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1  NXO Code description 

 
Discretization by cell-centered Finite Volume Method, 1 dof / eqn / cell, presented here in 2D. 
 
Non compact method, based on the polynomial reconstruction over a wide stencil of either the fields of conservative variables 

iW or the fields of components if  of the flux tensor [1], projected in the direction of the interface [ ]yx SSS ,=
r

 , see fig 1. 
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The fluxes scheme used here is a centered scheme close to the JST scheme [2]. The Finite Volume formulation reads:  
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The coefficients of the reconstructed polynomials P of degree k are linear combinations of the discrete fields in the cells [1]. 
They are projected as averages without limiting onto the interface, the resulting integral projection is a linear combination of the 

discrete fields, known as their volume average in the cells of the stencil : ( ) s
stencil

sNXO φλφφ ∑=Π=ˆ
.   

The fields of interest can be either the conservative variables or the flux densities in the direction normal to the interface: 

iW=φ  or if . 

For each cell interface, the interpolations coefficients from volume averages to surface averageλ are computed in the H-O 
metrics pre-processor, where the polynomial order k is adapted to the geometry and number of cells of the stencil; these 
coefficients can be used for a variety of upwind, characteristic-based or centred schemes [4]. 

                                                           
1 jean-marie.le_gouez@onera.fr, AIAA member. 
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Fig 1 : Representation of typical boundary or field stencils for k2 to k5 reconstructions on full 2D bases of either 
conservative variables, eulerian fluxes or lagrangian fluxes 

 
Here we write : 
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λλ
 is the mean of the reconstructed and 

face projected normal fluxes in the cells of the left and right stencil (2 stencils of arbitrary width centered 
respectively on the left and right cell on either side on the interface, highly overlapping). We 

define ( )sjisi Wff ,, =  which impacts the asymptotic order of the overall scheme [1]. 
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*
iW    uses the total enthalpy rather than the total energy in 

the energy equation, [ ]TthvuW ρρρρ ,,,* = , then 
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highest module of the eigenvalues of the flux Jacobian at the interface, computed for the stencil average NXOΠ  of 

conservative variables, a  the speed of sound. 
 

The high order evaluations of the grid differences use a polynomial reconstruction over the union of the two cell-centered 

stencils, so it is possibly a degree higher than the cell-biased reconstructions used for the natural part natif ,
ˆ

. Only the linear 

combination coefficients 1µ  and 3µ analogous to λ  are obtained from the interface projection of the first and third normal 

derivatives of the reconstructed polynomial, which are polynomials of degree k-1 and k-3.  

 If h  is the grid size normal to the interface: 
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Consistently with the Jameson scheme, the 2ε coefficient contains a discontinuity detection formula and 4ε is constant away 

from the discontinuity and related to 2ε so that it vanishes near the discontinuity. 

 
Boundary conditions 
The boundary stencils are of reduced size (3 or 4 cells), and use a quadratic reconstruction for the extrapolation of conservative 
variables to the boundaries. 
 
For all open boundaries a non-reflective BC is used, based on Riemann invariants. The reference field Mach number increases 
linearly over the first few thousand iterations then remains constant. 

At the wall boundary, a compatibility relation is used. The HO extrapolated pressure extP is modified by a correction term 

proportional to the HO extrapolation of the normal velocity : extextextextw UaPP ,νρ+= , with a the sound velocity. 

 
Adaptation to the structured grids of the test case 
The reconstruction and projection scheme is restricted on these grids to directional 1D stencils in the direction normal to the 
interface, so the only monomials of the base are powers of the normal coordinate (see figure 2 for a plot of some stencils). 

 
The preprocessings are done successively with cell stencils of 5, 7 and 9 stencils enabling k-exact reconstructions from k2 to k5, 
since from our experience the WLSQ requests a ratio between the number of cells and the number of monomials higher than or 
equal to 1.5 . The exact cell node coordinates are used, so varying size of the cells in the stencil is accounted for. 
 
