}m

k=1
. The first step is to fill

in the missing elements of the snapshots using average
values as follows:

hk
i (0) =

{
gk

i if nk
i = 1

ḡi if nk
i = 0 (13)

where ḡi = 1
Pi

∑m
k=1 gk

i , Pi =
∑m

k=1 nk
i and hk(l) de-

notes the lth iterative guess for the vector hk. A set of
POD basis vectors can now be computed for this snap-
shot set, and iteratively used to refine the guess for the
incomplete data. The procedure can be summarized
as follows, beginning with l = 0:

1. Use the basic POD procedure on the snapshot set{
hk(l)

}m

k=1
to obtain the POD basis vectors for

the current iteration,
{
Φk(l)

}m

k=1
.

2. Use the first p of these POD basis vectors to re-
pair each member of the snapshot ensemble, as
described in the previous section. The intermedi-
ate repaired data for the current iteration is given
by

h̃k(l) =
p∑

i=1

bk
i (l)Φi(l) (14)

3. The values from these intermediate repaired data
are now used to reconstruct the missing data for
the next iteration as follows

hk
i (l + 1) =

{
hk

i (l) if nk
i = 1

h̃k
i (l) if nk

i = 0
(15)

4. Set l = l + 1 and go to step 1.

The above iterative procedure should be repeated
until the maximum number of iterations is reached or
until the algorithm has converged. When evaluating
convergence, one can consider both the POD eigenval-
ues and the POD eigenvectors as will be demonstrated
in the results.

Inverse Design via the Gappy POD
Method

We now describe how the gappy POD method can
be extended for fluid dynamic applications. In particu-
lar, a new variant of the method is proposed to perform
inverse design of a two-dimensional airfoil. Typically,
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given a target pressure distribution P ∗, the inverse de-
sign problem is to find an optimal airfoil shape whose
surface pressure distribution P minimizes the cost

J = ‖P ∗ − P‖22 (16)

In order to solve this inverse design problem using
the gappy POD method, the snapshots are first rede-
fined. Rather than containing only flow variables, each
snapshot is augmented to also contain airfoil coordi-
nates. For example, consider the augmented snapshot
set,

{
V i

}m

i=1
, where each snapshot contains a surface

pressure distribution P i and corresponding set of air-
foil coordinates Ci:

V i =
[

Ci

P i

]
(17)

The target vector V ∗ = [C∗T P ∗T ]T can then be
considered as an incomplete data vector, where P ∗ is
known and C∗ must be determined. Thus, the gappy
POD procedure can be used to determine the opti-
mal airfoil shape, using the procedure outlined in the
previous section and minimizing the cost in (16) with
respect to the gappy norm

J = ‖V ∗ − Ṽ ‖2n (18)

where n is the mask vector corresponding to V ∗ and
the intermediate repaired vector Ṽ is represented by a
linear combination of basis vectors as in (10).

The inverse design problem has thus been converted
into a problem of reconstructing missing data. In or-
der to determine the airfoil shape, a system of linear
equations must be solved, with size equal to the num-
ber of POD basis functions. The gappy POD method
will then produce not only the optimal airfoil shape,
but also the corresponding surface pressure distribu-
tion. If further flowfield information is desired, such
as pressure distribution off the surface or other flow
variables, this data could also be included in the aug-
mented snapshot set.

The POD eigenvalues give guidance as to how many
POD eigenfunctions should be included in the basis.
Typically, one will include p basis vectors so that the
relative energy captured,

∑p
i=1 λi/

∑m
j=1 λj , is greater

than some threshold, typically taken to be 99% or
higher. This energy measure determines how accu-
rately a snapshot in the original ensemble can be re-
constructed using the POD basis; however, it does not
give any information regarding the accuracy of recon-
structing a new vector. In the inverse design problem
stated above, it is therefore important to monitor the
value of the cost function J . One may choose enough
POD basis functions to capture 99% or more of the
snapshot energy, but the optimal value of J remains
unacceptably high. This indicates that the subspace
spanned by the chosen snapshots is not sufficiently rich
to capture the desired design airfoil. Approaches for

addressing this issue will be presented in the results
section, which now follows.

