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Code Overview

Basic Features:

Spatial Discretization: Discontinuous Galerkin, nodal basis

Time Integration: Explicit Runge-Kutta (4t order and 8t order available)
Riemann solver: Roe, SLAU2"

Quadrature: One quadrature point per basis function

Non-Standard Features:
Discontinuity Sensor: Detects shock/contact discontinuities, tags “troubled” elements

ICB reconstruction: compact technique, adjusts Riemann solver arguments

Compact Gradient Recovery (CGR): Mixes Recovery with traditional mixed formulation
for viscous terms

Shock Capturing: PDE-based artificial dissipation inspired by C-method'" of Reisner et al.

TKitamura & Shima, JCP 2013
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Shock Capturing for Euler Equations

Approach: Store and evolve artificial dissipation coefficients (C*, CY) as extra flow variables
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Artificial dissipation + Source/Sink term for
C-diffusion C variable
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Shock Capturing for Euler Equations

Approach: Store and evolve artificial dissipation coefficients (C*, CY) as extra flow variables

element width
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Recovery Demonstration: p = 3

U(x) versus x
2
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Recovery Demonstration: p = 3

U(x) versus x

—U(x) = exp(x) X sin(mx)?

Recovered solution
(degree2p+1 =7
polynomial) more accurate at
interface
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Recovery Demonstration: p = 3

U(x) versus x
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ICB reconstructions (degree
p + 2 = 4) equal at closest
guadrature points
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Our Approach vs. Conventional DG

* For diffusive fluxes: CGR maintains compact stencil®, offers advantages over BR2
— Larger allowable explicit timestep size
— Improved wavenumber resolution

For advection problems: / (jf‘:é—)
S

F—_Uhdx = — [ kv - F(UM)dx
Jo, "ot ° Ja,

DG weak form: Must calculate flux along interfaces
— Conventional approach (upwind DG): plug in left/right values of DG solution

ok L Uhdx = — / OF(F -n)ds + / (Vo) - F(UM)dz
JQ. ot aN,

1 JE2,
Conventional approach: F = Rie(U}',Up,n1,)

Our approach: ICB reconstruction scheme™
— Replace left/right solution values with ICB reconstruction: F = Rie(U}“?,US" ny)

T Johnson & Johnsen, AIAA Aviation 2017
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Vortex Transport Case (VI1)

Setup 1: p = 1, RK4, SLAU Riemann solver
Setup 2: p = 3, RK8" (13 stages), SLAU Riemann solver
ICB usage: Apply ICB on Cartesian meshes, conventional DG otherwise

Fast Vortex, Cartesian Slow Vortex, Cartesian
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T Cash & Karp, ACMTMS 1990

M UNIVERSITY OF MICHIGAN



Shock-Vortex Interaction (Cl2)

Configurations: Cartesian (p = 1), Cartesian (p = 3), Irregular Simplex (p = 1)
Setup: RK4 time integration, SLAU (Cartesian) and Roe (Simplex) Riemann solvers
Shock Capturing: PDE-based artificial dissipation
ICB usage: Only on Cartesian grids

oy ) along Lme 4 (a: = 1. 05) Ny =300

—Cartes1a11 -pl
i ——Cartesian-p3 | -
—Slmplex pl |
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Taylor-Green Test (WS1)

* Code setup: p2 elements, uniform hex mesh (27 DOF/element), RK4 time integration
— Reference result taken from HiIOCFD3 workshop
— Our approach allows larger stable time step

Enstrophy-based KEDR 21° elements Enstrophy-based KEDR, 42° elements
0.014 0.014
""'ICB+CGR 63 DOF ""'ICB+CGR 126 DOF

0.0127=="conventional DG, 63> DOF |/ N\ 0.0121-="conventional DG, 126> DOF

—reference ‘ —reference Sw,

1 £0.008 S —
N | -
Il 0.006/
[YB}

0.002F

%

ICB+CGR: 2.5 CPU-hours ICB+CGR: 75 CPU-hours
Conventional: 9.2 CPU-Hours Conventional: 304 CPU-Hours
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Conclusions

* Were the verification cases helpful and which ones were used?
— Vortex transport: Shows that ICB is implemented properly
— TGV: demonstrates value of ICB+CGR for nonlinear problem

« What improvements are needed to the test case?
— Meshes for vortex transport problem are tough to work with (GMSH input file
preferred)
— Shock-Vortex interaction: No improvement, test case is perfect
— TGV: Standardize energy spectrum calculation and make reference data more easily
accessible

* Did the test case prompt you to improve your methods/solver
— Yes: added shock capturing on non-Cartesian elements
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Conclusions

* What worked well with your method/solver?
— Feature resolution on Cartesian meshes (ICB very helpful)

* What improvements are necessary to your method/solver?
— Implicit/Explicit time integration for advection-diffusion
— Recovery troublesome on non-Cartesian elements
— Parallel efficiency with solution-adaptive approach
— Curved elements