The corresponding face stencils used for the artificial dissipation comprise 6, 8 or 10 cells, and enable to reconstruct k3 to k5 
polynomials. The 6-cell face stencil is the smallest one that permits a k3 reconstruction and a high order expression of the third 
differences. 
A typical set of coefficients associated to an interface is shown in table 1. The first two cells are the left and right ones, then they 
are at increasing distances from the interface.  
The diagonal dominance is ensured by the high coefficient of the “upside” cell in the first two rows. The first and third 
difference coefficients are of the same order of magnitude and with correct signs.  In table 2 the coefficients for an interface in 
the refined region shows that the coefficients are no longer symmetrical. 

 
Fig. 2 Typical 8-cell face stencils 
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Cell number 

leftλ  rightλ  1µh  3
3µh  

     
  6889       8.686790E-01       3.524098E-01     -9.145573E-01      1.189409E+00 
  6890       3.522242E-01       8.680207E-01       9.148241E-01    -1.190158E+00 
  6888     -2.313252E-01     -3.575830E-03     -6.769385E-02    -1.695131E-01 
  6891     -3.559571E-03     -2.306794E-01       6.728783E-02      1.711246E-01 
  6887       1.313760E-02     -7.945943E-03       1.676038E-02    -1.059340E-01 
  6892     -7.913174E-03       1.306851E-02     -1.666678E-02      1.053282E-01 
  6886   8.757148E-03       0.000000E+00       4.823821E-03    -2.164341E-02 
  6893       0.000000E+00       8.702156E-03     -4.778195E-03      2.138642E-02 
     
Sum 1.000000E+00      1.000000E+00       7.742652E-14      3.258746E-13     

 
Table 1. Typical table of coefficients for the 8-cell scheme 

 
Cell number 

leftλ  rightλ  1µh  3
3µh  

     
18797  7.928224E-01       2.746035E-01     -7.901984E-01      8.435314E-01 
19093  3.631856E-01       9.336806E-01       7.625114E-01    -4.200037E-01 
18501 -1.462949E-01       1.748151E-02     -7.364388E-02    -2.629008E-01 
19389  5.650325E-03     -2.379641E-01       1.233299E-01    -1.793107E-01 
18205 -5.628299E-03       3.194552E-04 -7.385052E-04    -7.281388E-02 
19685 -1.200030E-02      7.556028E-04  -1.387728E-02    7.143579E-02 
17909  2.265183E-03       0.000000E+00       1.006295E-03    -1.422409E-02 
19981  0.000000E+00       1.112340E-02     -8.389457E-03     3.428604E-02 

     
Sum 1.000000E+00      1.000000E+00       8.658745E-14      4.251879E-13     

 
Table 2 Table of coefficients for an interface in the region of grid refinement (normal shock) 

 

Expression of the 2ε and 4ε coefficients 

 
The discontinuity detector is based on an estimate of the total variation of pressure over the sn cells of the face stencil ( sn = 6, 

8 or 10), scaled by the minimal value of the pressure in the left and right cells adjacent to the interface: 
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.      χ is found to vary in the range 10-3 to 10.  

We need to adapt the coefficients, based on our experience of the behavior of the solver in this Mach 4 detached shock case. 

We introduce a single multiplicative coefficientartc , varied between 0.065 to 0.100 to obtain a uniform convergence on all 5 

grids and 3 stencil dimensions. It is found that 2ε cannot vanish completely away from the discontinuity and needs to spread 

away from it. A background level is set and the spatial variation of χ is smoothed by using the log function, so   

75.1
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0.
χτ  varies typically from 0.1 to 2.0, 

then  τε artc=2   and ),3.0(4 0maxcart τε −=  . 

The spatial variation of 2ε and 4ε  is illustrated on figure 3, for a run on grid2 with 8-cell stencils and k4 reconstruction. 
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Test case results 
 
The exact analytical value of the pressure at the stagnation point is Pw,a = 15.0486314 
The scheme is found more accurate on 8 cell stencils. We record the pressure at the stagnation point and its error, together with 
the rms error on total enthalpy, respectively on all grid cells and wall faces. The integral of the pressure force on the wall is also 
presented in table 3, and the CPU cost of the run in TauBench Units. 