Results and Discussion
Results will be presented for a variety of cases to

demonstrate the interpolation and data reconstruction
techniques. Snapshots were obtained from an inviscid
steady-state CFD code, which uses a finite volume for-
mulation as presented in Jameson et al.13

POD with interpolation for parametric variation

The first problem considered is steady flow about a
NACA 0012 with varying angle of attack and Mach
number. The Mach number interval [0.75, 0.85] is di-
vided into 20 uniform intervals, and the angle of attack
interval [0◦, 1.25◦] is divided into 10 uniform intervals.
Hence, the total number of snapshots in the ensem-
ble is 231. Based on this snapshot set, interpolation
will be used to predict the flow at any arbitrary Mach
number and angle of attack within the range consid-
ered. For demonstration, POD will be applied to the
pressure field only; the procedure for the other flow
fields is straightforward.

The first prediction considered is for the pair
(α = 0.45, M = 0.8), in which M = 0.8 is one of the
values used to generate the snapshots but α = 0.45
is not. Figure 1 shows the comparison between the
predicted pressure contours and the CFD pressure con-
tours for this case. It can be seen in Figure 1(a) that
with five eigenfunctions, the error is large in places
and the two sets of contours are far apart. However,
in Figure 1(c), as the number of POD basis vectors is
increased to 25 the contours match closely. It should
be noted that the cost for pressure prediction with 20,
as in Figure 1(b), or 25 eigenfunctions does not differ
greatly, since the method requires only interpolation of
the scalar POD coefficients. The number of eigenfunc-
tions can therefore be increased to obtain the desired
level of accuracy.

The quality of the prediction is assessed by compar-
ing the respective elements of the CFD solution and
the solution reconstructed with p POD modes. Figure
2(a) shows the maximum percentage element error in
log scale versus the number of POD modes used. It
can be seen that the error decreases very quickly as
number of eigenfunctions is increased from one to 25.

The second prediction considered is for the pair
(α = 0.5, M = 0.812), in which α = 0.5 is one of the
values used to generate the snapshots but M = 0.812
is not. Figure 3 shows the comparison between the
predicted and CFD pressure contours. In general, it
is observed that prediction is more sensitive to Mach
number than angle of attack, hence it is expected that
more eigenfunctions will be needed in this example to
get a satisfactory result. As shown in Figures 3(c)
and 2(b), 30 eigenfunctions are needed to achieve the
desired level of accuracy.
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The last example in this section is the prediction
for the pair (α = 0.45,M = 0.812) in which neither
α = 0.45 nor M = 0.812 are values used to generate
the snapshots. Therefore, it is expected that a higher
number of eigenfunctions will be needed to obtain a
satisfactory result. Figure 4 shows the comparison be-
tween the predicted and CFD pressure contours for
this case. As expected, it can be seen in Figure 2(c)
and Figure 4 that more POD modes are required in
this case. With 40 modes, a satisfactory level of accu-
racy is achieved.

The above results show that the POD method com-
bined with interpolation allows models to be derived
that accurately predict steady-state pressure fields
over a range of parameter values. The approach can
be extended to the case where more than two param-
eters vary. For example, one might wish to include
geometric properties of the airfoil in order to apply
these models in an optimization context. While the
number of snapshots in this case might be large, the
method presented in this paper is straightforward to
apply.

Reconstruction of flowfield data

The NACA 0012 airfoil is considered at a freestream
Mach number of 0.8. To create the POD basis, 51
snapshots are computed at uniformly spaced values
of angle of attack in the interval α = [−1.25◦, 1.25◦]
with a step of 0.05◦. An incomplete flowfield was then
generated by computing the flow solution at α = 0.77◦

(which is not one of the snapshots), and then retaining
only the pressure values on the surface of the airfoil.
The total number of pressure values in the full flowfield
is 6369 and the number of pressure values on the air-
foil surface is 121, hence 98.1% of the data is missing.
The goal, then, is to reconstruct the full pressure flow-
field using the gappy POD method. Such a problem
might occur, for example, when analyzing experimen-
tal data. Typically, experimental measurements will
provide only the airfoil surface pressure distribution;
the gappy POD method provides a way to combine this
experimental data with computational results in order
to reconstruct the entire flowfield. In the case consid-
ered, the measurement points are evenly distributed
over the airfoil surface. Figures 5(a) and (b) show
the reconstructed pressure contours with four and five
POD eigenfunctions, respectively, compared with the
original contours of the CFD solution. As expected,
the more eigenfunctions used, the more accurate is
the reconstruction. With just limited surface pres-
sure data available, the complete pressure field can be
determined very accurately with only five POD eigen-
functions, showing that the gappy POD methodology
for data reconstruction works effectively for an aero-
dynamic application.

