

5th International Workshop on High-Order CFD Methods: CI1 -Inviscid bow shock

Andrew Corrigan, Andrew Kercher, David Kessler Laboratories for Computational Physics and Fluid Dynamics AIAA SciTech 2018 Kissimmee, Florida

January 8-12, 2018

DG-FEM Code Overview

- Dimensions:
 - 1-4

U.S. NAVAL

- Cell shapes:
 - Simplex, Cuboid, Prism
- Arbitrary polynomial degree:
 - 0, 1, 2, 3, 4, ...
 - Isoparametric, subparametric, superparametric,
- Numerical Integration:
 - Project fluxes to a polynomial space
 - Integrate variational form exactly
- Nodes:
 - Equispaced, Gauss-Lobatto
- Standard DG Formulation
 - Convective Flux:
 - Roe, Rusanov, HLLC, Exact
 - Diffusive Flux:
 - SIPG, BR2

- Time Integration:
 - Explicit RK
 - Steady-Newton (with Backward-Euler)
 - Spacetime
- Linear Solvers:
 - GMRES, CG, MINRES, LSQR, ...
 - Multigrid in progress
- Nonlinear Solvers:
 - Newton
 - Gauss-Newton
 - Levenberg-Marquardt
 - KKT/Lagrange-Newton
- Preconditioners:
 - Diagonal, Mass, Polynomial
- Parallelism
 - MPI, OpenMP, TBB, CUDA
- Physics
 - Linear Advection, Burgers, Compressible, Incompressible, Reacting Navier-Stokes

<u>Moving Discontinuous Galerkin with Interface Condition Enforcement</u>

- Detect and solve for interfaces
 - Enforce conservation law and interface condition separately, within a unified finite element weak formulation
 - Solve for flow and grid simultaneously
- Avoids shock capturing
 - Preserves a high-order accurate representation
- General:
 - Dimensionality
 - Steady, unsteady flow
 - Physics
 - Curved interface geometry
 - Non-trivial interface topology
- Not just for shocks/interfaces:
 - Move the grid to resolve the flow, e.g., boundary layers

<u>Moving Discontinuous Galerkin with Interface Condition Enforcement</u>

2D Steady Linear Advection

Velocity = (0.1, 1)

Velocity = (1.5, 1)

• MDG-ICE solves for the flow field and grid simultaneously

U.S. NAVAL

LABORATORY

<u>Moving Discontinuous Galerkin with Interface Condition Enforcement</u>

Spacetime Burgers Shock Formation

- MDG-ICE handles:
 - Unsteady flow via a spacetime formulation
 - Dynamic interface topology
 - Singularities, in conjunction with cuboid degeneration

U.S.NAVAL

LABORATORY

<u>Moving Discontinuous Galerkin with Interface Condition Enforcement</u>

Sod Shock Tube

U.S.NAVAL

LABORATORY

0.50

-0.25

-0.50

0.00

Density at t = 0.15

0.25

<u>Moving Discontinuous Galerkin with Interface Condition Enforcement</u>

Intersecting Oblique Shocks

- MDG-ICE handles non-trivial interface topology:
 - Using standard edge collapse / refine grid operations
 - Also works for higher-dimensional simplexes

U.S.NAVAL

ABORATORY

Smooth Bump Verification Case

Smooth Bump

- Isoparametric q2 quadrilateral elements
 - Flux projected to q4
- DG

U.S. NAVAL

LABORATORY

- Implicit solver: Newton/Backward-Euler
- Expected order of accuracy observed (slope = 3)
- Slopes:
 - 5.81, 3.25, 3.27
- DG with Shock Capturing
 - Explicit solver: RK2
 - Slopes:
 - 1.95, 0.99, 1.36

Bow Shock Test Case

Mach 4 Bow Shock

U.S. NAVAL

- Isoparametric q2 quadrilateral elements
 - Flux projected to q4
- DG with Shock Capturing
 - Explicit solver: RK2
 - Residual based shock capturing
- MDG-ICE
 - No shock capturing

Bow Shock: Geometry

- Ran on uniform structured grids
 - Shock location appeared to be moving across different levels of the provided grids
- Blunt body geometry is exactly as specified
- Inflow surface is modified slightly:
 - Circular arc:

U.S. NAVAL

LABORATORY

- Origin 3.85
- Radius 5.9
- Top/bottom at:
- (x,y)=(0, ±4.4704)
- MDG-ICE requires geometric boundary conditions:
 - So that the geometry can move along the boundary

The shock refinement location appears to move on the provided grids:

Bow Shock: Stagnation Enthalpy

- DG(q=2) isoparametric quadrilateral elements with shock capturing
 - Slopes: 0.86, 1.05, 0.39, 0.40
- MDG-ICE(q=2) isoparametric quadrilateral elements
 - Slopes: 2.34 1.37

Expected slope = 3

U.S.NAVAL

LABORATORY

U.S.NAVAL RESEARCH LABORATORY

Bow Shock: Pressure at the Stagnation Point

- DG(q=2) isoparametric quadrilateral elements with shock capturing
 - Instabilities arise on finest grid, which degrades accuracy
- MDG-ICE(q=2) isoparametric quadrilateral elements
 - Initially very accurate, but nonmonotonic convergence (far from asymptotic regime?)