 
Table 3: Results on the 5 grids with 8-cell stencils: k3 reconstructions of natural fluxes (reported on figure 17) 

 
Table 4 gathers the same results for the runs on the three fused stencils widths (6-cell, 8-cell and 10-cell). 
The solution with 8 cells is more accurate, especially on the finer grids; there is no further gain in using 10-cell stencils. 
 

Table 4: Results on the 5 grids with 3 different stencil widths: k2 / k3 / k5 reconstructions of natural fluxes. see Figure 17 
 

Comments on the 8-cell solution  
 
1/ Error on total enthalpy (per unit mass) over the whole grid.  
The rate of spatial convergence of this rms error is of the order of 1, its value is on average 12 times lower than the error of the 
reference 2nd order FV solver with a centred scheme and 120 lower than the HLLE results of this solver. 
The fact that the artificial diffusion in the energy equation is based on first and third differences of the total enthalpy per unit 
volume rather than total energy is found beneficial. The usage of a high order difference formula in the artificial diffusion as for 

the natural Euler fluxes, with the µ coefficients involving 6 to 10 points in the first and third differences, rather than simpler 2 

or 4 point formulas of lower order is found worthwhile, without any more theoretical argument to support this choice. 
 

 Pw E(Pw) E(Ht)/grid E(Ht)/wall Wall x-
Force 

Cells = dof/eqn Cost (TBU) 

        
grd0 15.050863 2.23 10-3 8.64 10-4 9.85 10-4 2.93435 2220 (74*30) 7.3 
grd1 15.041765 6.87 10-3 3.06 10-4 5.91 10-5 2.92049 7922 (148*54) 77.8 
grd2 15.048396 2.36 10-4 2.31 10-4 6.40 10-6 2.91948 29008 (296*98) 790 
grd3 15.049017 3.85 10-4 1.81 10-4 9.21 10-7 2.91776 109740 (590*186) 6471 
grd4 15.048587 4.47 10-5 5.53 10-5 1.17 10-7 2.91729 427160 (1180*362) 69970 

        

 Pw E(Pw) E(Ht)/grid E(Ht)/wall Wall x-Force Cells = dof/eqn 
grd0 
6-c 
8-c 
10-c 

 
15.050507 
15.050863 
15.021457 

 
1.88 10-3 

2.23 10-3 

2.72 10-2 

 
1.38 10-3 
8.64 10-4 
4.21 10-4 

 
1.53 10-3 

9.85 10-4 

9.57 10-4 

 
2.93326 
2.93435 
2.93388 

 
 

2220 (74*30) 

grd1 
6-c 
8-c 
10-c 

 
15.028278 
15.041765 
15.036790 

 
2.04 10-2 

6.87 10-3 

1.18 10-2 

 
8.24 10-4 

3.06 10-4 

3.49 10-4 

 
3.06 10-4 

5.91 10-5 

6.79 10-5 

 
2.92046 
2.92049 
2.92491 

 
 

7922 (148*54) 

grd2 
6-c 
8-c 
10-c 

 
15.043914 
15.048396 
15.049917 

 
4.71 10-3 
2.36 10-4 

1.29 10-3 

 
2.74 10-4 
2.31 10-4 
2.53 10-4 

 
5.30 10-5 
6.40 10-6 
7.55 10-6 

 
2.91894 
2.91948 
2.92071 

 
 

29008 (296*98) 

grd3 
6-c 
8-c 
10-c 

 
15.049261 
15.049017 
15.049549 

 
6.30 10-4 
3.85 10-4 
9.18 10-4 

 
2.12 10-4 
1.81 10-4 
1.59 10-4 

 
1.18 10-5 
9.21 10-7 
1.47 10-6 

 
2.91794 
2.91776 
2.91833 

 
 

109740 (590*186) 

grd4 
6-c 
8-c 
10-c 

 
15.048737 
15.048587 
15.048925 

 
1.06 10-4 
4.47 10-5 
2.93 10-4 

 
9.16 10-5 
5.53 10-5 
7.92 10-5 

 
2.90 10-6 
1.17 10-7 

2.44 10-6  

 
2.91751 
2.91729 
2.91770 

 
 

