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Proposed shock tracking method

• Key observation

in a discontinuous Galerkin or finite volume setting, if (curved) face of an
element is perfectly aligned with the (unknown) shock, the Riemann solver will
provide appropriate stabilization and allow for high-order approximations of

the solution on both sides of the discontinuity

• Propose a PDE-constrained optimization framework to simultaneously align
mesh with shock and solve discrete PDE

Non-aligned (left) vs. discontinuity-aligned (right) mesh and corresponding solution
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Shock tracking optimization formulation

• Consider the spatial discretization of the conservation law

∇ · F(U(x)) = 0, x ∈ Ω → r(u, x) = 0

• U , x are the conservation law state vector and domain coordinate
• x contains the coordinates of the continuous, high-order mesh nodes
• u contains the discrete state vector corresponding to U at the mesh nodes

• Fundamental requirement on discretization: basis supports discontinuties
along element faces, i.e., discontinuous Galerkin, finite volume

• Shock tracking formulation

minimize
u,x

f(u, x)

subject to r(u, x) = 0
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Shock tracking objective function

Requirements on objective function
obtains minimum when mesh

face aligned with shock and
monotonically decreases to

minimum in (large) neighborhood

f(u, x) = fshk(u, x) + αfmsh(x)

fshk(u, x) =

ne∑
e=1

∫
Ωe(x)

|u− ūe|2 dV

fmsh(x) =

ne∑
e=1

∫
Ωe(x)
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position of mesh edge closest to shock

Objective function as an element edge is smoothly swept across shock location for: fshk(u, x)

( ), residual-based objective ( ), and Rankine-Hugniot-based objective ( ).
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Full space optimization solver for shock tracking

Cannot use nested approach to PDE optimization because it requires solving
r(u, x) = 0 for x 6= x∗ =⇒ crash

• Full space approach: u→ u∗ and x→ x∗ simultaneously

• Define Lagrangian

L(u, x, λ) = f(u, x)− λTr(u, x)

• First-order optimality (KKT) conditions for full space optimization problem

∇uL(u∗, x∗, λ∗) = 0, ∇xL(u∗, x∗, λ∗) = 0, ∇λL(u∗, x∗, λ∗) = 0

• Apply (quasi-)Newton method1 to solve nonlinear KKT system for u∗, x∗, λ∗

• SNOPT used in this work2

1usually requires globalization such as linesearch or trust-region
2leads to very inefficient implementation since cannot leverage data structures from DG
discretization and cannot be parallelized
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O(hp+1) convergence rates demonstrated for Burgers’ equation
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Convergence of shock tracking method applied to the modified inviscid Burgers’ equation for
polynomial orders p = 1 ( ), p = 2 ( ), p = 3 ( ), p = 4 ( ), p = 5 ( ), p = 6 ( ). The expected

convergence rates of p+ 1 are obtained in most cases. The slopes of the best-fit lines to the data
points in the asymptotic regime are: ∠ − 1.95 ( ), ∠ − 3.13 ( ), ∠ − 3.85 ( ), ∠ − 5.47

( ), ∠ − 4.36 ( ), ∠ − 8.67 ( ).
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Resolution of 2D supersonic flow with 102 quadratic elements

The solution of the CI1 bow shock problem. Left: Solution on non-aligned mesh with 102 linear
elements and added viscosity (initial guess for shock tracking method). Middle/right: solution
using shock tracking framework corresponding to mesh with 102 linear (middle) and quadratic
(right) elements.
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Resolution of 2D supersonic flow with 102 quadratic elements

The solution of the CI1 bow shock problem. Left: Solution on non-aligned mesh with 102 linear
elements and added viscosity (initial guess for shock tracking method). Middle/right: solution
using shock tracking framework corresponding to mesh with 102 linear (middle) and quadratic
(right) elements.
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Convergence to optimal solution and mesh
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Solver simultaneously minimizes objective and solves PDE
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Convergence of residual and objective function
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Performance summary for shock tracking method

Polynomial order (p) 2

Number of elements 102

Degrees of freedom 2448

Enthalpy error (normalized) 0.000694 (0.0111)
Stagnation pressure error (normalized) 0.0681 (1.09)

Cost (tau bench) 22.8

Shock tracking performance summary for mesh with 102 elements and polynomial orders
p = 1 and p = 2 with mesh regularization α = 0.05.
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Conclusions

Matthew J. Zahr and Per-Olof Persson, “An optimization-based discontinuous
Galerkin approach for high-order accurate shock tracking.”, Monday, January
8, 2018, 10:00AM-10:30AM, Sun 5 Room.

Upcoming improvements to method

• numerical flux consistent with integral form (jumps do not tend to 0)
• solver that exploits problem structure and incorporates homotopy
• local topology changes to reduce iterations and improve mesh quality
• parallel implementation

Mach 2 flow around cylinder (left), Mach 4 flow around blunt body (middle), and L2 projection of
discontinuous function (right).
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