SciTech Talk
Title: A Compact Discontinuous Galerkin Method for Advection-Diffusion Problems
Session: FD-33, High-Order CFD Methods 1
Setting: Sun 2, January 10, 9:30 AM
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Spare Slides

M UNIVERSITY OF MICHIGAN



CGR = Mixed Formulation + Recovery

Gradient approximation in (Q,: o(xr € Q) Z "

Weak equivalence with VU: /Q OF gedx = /Q ¢* VU"dx Yk € {0,1,....p

[=]

Integrate by parts for o weak form: /S; ¢F oedx = [¢F U} —L Ul vordz vk e {0,1,...p}

« Must choose interface U approximation from available data
— BR2: Take average of left/right solutions at the interface
— Compact Gradient Recovery (CGR): U = recovered solution

* Interface gradient: CGR formulated to maintain compact stencil
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The Recovery Concept

* Recovery: reconstruction technique introduced by Van Leer and Nomura™ in 2005
* Recovered solution (f4z) and DG solution (U") are equal in the weak sense
* Generalizes to 3D hex elements via tensor product basis

0.2

Recovered Solution for Zp : —
i1 Exact

n n —DG solution
T = w\r B
fan(r) Z pHr) fis -=‘Recovered solution

Kp = 2p + 2 constraints for f 4p:

¢ fap de= [ ¢% Ul de VEe{01,..,p}
. SIA v “A

o fap do = o Uk do Yk e€{0,1,...,p}
Qg Ogp

Interface Solution along Z,5 :

R(Ua,Ug) = fap(0) '11 | -0.5 0 0.5 1

Representations of U(x) = sin3(x — g)

tVan Leer & Nomura, AIAA Conf. 2005
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Recovery DGT

Exact Distribution U DG solution: Uy, Uy Recovered solution: f,z

08 06 -04 -0.2 0 02 04 06 08 08 -06 -04 -02 0 02 04 06 08 08 -06 -04 -0.2 0 02 04 06 08

2K
U=x+y+sin(2nxy) fap = Z fap¥™ ()
m=1

¥
*

ngqb’“dA:/ UhordA Vi e {1.K}
Qa

Arém
m=1 Q4

U Upeom fapptdA = f UkofdA Vk e {1.K}

1 Qp Qp

Recovered solution is continuous across the interface, uniquely defines (U, VU)
— Conventional DG approaches for Navier-Stokes lack this property

tVan Leer & Nomura, AIAA Conf. 2005
Schematic from [Johnson & Johnsen, APS DFD 2015] M UNIVERSITY OF MICHIGAN




Recovery Demonstration: All Solutions

U(x) versus x

2 | | —U(zx) = exp(z) X sin(mz)?
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The ICB reconstruction

* Each interface gets a pair of ICB reconstructions, § Example: p = 1 (2 DOF/element)

one for each element: . 37X
U= exsm(T)

K;cp = p + 2 coefficients per element:

U4 (r) = (r) C%

Constraints for U/L5: (Similar for UL5)

/ o ULCB dx = / 0% Uldr Vk € {0,1, ...p}
w Q,ﬂ_ v ﬂ_ﬂ.

Op IfﬁCBd:ac = Op Ugdm
Qb‘ QJJ

Choice of Oy affects behavior of ICB scheme
— lllustration uses O = 1
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The ® Function: ICB-Modal vs. ICB-Nodal

* ICB-Modal (original): ®, = ©®5 = 1 is lowest mode in each element’s solution

* ICB-Nodal (new approach): 0 is degree p Lagrange interpolant
— Use Gauss-Legendre quadrature nodes as interpolation points
— Take ® nonzero at closest quadrature point

1.5

Sample O choice for p = 3:
Each O is unity at quadrature
point nearest interface
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The ® Function: ICB-Modal vs. ICB-Nodal

. ICB
ICB-Modal: Eacth matches ICB-Nodal: Each UCB matches
the average of U™ in

. ) U™ at near quadrature point
neighboring cell

T
rICB-N

e —

s TTICB-M
L B
1
U;I
!
L _{Jr”
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Fourier Analysis

e Fourier analysis performed on 2 configurations: | scheme

~

F

— Conventional: Upwind DG + BR2 uDG + BR2

Rie(Uﬁ, Ug, n4)

— New: ICB-Nodal + CGR ICB + CGR

Rie(ULB ULCB n7)

Analysis Procedure T :

1) Linear advection-diffusion, 1D:

2) Define element Peclet number:

3) Set Initial condition: U(z,0) =exp(iw'z) w=hw'

4) Cast numerical scheme in matrix-vector form:

oU 02U U

e M ao — a5
ot O o

T Watkins et al., Computers & Fluids 2016 M UNIVERSITY OF MICHIGAN



Fourier Analysis

5) Diagonalize the update matrix: A=VAV—1
6) Calculate initial expansion weights, f: V3= ﬂ’m(w, 0)

* Watkins et al. derived estimate for initial error
growth:
— A" =npth eigenvalue of .A Eigenvalue corresponding
pt1 to exact solution:
E(w, PER) n||An — A
n=1

AT = —i(PEpw) — w?