A question of interest is whether the full pressure
field can be accurately reconstructed with less surface

data points available. Figure 5(c) shows the 2-norm
of the error between the exact and reconstructed pres-
sure field for four different cases. In each case, the
number of available surface measurements is evenly
distributed around the airfoil surface. It can be seen
from Figure 5(c) that even when only 31 surface pres-
sure measurements are available, the full pressure field
can be constructed accurately with on the order of ten
POD eigenmodes. When only 16 measurements are
available, the result becomes unreliable.

Incomplete snapshot set

In the next example, the creation of a set of POD
basis vectors from an incomplete set of snapshots is
investigated. This problem may again be of interest
if partial flowfield data is available from experimental
results. Using the gappy POD methodology, exper-
imental and computational data with differing levels
of resolution can be combined effectively to determine
dominant flow modes.

Again, we consider the NACA 0012 airfoil at a
freestream Mach number of 0.8. A 26-member snap-
shot ensemble is used, corresponding to steady pres-
sure solutions at angles of attack in the range α =
[0◦, 1.25◦], uniformly spaced with an interval of 0.05◦.
To create the incomplete snapshot set for this example,
30% of the pressure data of each snapshot is discarded
randomly. The algorithm described in the theory is
then used to repair the data as follows. By first re-
pairing the missing data points in each snapshot with
the average over available data at that point, a new en-
semble of data is created that has no missing values.
With this new ensemble, a first approximation to the
POD basis is then constructed. Then, each snapshot
in the ensemble is repaired using the first approxima-
tion of the POD basis. This repaired ensemble is then
used to construct a second approximation to the POD
basis. For the example in this section, the iterative
procedure above is stopped after 50 iterations.

In Figure 6, the second snapshot with 30% data
missing is repaired by the above procedure with five
POD eigenfunctions, which contain 99.99% of the flow
energy. Figure 6(a) shows the original damaged snap-
shot. After one iteration, the repaired snapshot in
Figure 6(b) begins to resemble the CFD solution; how-
ever, a large error remains. Figure 6(c) shows the
repaired snapshot after 25 iterations and can be seen
to match closely with the original. Figure 7 shows the
repairing process for the 23rd snapshot. Compared to
the contours with 30% data missing in Figure 7(a),
the reconstruction in Figure 7(c) is already close to
the CFD result with only seven iterations. It can be
seen that the convergence of the reconstruction pro-
cess depends on the details of the particular snapshot
under consideration. In particular, it depends on the
structure of the flow snapshot and how much data is
missing. For the 23rd snapshot shown in Figure 7, the
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convergence rate is much faster than for the second
snapshot shown in Figure 6.

The convergence of the POD eigenvalue spectrum of
the incomplete ensemble is shown in Figure 8. It can
be seen that after one iteration the first two eigenval-
ues have converged, while convergence of subsequent
eigenvalues requires more iterations. For example, af-
ter 45 iterations, it can be seen that only the first five
eigenvalues have converged; however, these five modes
account for almost all of the flow energy (99.99%).

Finally, we comment on the computational cost of
the iterative gappy POD procedure. At each iteration,
in order to reconstruct m snapshots, m systems of the
form (12) must be solved. Furthermore, at each itera-
tion, an eigenvalue problem of size m must be solved to
determine the POD eigenfunctions. Using a 1.6 GHz
Pentium 4 personal computer, with five POD eigen-
functions each iteration took less than two seconds.

Inverse Design Problem

The final set of examples demonstrates how the
gappy POD method can be applied to the problem
of inverse airfoil design. A collection of snapshots is
generated as in (17) by choosing a set of airfoil shapes
and obtaining their corresponding surface pressure dis-
tributions. (Other aspects of the flowfield could also
be included if they are of interest.) While in this pa-
per, CFD results were used to create the snapshots, in
practice, the flow data could be obtained from compu-
tational simulations, experimental results, tabulated
data, or a combination thereof. The goal, then, is
to use the gappy POD method to determine the opti-
mal airfoil shape that produces a given target pressure
distribution, which is not contained in the snapshot
collection.

