CI2 – Inviscid Strong Vortex-Shock Wave Interaction

Chongam Kim (with Hojun You, Seonghun Cho)

Department of Mechanical and Aerospace Engineering Seoul National University, Korea Jan. 6-7, 2018

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

Introduction

2

• Test objective

• Capability of capturing unsteady compressible flow physics qualitatively

- Post-shock vortical structure due to compression effects
- Propagation of discontinuous waves and cylindrical acoustic waves

• Attempts to evaluate unsteady flow solution quantitatively

- Quantification of monotonicity across shock
- Quantification of discrete shock-driven numerical oscillations
- Evaluation of error and order-of-accuracy in post-shock region

CI2 – Density Contour of Reference Solution

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

Initial condition

- Non-dimensional 2-D Euler equations with EOS for ideal gas
- Initially, the flow field contains a stationary shock and a strong vortex located in upstream.
- Composite vortex with C⁰-continuous angular velocity and C¹-continuous density profiles

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

4

• Grid definition

• Rule of mesh naming: Abbreviation of mesh type-Reciprocal of mesh size

• Ex) RT50, RQ100, etc.

Mesh type	Abbreviation	Reciprocal of mesh size, $\frac{1}{h}$		
Regular Triangle	RT	50, 100, 150, 200, 250, 300		
Irregular Triangle	IT	50, 100, 150, 200, 250, 300	[RT type]	[IT type]
Regular Quadrilateral	RQ	50, 100, 150, 200, 250, 300		T T
Mixed	М	50, 100, 150, 200, 250, 300	[RQ type]	[M type]

Aerodynamic Simulation & Design Laboratory

5

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

• Reference lines for data submission

 $\approx \epsilon = 1 \times 10^{-4}$ is to avoid the cell interfaces.

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

• Setting the reference solution

Reference solution is computed by FVM on extremely fine meshes.

- Ref1000: Number of cells = $2,700,000 / h_{min} = 1/2000$
- Ref2000: Number of cells = $10,800,000 / h_{min} = 1/4000$
- Ref3000: Number of cells = $24,300,000 / h_{min} = 1/6000$
- \Rightarrow The result with Ref3000 mesh is adopted as the reference solution.
- FVM solver with Roe flux / 3rd-order TVD-RK for spatial- / temporal-discretization, and MLP5 limiter for shock-capturing

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

• Removal of non-physical oscillations with filtering technique

• Low-pass filter is applied to some reference lines.

• Gaussian filtering is applied to Line 1~3 where non-physical oscillations/noises occur noticeably.

- Filtering is locally applied by considering the amplitude of local non-physical oscillations.
- Cut-off frequency where the response value becomes exp(-0.5) ≈ 0.607 is locally determined as 3~5 times of noticeable oscillatory frequency from FFT results.
- Saturation phenomenon is not observed during grid refinement test using the filtered reference solution.
- Conservation laws are still satisfied when the low-pass filter is applied.

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

• Inviscid isentropic Taylor vortex is transported by uniform flow for 50 periods.

$$u_0 = U_\infty (1 - \beta \frac{y - Y_c}{R} e^{-r^2/2}) \qquad T_0 = T_\infty - 0.5 (\beta U_\infty e^{-r^2/2})^2 / C_p$$
$$v_0 = U_\infty \beta \frac{x - X_c}{R} e^{-r^2/2} \qquad \rho_0 = \rho_\infty (T_0 / T_\infty)^{1/(\gamma - 1)}$$

- Two types of freestream conditions
 - Slow: Mach number = 0.05
 - Fast: Mach number = 0.5
- Results
 - L2-norm error vs. Length scale
 - L2-norm error vs. Time unit

- Four types of meshes
 - Regular triangle
 - Regular quadrilateral
 - Randomly perturbed regular triangle
 - Randomly perturbed regular quadrilateral

Participants

• University of Kansas

- FR/CPR method[1] with P2 and P3 approximations
- Explicit TVD-RK3
- SMOOTH limiter[2]
- Roe solver

• University of Michigan

- DG method with P1 and P3 approximations
- Explicit RK4 for CI2 and VI1-P1 / Explicit 8th-order 13-stage RK for VI1-P3
- PDE-based artificial dissipation method[3] (with BR2 method)
- SLAU2 Riemann solver[4] on RQ-P1 / Roe solver for the others
- ICB-N method[5] for recovery on RQ

• Seoul National University

- DG method with *P*1, *P*2 and *P*3 approximations
- Explicit TVD-RK3 for *P*1 and *P*2 / Explicit 4th-order 5-stage SSP-RK for *P*3
- *h*MLP[6] and *h*MLP_BD limiter[7] (tagged as SNU1 and SNU2 in the following figures)
- Local Lax-Friedrich flux for VI1 / Roe solver for CI2

Participants

• University of Kansas

• VI1

- Total 20 (Slow vortex) cases
 - No limiter and SMOOTH limiter
 - P2 and P3 approximations on RQ meshes with 1/h = 16, 32, 64, 128, 256