Bow Shock: DG Convergence History

DG(q=2) isoparametric quadrilateral elements with shock capturing

Explicit time-stepping

U.S.NAVAL

RESEAR LABORATORY

- Excruciatingly slow convergence for steady flow.
- Converged until output quantities • stopped changing beyond ~4 decimal places

10¹

100

Illesidual 10-1 10-2

 10^{-3}

Residual Convergence: # Cells = 00056

Residual Convergence: # Cells = 00224

Bow Shock: DG Work Units

DG(q=2) isoparametric quadrilateral elements with shock capturing

- Explicit time-stepping
- Excruciatingly slow convergence for steady flow.
- Converged until output quantities stopped changing beyond ~4 decimal places

Work Units

U.S. NAVAI

- TauBench Score: 6.223
- Run on GPU:
 - Normalized also by GPU vs. 1-Core CPU speedup: 62.627x
- 56 cells: 711.7
- 224 cells: 1566.8
- 896 cells: 3404.5
- 3584 cells: 9552.9
- 14436 cells: 65611.0

Bow Shock: Grids

 DG(q=2) isoparametric quadrilateral elements with shock capturing

U.S.NAVAL RESEARCH

- Uniformly refined from initial grid
 - Projected geometry to analytic surfaces

Bow Shock: Grids

 MDG-ICE(q=2) isoparametric quadrilateral elements

U.S.NAVAL

RESEARCH

- First solved for the initial fitted grid using 56 cells
- Finer grid solutions were obtained by refining the coarse grid solution and restarting, so that the grid continues to move
- Points move along the boundaries, constrained by geometric boundary conditions.
 - At surface intersections, the points are fixed

Bow Shock: Pressure

• DG(q=2) isoparametric quadrilateral elements with shock capturing

U.S.NAVAL

RESEARCH LABORATORY

• Plotted range (0,4)

Bow Shock: Pressure

• MDG-ICE(q=2) isoparametric quadrilateral elements

U.S.NAVAL

RESEARCH LABORATORY

• Plotted range (1,21.068)

Bow Shock: Mach

• DG(q=2) isoparametric quadrilateral elements with shock capturing

U.S.NAVAL

RESEARCH LABORATORY

• Plotted range (0,4)

Bow Shock: Mach

 MDG-ICE(q=2) isoparametric quadrilateral elements

U.S.NAVAL

RESEARCH LABORATORY

• Plotted range (0,4)

Bow Shock: Density

• DG(q=2) isoparametric quadrilateral elements with shock capturing

U.S.NAVAL

RESEARCH LABORATORY

• Plotted range (1,5.1)

Bow Shock: Density

 MDG-ICE(q=2) isoparametric quadrilateral elements

U.S.NAVAL

RESEARCH LABORATORY

• Plotted range (1,5.1)

Bow Shock: Stagnation Enthalpy

 DG(q=2) isoparametric quadrilateral elements with shock capturing

U.S.NAVAL

RESEARCH LABORATORY

- Stagnation Enthalpy = 14.7
- Plotted range 14.6,14.8

Bow Shock: Stagnation Enthalpy

• MDG-ICE(q=2) isoparametric quadrilateral elements

U.S.NAVAL

RESEARCH LABORATORY

- Stagnation Enthalpy = 14.7
- Plotted range 14.6,14.8

Conclusions

- Were the verification cases helpful and which ones were used?
 - The smooth bump test case helped verify the high-order accuracy of the DG method with curved geometry
- What improvements are needed to the test case?
 - Nested structured grids might give a better indication of the order of convergence
 - Fully unstructured grids would further stress:
 - The accuracy of shock capturing schemes
 - The robustness of shock fitting schemes.
- Did the test case prompt you to improve your method/solver?
 - Yes, we implemented a higher-order flux projection.
- What worked well with your method/solver?
 - MDG-ICE fits the curved bow shock with high accuracy on a coarse grid
- What improvements are needed to your method/solver?
 - A fast implicit solver: linear solver scalability and efficiency
 - Improving the nonlinear Levenberg-Marquardt regularization strategy to optimally balance robustness and efficiency

References

- NRL Memo Report / Submitted Manuscript:
 - A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces
 - Google Scholar: MDG-ICE

www.dtic.mil/docs/citations/AD1042881

• AIAA SciTech 2018 Papers

- AIAA-2018-0136. Flow Characteristics of a Recirculating Flameless Combustor Configuration
- AIAA-2018-1247. Jet Noise Simulation using a Higher-Order Discontinuous Galerkin Method
- AIAA-2018-1252. Noise Characteristics of a Supersonic High Aspect Ratio Rectangular Nozzle for Ideally Expanded Jet Flow
- AIAA-2018-1485. A Hybrid DSMC-discontinuous Galerkin finite element method for rarefied gas flows

U.S. NAVAL

ABORATORY