Snapshots for subsonic airfoil design are created by
considering the RAE 2822 airfoil and adding a series
of Hicks-Henne bump functions,14 which make smooth
changes in the geometry. Thirty one bump functions
were added to each of the upper and lower surfaces
of the RAE 2822 airfoil to create a total of 63 airfoil
snapshots, some of which are shown in Figure 9(a).
The flow solutions for these airfoils were computed us-
ing the CFD model with zero angle of attack and a
freestream Mach number of 0.5.

The pressure distribution for the Korn airfoil, whose
geometry is also shown in Figure 9(a), is specified as
the first design target. It can be seen in Figure 9(a)
that, while the Korn airfoil shares some similarities
with the RAE 2822-based snapshot set, its camber and
thickness distribution are quite distinct. This example
thus represents a challenge for the gappy POD inverse
design methodology. The first 32 POD eigenvalues
corresponding to the snapshot set are shown in Fig-
ure 9(b). It can be seen that the first 21 POD modes
contain 99% of the system energy. Figure 10(a) shows
the points on the Korn airfoil where target pressure

values are specified. Using the gappy POD proce-
dure, the corresponding optimal airfoil shape can then
be determined. Figures 10(b), (c) and (d) compare
the exact Korn airfoil and the target pressure to the
POD design results using one, 15 and 29 eigenfunc-
tions, respectively. It can be seen that as the number
of eigenfunctions is increased, the predicted shape and
its pressure distribution agree more closely with the
exact solutions. The corresponding values of the cost
J are given in Table 1. Using 29 POD modes, which
account for 99.97% of the snapshot energy, it can be
seen that the error in the pressure distribution is very
small.

Using the same ensemble of snapshots as in the pre-
vious case, three different target pressure distributions
were considered, corresponding to the NACA 63212,
Quabeck 2.0/10 R/C sailplane HQ 2010, and GOE 117
airfoils. The resulting inverse design results are shown
in Figure 11. Although 29 POD modes are used for the
NACA 63212 in Figure 11(a), there is still a small re-
gion on the upper surface near the leading edge which
cannot be resolved accurately. The situation is worse
for the HQ 2010 airfoil. As shown in Figure 11(b),
there are some regions on the upper and lower surfaces
need to be improved. In Figure 11(c), the design airfoil
is still far away from the exact GOE 117 airfoil, indi-
cating that this geometry, which differs considerably
from the baseline RAE 2822 airfoil, is not contained
in the subspace spanned by the snapshot set consid-
ered. From Table 1, the values of the cost J can be
seen to be larger than for the Korn airfoil, especially in
the case of the HQ 2010 and GOE 117 airfoils. There-
fore, a way to improve the design airfoil needs to be
developed.

Airfoil No. modes J
Korn 1 0.022
Korn 15 0.0047
Korn 29 2.9426e-004

NACA 63212 29 6.2673e-004
HQ 2010 29 0.0061
GOE 117 29 0.0056

NACA 63212 (restart) 43 1.7435e-004
HQ 2010 (restart) 32 2.0622e-004
GOE 117 (restart) 39 6.8127e-004

Table 1 Optimal cost versus number of POD
modes for subsonic inverse design cases.

One approach to improve the inverse design results
is to increase the richness of the subspace spanned
by the POD basis vectors. This can be achieved by
including more snapshots in the ensemble. The ex-
act airfoil could be obtained if further snapshots were
added to the set; however, this implies some a pri-
ori knowledge of the desired result so that appropriate
snapshots may be chosen. A better way to improve the
design airfoil is proposed in Legresley and Alonso,2
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where an available design airfoil at some iteration is
used as an intermediate baseline, to which some bump
functions are added to generate a new set of snapshots.
This new snapshot collection is then used to compute
a new set of POD modes and thus restart the design
procedure. Here, we make use of a similar method for
the gappy POD procedure. For the case of the NACA
63212 above, the design airfoil with 29 POD modes is
used as an intermediate baseline airfoil, to which 60
bump functions are added to obtain a new collection
of 61 snapshots. A similar procedure is used for the
intermediate design airfoils shown in Figure 11 for the
HQ 2010 and GOE 117 cases, respectively. It can be
seen in Figure 12 that the design airfoils now match
the exact airfoils very well. In order to obtain a cost
on the order 10−4, 43, 32 and 39 POD modes were re-
quired for the NACA 63212, HQ 2010, and GOE 117
airfoils, respectively. The costs are shown in Table 1.
The results from this restarted gappy POD procedure
are much better than those obtained from using the
60-snapshot ensemble above. Moreover, by allowing
multiple restarts, this procedure enables the consid-
eration of an inverse design whose geometry differs
significantly from that of the baseline airfoil.

