
A recovery-assisted DG code for the
compressible Navier-Stokes equations

January 6th, 2017
5th International Workshop on High-Order CFD Methods
Kissimmee, Florida

Philip E. Johnson & Eric Johnsen

Scientific Computing and Flow Physics Laboratory
Mechanical Engineering Department
University of Michigan, Ann Arbor

Code Overview
Basic Features:

• Spatial Discretization: Discontinuous Galerkin, nodal basis
• Time Integration: Explicit Runge-Kutta (4th order and 8th order available)
• Riemann solver: Roe, SLAU2†

• Quadrature: One quadrature point per basis function

Non-Standard Features:
• Discontinuity Sensor: Detects shock/contact discontinuities, tags “troubled” elements

• ICB reconstruction: compact technique, adjusts Riemann solver arguments

• Compact Gradient Recovery (CGR): Mixes Recovery with traditional mixed formulation
for viscous terms

• Shock Capturing: PDE-based artificial dissipation inspired by C-method†† of Reisner et al.

†Kitamura & Shima, JCP 2013
††Reisner et al., JCP 20131

Shock Capturing for Euler Equations

2

Approach: Store and evolve artificial dissipation coefficients (𝐶𝑥, 𝐶𝑦) as extra flow variables

𝜕

𝜕𝑡

𝜌
𝜌𝑢
𝜌𝑣
𝐸
𝐶𝑥

𝐶𝑦

=
𝜕

𝜕𝑥

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

𝑢 𝐸 + 𝑝
0
0

+
𝜕

𝜕𝑦

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

𝑣 𝐸 + 𝑝
0
0

+

𝜕

𝜕𝑥

𝜅𝑥𝜌,𝑥
𝜅𝑥 𝜌𝑢 ,𝑥
𝜅𝑥 𝜌𝑣 ,𝑥
𝜅𝑥𝐸,𝑥
𝜇𝑆𝐶,𝑥

𝑥

0

+
𝜕

𝜕𝑦

𝜅𝑦𝜌,𝑦
𝜅𝑦 𝜌𝑢 ,𝑦
𝜅𝑦 𝜌𝑣 ,𝑦
𝜅𝑦𝐸,𝑦
0

𝜇𝑠𝐶,𝑦
𝑦

+

0
0
0
0

𝐺𝑥 −
𝐶𝑥

𝜖

𝐺𝑦 −
𝐶𝑦

𝜖

Euler equations

Artificial dissipation +
C-diffusion

Source/Sink term for
C variable

Shock Capturing for Euler Equations

3

𝜕

𝜕𝑥

𝜅𝑥𝜌,𝑥
𝜅𝑥 𝜌𝑢 ,𝑥
𝜅𝑥 𝜌𝑣 ,𝑥
𝜅𝑥𝐸,𝑥
𝜇𝑆𝐶,𝑥

𝑥

0

+
𝜕

𝜕𝑦

𝜅𝑦𝜌,𝑦
𝜅𝑦 𝜌𝑢 ,𝑦
𝜅𝑦 𝜌𝑣 ,𝑦
𝜅𝑦𝐸,𝑦
0

𝜇𝑠𝐶,𝑦
𝑦

+

0
0
0
0

𝐺𝑥 −
𝐶𝑥

𝜖

𝐺𝑦 −
𝐶𝑦

𝜖

Artificial dissipation +
C-diffusion

Source/Sink term for
C variable

𝜅𝑥~𝐶𝑥, 𝜅𝑦~𝐶𝑦

𝜖 =
ℎ

𝑝
=

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ

𝑝𝑜𝑙𝑜𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑟𝑑𝑒𝑟

𝐺𝑥, 𝐺𝑦 = 0 in non-troubled elements (known from sensor)

In troubled elements: 𝐺𝑥~
𝜕𝑢

𝜕𝑥
, 𝐺𝑦~

𝜕𝑣

𝜕𝑦

Approach: Store and evolve artificial dissipation coefficients (𝐶𝑥, 𝐶𝑦) as extra flow variables

Recovery Demonstration: 𝒑 = 𝟑

4

Ω𝐴 Ω𝐵

Recovery Demonstration: 𝒑 = 𝟑

Recovered solution
(degree 2𝑝 + 1 = 7
polynomial) more accurate at
interface

4

Ω𝐴 Ω𝐵

Recovery Demonstration: 𝒑 = 𝟑

ICB reconstructions (degree
𝑝 + 2 = 4) equal at closest
quadrature points

4

Ω𝐴 Ω𝐵

• For diffusive fluxes: CGR maintains compact stencil†, offers advantages over BR2
― Larger allowable explicit timestep size
― Improved wavenumber resolution