• University of Michigan

• VI1

- Total 28 (Slow vortex) + 32 (Fast vortex) cases
 - PDE-based artificial dissipation
 - *P*1 and *P*3 approximations on RQ, RT, rpRQ and rpRT meshes with 1/*h* = 16, 32, 64, 128, 256

Seoul National University

• VI1

- Total 76 (Slow vortex) + 81 (Fast vortex) cases
- No limiter, *h*MLP and *h*MLP_BD limiters
- P1, P2 and P3 approximations on RQ and RT meshes with 1/h = 16, 32, 64, 128, 256

CI2

- Total 12 cases
 - SMOOTH limiter
 - P2 and P3 approximations on RQ meshes with 1/h = 50, 100, 150, 200, 250, 300

CI2

- Total 18 cases
 - PDE-based artificial dissipation
 - P1 and P3 approximations on IT and RQ meshes with 1/h = 50, 100, 150, 200, 250, 300
- CI2
 - Total 96 cases
 - *h*MLP and *h*MLP_BD limiters
 - P2 and P3 approximations on RT, IT, RQ and M meshes with 1/h = 50, 100, 150, 200, 250, 300

Aerodynamic Simulation & Design Laboratory

- [1] Z. J. Wang and H. Gao. "A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids." *Journal of Computational Physics* 228.21 (2009): 8161-8186.
- [2] Y. Li and Z. J. Wang. "A convergent and accuracy preserving limiter for the FR/CPR method." *55th AIAA Aerospace Sciences Meeting*. 2017.
- [3] J. Reisner, J. Serencsa and S. Shkoller. "A space-time smooth artificial viscosity method for nonlinear conservation laws." *Journal of Computational Physics* 235 (2013): 912-933.
- [4] K. Kitamura and E. Shima. "Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes." *Journal of Computational Physics* 245 (2013): 62-83.
- [5] P. Johnson, To be presented at 2018 SciTech meeting.
- [6] J. S. Park and C. Kim. "Higher-order multi-dimensional limiting strategy for discontinuous Galerkin methods in compressible inviscid and viscous flows." *Computers & Fluids* 96 (2014): 377-396.
- [7] H. You and C. Kim. "Higher-Order Multi-Dimensional Limiting Strategy for Subcell Resolution." 23rd AIAA Computational Fluid Dynamics Conference. 2017.

Summary

Verification Test (VI1 – Inviscid Convected Vortex)

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

19

Verification Test (VI1 – Inviscid Convected Vortex)

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

20

• Well-resolved flow structures with much less DOFs

- Vortex core splitting
- Complex shock structure
- Kelvin-Helmholtz instability along slip layer

Undesirable numerical artifacts

- Shock-driven oscillations
- Small scale wiggles
- Spurious wave structures

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

Results (Schlieren View)

• Large scale flow structure is still captured.

• Higher resolution with IT meshes results from the increase of DOF.

• Mesh type dependence of numerical artifacts

• Shock-driven oscillation patterns

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

- Well-resolved large scale flow structure along Line 1
 - Shock and vortex core are captured.
 - Numerical artifacts around the shock and outflow region are clearly shown.
- Solution behavior around vortex core
 - Location and depth of the vortex core are different with various schemes.
 - Some schemes show numerical artifacts that are different from the reference solution.

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

- Solution behavior around the stationary shock
 - Shock thickness is different with various schemes.
 - Monotonicity of the shock may not be satisfied.

• Evaluation of shock monotonicity

- Total variation and maximum undershoot normalized by the shock strength on the region containing the shock, 0.47 < x < 0.5.
- Non-monotonic shock profile shows either large total variation or large maximum undershoot.

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

24

Results (Line 1)

• Computation of error and order-ofaccuracy along Line 1

- Post-shock region (x ≥ 0.9) is considered to compute errors with the filtered reference solution.
- Order-of-accuracy is degraded from formal (n + 1)th-order accuracy for *Pn* approximation.
 - All schemes show approximately ~ 2nd ~ order accuracy.
- Computed errors show slower change in coarser meshes and tend to decrease faster in finer meshes.
 - Grid size may act as a threshold of numerical error.

Grid Refinement Tests along Line 1 in Post-shock Region

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

Evaluation of shock-driven oscillations

- Shock-driven oscillations are clearly shown regardless of the discretization schemes.
- Total variation and maximum difference with respect to the filtered reference solution on the domain of 0.2 < y < 0.6.
- Severe shock-driven oscillations result in larger total variation and maximum difference than the filtered reference solution.

26

Solution behavior on the downstream region

- Shock-driven oscillations far downstream are rather damped out.
- Similar to Line 1, computed order-of-accuracy is degraded to ~ 2nd ~ -order accuracy for most of the schemes.
- Computed error does not show threshold-like behavior on coarse mesh.

Factors affecting order-of-accuracy degradation

Non-smooth region \supset Shock \supset Shock inside cells \supset Non-aligned shock

• Additional test problems

• Composite vortex is considered for all tests.