Conclusion
The POD basis has been shown to be efficient for

capturing relevant flow information for steady tran-
sonic aerodynamic applications. By coupling the POD
basis with an interpolation method, models are ob-
tained that give accurate flow field predictions. These
predictions do not require a projection onto the CFD
governing equations, but rather just a collection of flow
snapshots that covers the parameter ranges of interest.
The interpolation approach is applicable to any prob-
lem whose properties of interest are a smooth function
of the parameters under consideration. The POD has
also been shown to be very effective for reconstructing
flow fields from incomplete data sets. While the rate
of convergence of the reconstruction depends on the
amount of missing data and the structure of the flow
field, the method was found to work effectively for all
problems considered. Finally, the gappy POD can be
used for a simple, yet effective, approach to inverse
design of airfoil shapes. By using a systematic restart-
ing procedure, airfoil designs can be effected whose
shape is significantly different from those in the origi-
nal database.
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Fig. 1 Comparison of predicted pressure contours (dash) and CFD pressure contours (solid) for a Mach
number of 0.8 and angle of attack of 0.45◦; (a) five POD eigenfunctions, (b) twenty POD eigenfunctions,
(c) 25 POD eigenfunctions.
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Fig. 2 Variation of percentage error versus the number of POD eigenfunctions in log scale; (a) M = 0.8
and AOA = 0.45◦, (b) M = 0.812 and AOA = 0.5◦, (c) M = 0.812 and AOA = 1.1◦.
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Fig. 3 Comparison of predicted pressure contours (dash) and CFD pressure contours (solid) for a Mach
number of 0.812 and angle of attack of 0.5◦; (a) five POD eigenfunctions, (b) 25 POD eigenfunctions, (c)
thirty POD eigenfunctions.
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Fig. 4 Comparison of predicted pressure contours (dash) and CFD pressure contours (solid) for a Mach
number of 0.812 and angle of attack of 1.1◦; (a) five POD eigenfunctions, (b) thirty POD eigenfunctions,
(c) 35 POD eigenfunctions.
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Fig. 5 Reconstruction of the pressure field from airfoil surface pressure distribution (dash) compared with
the original CFD contours (solid); (a) Reconstruction with four POD eigenfunctions; (b) reconstruction
with five POD eigenfunctions; (c) the 2-norm of the pressure reconstruction error versus the number of
POD modes with 16, 31, 61 and 121 equally spaced surface pressure measurements.
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Fig. 6 Reconstruction of the second snapshot (dash), compared with the original contours (solid); (a)
The second snapshot with 30% data missing, (b) Reconstruction after one iteration, (c) Reconstruction
after 25 iterations.
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Fig. 7 Reconstruction of the 23rd snapshot (dash), compared with the original contours (solid); (a) The
23rd snapshot with 30% data missing, (b) Reconstruction after one iteration, (c) Reconstruction after
seven iterations
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Fig. 10 Inverse design of the Korn airfoil using gappy POD. M = 0.5, snapshots based on RAE 2822; (a)
The available pressure points on the surface of the Korn airfoil, (b) The exact Korn airfoil (solid) and the
design airfoil (dash) with one mode, (c) The exact Korn airfoil (solid) and the design airfoil (dash) with
29 modes.
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Fig. 11 Inverse design of the NACA 63212, HQ 2010 and GOE 117 airfoils using gappy POD. M = 0.5,
snapshots based on RAE 2822; (a) The exact NACA 63212 airfoil (solid) and the design airfoil (dash)
with 29 modes, (b) The exact HQ 2010 airfoil (solid) and the design airfoil (dash) with 29 modes, (c) The
exact GOE 117 airfoil (solid) and the design airfoil (dash) with 29 modes.
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Fig. 12 Inverse design of the NACA 63212, HQ 2010 and GOE 117 airfoils using restarted gappy POD.
M = 0.5, original snapshots based on RAE 2822, restarted snapshots based on intermediate airfoils shown
in Figure 11; (a) The exact NACA 63212 airfoil (solid) and the design airfoil (dash) with 43 modes, (b)
The exact HQ 2010 airfoil (solid) and the design airfoil (dash) with 29 modes, (c) The exact GOE 117
airfoil (solid) and the design airfoil (dash) with 34 modes.
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