• For advection problems:

• DG weak form: Must calculate flux along interfaces
― Conventional approach (upwind DG): plug in left/right values of DG solution

• Conventional approach:

• Our approach: ICB reconstruction scheme††

― Replace left/right solution values with ICB reconstruction:

Our Approach vs. Conventional DG

†† Khieu & Johnsen, AIAA Aviation 2014
† Johnson & Johnsen, AIAA Aviation 2017

5

Vortex Transport Case (VI1)

6

Setup 1: 𝑝 = 1, RK4, SLAU Riemann solver
Setup 2: 𝑝 = 3, RK8† (13 stages), SLAU Riemann solver
ICB usage: Apply ICB on Cartesian meshes, conventional DG otherwise

EQ: Global 𝐿2 error of 𝑣:

𝐸𝑣 =
 Ω 𝑣 − 𝑣0

2𝑑𝑉

 Ω 𝑑𝑉

Convergence: order 2𝑝 + 2 on
Cartesian mesh, order 2𝑝 on
perturbed quad mesh

† Cash & Karp, ACMTMS 1990

Shock-Vortex Interaction (CI2)

7

Configurations: Cartesian (𝑝 = 1), Cartesian (𝑝 = 3), Irregular Simplex 𝑝 = 1
Setup: RK4 time integration, SLAU (Cartesian) and Roe (Simplex) Riemann solvers
Shock Capturing: PDE-based artificial dissipation
ICB usage: Only on Cartesian grids

Quad
𝑝 = 1
𝑁𝑦 = 300

Quad
𝑝 = 3
𝑁𝑦 = 300

Simplex
𝑝 = 1
𝑁𝑦 = 300

Taylor-Green Test (WS1)
• Code setup: p2 elements, uniform hex mesh (27 DOF/element), RK4 time integration

― Reference result taken from HiOCFD3 workshop
― Our approach allows larger stable time step

8

ICB+CGR: 2.5 CPU-hours
Conventional: 9.2 CPU-Hours

ICB+CGR: 75 CPU-hours
Conventional: 304 CPU-Hours

Conclusions
• Were the verification cases helpful and which ones were used?

― Vortex transport: Shows that ICB is implemented properly
― TGV: demonstrates value of ICB+CGR for nonlinear problem

• What improvements are needed to the test case?
― Meshes for vortex transport problem are tough to work with (GMSH input file

preferred)
― Shock-Vortex interaction: No improvement, test case is perfect
― TGV: Standardize energy spectrum calculation and make reference data more easily

accessible

• Did the test case prompt you to improve your methods/solver
― Yes: added shock capturing on non-Cartesian elements

9

Conclusions
• What worked well with your method/solver?

― Feature resolution on Cartesian meshes (ICB very helpful)

• What improvements are necessary to your method/solver?
― Implicit/Explicit time integration for advection-diffusion
― Recovery troublesome on non-Cartesian elements
― Parallel efficiency with solution-adaptive approach
― Curved elements

10

SciTech Talk
Title: A Compact Discontinuous Galerkin Method for Advection-Diffusion Problems
Session: FD-33, High-Order CFD Methods 1
Setting: Sun 2, January 10, 9:30 AM

Acknowledgements
Computing resources were provided by the NSF via grant 1531752 MRI:
Acquisition of Conflux, A Novel Platform for Data-Driven Computational
Physics (Tech. Monitor: Ed Walker).

References

 Kitamura, K. & Shima, E., “Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family
schemes,” Journal of Computational Physics, Vol. 245, 2013.

 Reisner, J., Serensca, J., Shkoller, S., “A space-time smooth artificial viscosity method for nonlinear conservation laws,” Journal of
Computational Physics, Vol. 235, 2013.

 Johnson, P.E. & Johnsen, E., “A New Family of Discontinuous Galerkin Schemes for Diffusion Problems,” 23rd AIAA Computational Fluid
Dynamics Conference, 2017.

 Khieu, L.H. & Johnsen, E., “Analysis of Improved Advection Schemes for Discontinuous Galerkin Methods,” 7th AIAA Theoretical Fluid
Dynamics Conference, 2011.

 Cash, J.R. & Karp, A.H., “A Variable Order Runge-Kutta Method for Initial Value Problems with Rapidly Varying Right-Hand Sides,” ACM
Transactions on Mathematical Software, Vol. 16, No. 3, 1990.