Im(X) vs w

Eigenvalue Example:
ICB+CGR, p = 2, PE; = 10,
%% = —i(10w) — w?

T Watkins et al., Computers & Fluids 2016 M UNIVERSITY OF MICHIGAN



Wavenumber Resolution

p+1
E(w, PEp) nl|An — A
n=1

e To calculate wavenumber resolution:
1) Define some error tolerance(e) and Peclet number (PE})

2) Identify cutoff wavenumber, wf according to:  £(w, PE),) < ¢ for all w € [0, wy].

Wy

3) Calculate resolving efficiency: 71 = (p+ D

T Watkins et al., Computers & Fluids 2016 M UNIVERSITY OF MICHIGAN



Scheme Comparison: PE;, = 10

Fourier analysis, Linear advection-diffusion

Resolving efficiency measures effectiveness of update scheme’s consistent eigenvalue
Resolving Efficiency: ¢ = 1/10, PFEj = 10 Resolving Efficiency: e =1, PE, = 10

0.25¢ ' 1 0.25£

0.2+ 8 0.2¢

0.15 0.15
=

0.14

#-|CB+CGR 3 4#-|CB+CGR
3-conventional 3 {3-conventional
4 5 3 4 5
P

Conventional | ICB + CGR Conventional | ICB + CGR
0.0296 0.1103 0.0940 0.2389
0.0531 0.0776 0.1200 0.1793
0.0844 0.1113 0.1451 0.1755
0.1022 0.1225 0.1677 0.2628
0.1196 0.1304 0.1743 0.1874

M UNIVERSITY OF MICHIGAN



Compact Gradient Recovery (CGR) Approach

e Similar to BR2: Manage flow of information by altering gradient reconstruction
* 1D Case shown for simplicity: Let g4, gg be gradient reconstructions in 04, Qp
» Perform Recovery over g, gg for 6 on the shared interface

P*gadzr = / FVUdx Yk e {1.K}
JQa Ja

0 =R(94,9B)
/ * gpdr = P*VU"dx Vk € {1.K}
g Qp

/ oF godr = (¢FU) g — ("0 L -/ (V¥ \U"dx VEk € {1..K}
Qe 2.

U=xf+(1-x)Ua U=xf+(1-x)Ug
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The ICB Approach (Specifically, ICBp[0])

* Recovery is applicable ONLY for viscous Example with p1 elements:
terms; unstable for advection terms.
Interface-Centered Binary (ICB)
reconstruction scheme modifies Recovery L —r——
approach for hyperbolic PDE. 4/—DG solution

2
Representations of U(x) = sin3(x) + x?

Process Description: 0.8

0.6
1. Start with the DG polynomials U}f in

Q4 and Ul’} in Qp. 0.4/

M UNIVERSITY OF MICHIGAN



The ICB Approach (Specifically, ICBp[0])

Process Description:
P Example with p1 elements:
2
. . X
Start with the DG polynomials U} in Representations of U(x) = sin®(x) + 5

Q4 and Ul? in Qp. 12

—EXxact

Obtain reconstructed solution U.¢P 1/~ DG solution

in (14, containing p + 2 DOF.

0.8
jUjCBqSkdx: ij{qbkdx vk € {1..K} 0.6l

4 04

jU/{Cdez fU[;‘dx 0.4/

Np Np
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The ICB Approach (Specifically, ICBp[0])

Process Description:

Example with p1 elements:

2
. . X
Start with the DG polynomials U} in Representations of U(x) = sin®(x) + 5

Q4 and Ul? in Qp.

Obtain reconstructed solution U.¢P

in (14, containing p + 2 DOF.

jUjCBq’)kdx: ij{qbkdx vk € {1..K}

4 04

fU/{Cdez ngdx

0p Qp

UICB

Perform similar operation for Ug

Use ICB solutions as inputs to
HCOTHJ(U-l-’ U_)

ICB Method achieves 2p + 2 order of accuracy
Generalizes to 2D via tensor-product basis

1.2

—Exact
1 —DG solution

0.8

0.6¢

0.4/
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Discontinuity Sensor

Approach: Check cell averages for severe density/pressure jumps across element interfaces

1) Calculate U=cell average for each element
2) At each interface, use sensor of Lombardini to check for shock wave:

i. If Lax entropy condition satisfied (hat denotes Roe average at interface):

Up —¢L >U—C=>UR —CR

ii. Check pressure jump:

_ IPr—pi] & — 2¢
pL+ PR (1+¢)?

ii. If® > 0.01, tag both elements as “troubled”

3) At each interface, check for contact discontinuity Apé? _ A
i. Calculate wave strength propagating the density jump: Aa: = i

i. Check relative strength: &= 2% — 2—52
pL + PR (1+£)

ii. IfZ>0.01, tag both elements as “troubled”
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