Test Problem	Non-smooth region	Shock	Shock inside cells	Non-aligned shock	
Vortex Transport (Baseline)	0	Х	Х	Х	
Vortex behind Stationary Shock	0	0	Х	Х	
Vortex behind Stationary Shock inside a Cell	0	0	0	Х	
Vortex behind Non-aligned Stationary Shock	0	0	0	0	

Aerodynamic Simulation & Design Laboratory

- Non-smooth composite vortex in CI2.
- Computational conditions
 - Computational domain $\Omega = [0, 2] \times [0, 1]$
 - A strong vortex with $M_v = 0.9$ is initially centered at $(x_c, y_c) = (0.75, 0.5)$.
 - Freestream is set to downstream conditions of CI2 Problem.
 - Target time t = 0.7
- Test cases
 - DG-P2 ad -P3 with no limiter, *h*MLP and *h*MLP_BD
 - Test meshes: RQ50, RQ100, RQ200, RQ300

Schematic View of Vortex Transport Problem

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

• Vortex behind stationary shock

- Stationary shock is exactly aligned with a cell interface.
- **Baseline + Stationary shock** ($M_s = 1.5$) at x = 0.5

• Vortex behind stationary shock inside a cell

- Stationary shock is located inside a cell.
- **Baseline + Stationary shock** ($M_s = 1.5$) at $x = 0.5 + \varepsilon$ where $\varepsilon = h/2$
- Vortex behind non-aligned stationary shock
 - Stationary shock is located along the regularly perturbed meshes.
 - Baseline + Stationary shock ($M_s = 1.5$) at x = 0.5 + Regularly perturbed mesh at stationary shock location

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

• Effects of each factor

Test Problem	DG-P2 hMLP	DG-P2 hMLP_BD	DG-P2 no limiter	DG-P3 hMLP	DG-P3 hMLP_BD	DG- <i>P</i> 3 no limiter
Vortex Transport (Baseline)	1.954	1.785	1.950	1.883	1.785	2.155
Vortex behind Stationary Shock	1.980 (+0.026)	1.793 (+ 0.008)	-	1.821 (-0.062)	1.790 (+ 0.005)	-
Vortex behind Stationary Shock inside a Cell	1.798 (-0.156)	1.398 (-0.387)	-	1.864 (-0.019)	1.167 (-0.618)	-
Vortex behind Non-aligned Stationary Shock	0.966 (- 0.988)	1.527 (-0.258)	-	0.804 (-1.079)	1.576 (-0.209)	-

(): Order-of-accuracy degradation with respect to the baseline test

- In the baseline test, formal order-of-accuracy is not preserved even when the limiter is not used. Projection error seems to be the main cause of the degradation.
- If the shock is located at the interface of meshes, it does not affect the order-of-accuracy.
- If the shock is located inside a cell or not aligned with meshes, non-physical oscillations generated by the shock negatively affect the order-of-accuracy.

Projection error

- Projection error occurs when the exact initial profile is projected onto *Pn*-polynomial space.
- Grid refinement test is conducted to measure projection error of baseline vortex problem.
- Due to projection error, the formal order-of-accuracy could not be achieved.
- Computed order-of-accuracy
- *x*-Momentum (C⁰-continuous profile): DG-*P2*: 1.568, DG-*P3*: 1.520

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

32

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

33

- High-order methods can resolve complex flow structures of shock-vortex interaction with less DOFs than finite volume methods, but yield some unwanted numerical artifacts across shock and post-shock region.
- In highly non-linear problem with non-smooth profile, we have degradation in order-of-accuracy.
 - All schemes shows approximately show ~ 2nd ~ -order accuracy.
- Several factors affecting the formal order-of-accuracy in high-order methods.
 - Projection error of a non-smooth initial profile
 - Non-physical oscillations (numerical flux, limiting strategy/amount of diffusion, shockalignment & mesh distribution, etc)
- Further studies are necessary to improve accuracy, efficiency and robustness of high-order methods for unsteady compressible flows.

Aerodynamic Simulation & Design Laboratory

Appendix

AIAA SciTech HiOCFD5, Kissimmee, FL, 2018

35

• In order to observe the behavior of order test results with respect to the reference solution, 1-D smooth problem is examined.

Problem description

- Non-dimensional 1-D Euler equations with EOS for ideal gas
- Initial condition: $[\rho, u, p] = [1 + 0.2\sin(2\pi x), 1, 1]$
- Computational domain: $\Omega = [0,1]$
- Target time: t = 1

• Grid sizes for DG method:
$$h = \frac{1}{15}, \frac{1}{30}, \frac{1}{60}, \frac{1}{90}$$

• Reliability of reference solution (*Cont'*)

- Error of the DG solution is measured with the reference solution, which is computed by FVM with fine meshes.
- Judging from the observation in the 1-D smooth problem, if the reference solution is obtained on sufficiently fine meshes, the order-of-accuracy is correctly behaved, otherwise the error is saturated at some point.

L2 Error Measured with the Reference Solution

- Line 2: Similar shock structure shown in Line 1
 - Solution behavior around the shock is similar to Line 1.
 - Non-monotonicity of shock is shown more clearly in Line 2.
- Line 4: Similar vortical structure shown in Line 1
 - Solution behavior around vortex core is similar to Line 1.
 - Difference in location and depth of the vortex core is more apparent in Line 4.

38