427160 (1180*362) 
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Fig.3 Fields of 2ε and 4ε in the 8-cell stencil case on grid2 

 
The main point that allows a higher accuracy is the stencil-reconstruction of face normal fluxes rather than conservative 
variables. These fluxes are continuous over the stencil across normal shocks when the grid is fitted to them (see Fig 4), although 
their space derivatives in the flow direction are not (the longitudinal fluxes along x start to decrease linearly towards the wall 
after the shock).  This stencil HO reconstruction of the fluxes transfers the error in the regions where the shock is not normal and 
less intense. The error trace in total enthalpy over the shock is reported on figure 14, its amplitude if of the order of 1% of the 
reference level and decreases a little on finer grids. The error is located in only 2 cells across the shock as shown on figure 18. 
  
2/ Error on pressure at the stagnation point 
The space convergence is plotted on figure 17. The rate of spatial convergence of this local error is of the order of 1.5, and its 
magnitude is about 10 times lower than the 2nd order FV solution on each grid. The solutions by the NXO method on grid1 and 
grid3 show higher errors than the global trend, this is probably due to the fact that these grids are not refined in exactly the same 
regions than the other ones and the shock location can be offset by 5 to 8 cells from the highest refinement zone. The 
extrapolation of field flow variables to the wall is of order 2, but only in the wall normal direction. Using 2D stencils near the 
wall, as shown on figure 1, and a curvilinear integration in the pre-processor might enhance the accuracy of the boundary 
treatment. 

 
3/ Error on total enthalpy over the wall 
The rate of spatial convergence of this rms error is of the order on 3.26 and rather uniform from grid0 to grid4.  
 
4/ Rate of convergence of the control volume residuals 
The solution is evolved with the 3-stage RK iteration scheme proposed by Shu and Osher [3], using a local pseudo-time, 
computed for a cfl of 0.75 to 1. The convergence of the residuals of all equations is uniform, after the initial phase of the 
computation where the Mach number is increased steadily in the far-field BC. This is presented on figure 5.  
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Fig. 4 Field of flux density tensor projected in the direction of the flow, for the energy equation, on 5 grids 
 

 
 

Fig.5 Convergence of the rms residuals of the 4 conservation equations for the 5 grids 
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5/ Convergence of the error indicators 
Figures 6 to 8 show the convergence of the error indicators with the pseudo-time iteration number. On Figure 7, the error on the 
pressure at the stagnation point is higher on grid 1 than on grid0 and higher on grid3 than on grid2. 

 
Fig.6 Convergence of the 3 error indicators for the fine grid run 

 

 
Fig.7 Convergence of the local pressure error indicator for the runs over the 5 grids.  

Spikes indicate a change of sign of the error 
 

 
Fig.8 Convergence of the total enthalpy rms error over the grid, for all 5 runs 
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6/ Flow fields 
Figures 9 to 12 plot the total enthalpy and its error field, then the pressure field and iso_Mach lines on all 5 grids. 
 

 
Fig.9 Total enthalpy fields over the 5 grids 

 

 
Fig.10 Log of the total enthalpy error fields over the 5 grids 
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Fig.11 Pressure fields on the 5 grids 

 

 
Fig.12 Iso-Mach lines on the 5 grids 
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7/ Flow fields variation along the symmetry axis 
The shock location and the aerodynamics quantities at the stagnation point exhibit fast convergence with the grid refinement. 
 

 
Fig.13 Density on the symmetry axis (zooms on the shock region and the stagnation point) 

 

 
Fig.14 Total enthalpy on the symmetry axis (zooms on the shock region and the stagnation point) 
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Fig.15 X-velocity on the symmetry axis (zooms on the shock region and the stagnation point) 

 

 
Fig.16 Temperature on the symmetry axis (zooms on the shock region and the stagnation point) 
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Fig.17 Error indicators and Wall x-force function of the mesh size 

 

 
Figure 18 Location of the shock with respect to the grid refinement (total enthalpy over / undershoots) 

The shock position converges to x=-1.355 
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