Spare Slides

CGR = Mixed Formulation + Recovery

• Must choose interface 𝑈 approximation from available data
― BR2: Take average of left/right solutions at the interface
― Compact Gradient Recovery (CGR): 𝑈 = recovered solution

• Interface gradient: CGR formulated to maintain compact stencil

Gradient approximation in 𝛀𝒆:

Weak equivalence with 𝛁𝐔:

Integrate by parts for 𝝈 weak form:

5

• Recovery: reconstruction technique introduced by Van Leer and Nomura† in 2005
• Recovered solution (𝑓𝐴𝐵) and DG solution (𝑈ℎ) are equal in the weak sense
• Generalizes to 3D hex elements via tensor product basis

The Recovery Concept

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑(𝒙 −
𝝅

𝟑
)

𝜴𝑨 𝜴𝑩

𝑟

Recovered Solution for :

𝑲𝑹 = 𝟐𝒑 + 𝟐 constraints for 𝒇𝑨𝑩:

Interface Solution along :

†Van Leer & Nomura, AIAA Conf. 2005

ΩA

• Recovered solution is continuous across the interface, uniquely defines (U, 𝛻𝑈)
― Conventional DG approaches for Navier-Stokes lack this property

Exact Distribution U DG solution: 𝑈ℎ
𝐴 , 𝑈ℎ

𝐵
Recovered solution: 𝑓𝐴𝐵

𝑈 = 𝑥 + 𝑦 + sin 2𝜋𝑥𝑦

Schematic from [Johnson & Johnsen, APS DFD 2015]

Recovery DG†

†Van Leer & Nomura, AIAA Conf. 2005

ΩA ΩB ΩB
ΩBΩA

Recovery Demonstration: All Solutions

• Each interface gets a pair of ICB reconstructions,
one for each element:

𝑲𝑰𝑪𝑩 = 𝒑 + 𝟐 coefficients per element:

Constraints for 𝑼𝑨
𝑰𝑪𝑩: (Similar for 𝑼𝑩

𝑰𝑪𝑩)

• Choice of Θ𝐵 affects behavior of ICB scheme
― Illustration uses Θ𝐵 = 1

The ICB reconstruction

𝜴𝑨 𝜴𝑩

∀𝑘 ∈ {0,1, … 𝑝}

Example: 𝑝 = 1 (2 DOF/element)

𝑈 = 𝑒𝑥𝑠𝑖𝑛(
3𝜋𝑥

4
)

𝑟

The 𝚯 Function: ICB-Modal vs. ICB-Nodal
• ICB-Modal (original): ΘA = Θ𝐵 = 1 is lowest mode in each element’s solution

• ICB-Nodal (new approach): Θ is degree 𝑝 Lagrange interpolant
― Use Gauss-Legendre quadrature nodes as interpolation points
― Take Θ nonzero at closest quadrature point

Sample 𝚯 choice for 𝒑 = 𝟑:
Each Θ is unity at quadrature
point nearest interface

The 𝚯 Function: ICB-Modal vs. ICB-Nodal

ICB-Modal: Each 𝑈𝐼𝐶𝐵 matches
the average of 𝑈ℎ in
neighboring cell

ICB-Nodal: Each 𝑈𝐼𝐶𝐵 matches
𝑈ℎ at near quadrature point

• Fourier analysis performed on 2 configurations:
― Conventional: Upwind DG + BR2
― New: ICB-Nodal + CGR

1) Linear advection-diffusion, 1D:

2) Define element Peclet number:

3) Set Initial condition:

4) Cast numerical scheme in matrix-vector form:

Fourier Analysis
Scheme 𝑭 𝑼

uDG + BR2

ICB + CGR

Analysis Procedure † :

† Watkins et al., Computers & Fluids 2016

Eigenvalue corresponding
to exact solution:

Fourier Analysis
5) Diagonalize the update matrix:

6) Calculate initial expansion weights, 𝜷:

• Watkins et al. derived estimate for initial error
growth:

― 𝜆𝑛 = 𝑛𝑡ℎ eigenvalue of

Eigenvalue Example:
ICB+CGR, 𝑝 = 2, 𝑃𝐸ℎ = 10,

𝜆𝑒𝑥 = −𝑖 10𝜔 − 𝜔2

† Watkins et al., Computers & Fluids 2016

Wavenumber Resolution

• To calculate wavenumber resolution:
1) Define some error tolerance(𝜖) and Peclet number (𝑃𝐸ℎ)

2) Identify cutoff wavenumber, 𝜔𝑓 according to:

3) Calculate resolving efficiency:

† Watkins et al., Computers & Fluids 2016

Scheme Comparison: 𝑷𝑬𝒉 = 𝟏𝟎

P Conventional ICB + CGR

1 0.0296 0.1103

2 0.0531 0.0776

3 0.0844 0.1113

4 0.1022 0.1225

5 0.1196 0.1304

P Conventional ICB + CGR

1 0.0940 0.2389

2 0.1200 0.1793

3 0.1451 0.1755

4 0.1677 0.2628

5 0.1743 0.1874

• Fourier analysis, Linear advection-diffusion
• Resolving efficiency measures effectiveness of update scheme’s consistent eigenvalue

Compact Gradient Recovery (CGR) Approach
• Similar to BR2: Manage flow of information by altering gradient reconstruction
• 1D Case shown for simplicity: Let 𝑔𝐴, 𝑔𝐵 be gradient reconstructions in Ω𝐴, Ω𝐵

 Perform Recovery over 𝑔𝐴, 𝑔𝐵 for 𝜎 on the shared interface

𝜴𝑨 𝜴𝑩

Example with 𝒑𝟏 elements:

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑 𝒙 +
𝒙𝟐

𝟐

ΩA ΩB

Process Description:

1. Start with the DG polynomials 𝑈𝐴
ℎ in

Ω𝐴 and 𝑈𝑏
ℎ in Ω𝐵.

The ICB Approach (Specifically, ICBp[0])

• Recovery is applicable ONLY for viscous
terms; unstable for advection terms.

• Interface-Centered Binary (ICB)
reconstruction scheme modifies Recovery
approach for hyperbolic PDE.

Process Description:

1. Start with the DG polynomials 𝑈𝐴
ℎ in

Ω𝐴 and 𝑈𝑏
ℎ in Ω𝐵.

2. Obtain reconstructed solution 𝑈𝐴
𝐼𝐶𝐵

in Ω𝐴, containing 𝑝 + 2 DOF.

Example with 𝒑𝟏 elements:

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑 𝒙 +
𝒙𝟐

𝟐

ΩA ΩB

The ICB Approach (Specifically, ICBp[0])

 𝑈𝐴
𝐼𝐶𝐵𝜙𝑘𝑑𝑥

𝛺𝐴

= 𝑈𝐴
ℎ𝜙𝑘𝑑𝑥

𝛺𝐴

 ∀𝑘 ∈ {1. .𝐾}

 𝑈𝐴
𝐼𝐶𝐵𝑑𝑥

𝛺𝐵

= 𝑈𝐵
ℎ𝑑𝑥

𝛺𝐵

Process Description:

1. Start with the DG polynomials 𝑈𝐴
ℎ in

Ω𝐴 and 𝑈𝑏
ℎ in Ω𝐵.

2. Obtain reconstructed solution 𝑈𝐴
𝐼𝐶𝐵

in Ω𝐴, containing 𝑝 + 2 DOF.

3. Perform similar operation for 𝑈𝐵
𝐼𝐶𝐵

4. Use ICB solutions as inputs to
 𝑯𝒄𝒐𝒏𝒗(𝑈

+, 𝑈−)

Example with 𝒑𝟏 elements:

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑 𝒙 +
𝒙𝟐

𝟐

ΩA ΩB

The ICB Approach (Specifically, ICBp[0])

 𝑈𝐴
𝐼𝐶𝐵𝜙𝑘𝑑𝑥

𝛺𝐴

= 𝑈𝐴
ℎ𝜙𝑘𝑑𝑥

𝛺𝐴

 ∀𝑘 ∈ {1. .𝐾}

 𝑈𝐴
𝐼𝐶𝐵𝑑𝑥

𝛺𝐵

= 𝑈𝐵
ℎ𝑑𝑥

𝛺𝐵

• ICB Method achieves 𝟐𝒑 + 𝟐 order of accuracy
• Generalizes to 2D via tensor-product basis

Discontinuity Sensor
Approach: Check cell averages for severe density/pressure jumps across element interfaces

1) Calculate 𝑈=cell average for each element
2) At each interface, use sensor of Lombardini to check for shock wave:

i. If Lax entropy condition satisfied (hat denotes Roe average at interface):

ii. Check pressure jump:

iii. If Φ > 0.01, tag both elements as “troubled”

3) At each interface, check for contact discontinuity
i. Calculate wave strength propagating the density jump:

ii. Check relative strength:

iii. If Ξ > 0.01, tag both elements as “troubled”

