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Code Overview
Basic Features:

• Spatial Discretization: Discontinuous Galerkin, nodal basis
• Time Integration: Explicit Runge-Kutta (4th order and 8th order available)
• Riemann solver: Roe, SLAU2†

• Quadrature: One quadrature point per basis function

Non-Standard Features:
• Discontinuity Sensor: Detects shock/contact discontinuities, tags “troubled” elements

• ICB reconstruction: compact technique, adjusts Riemann solver arguments

• Compact Gradient Recovery (CGR): Mixes Recovery with traditional mixed formulation 
for viscous terms

• Shock Capturing: PDE-based artificial dissipation inspired by C-method†† of Reisner et al.

†Kitamura & Shima, JCP 2013
††Reisner et al., JCP 20131



Shock Capturing for Euler Equations
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Approach: Store and evolve artificial dissipation coefficients (𝐶𝑥, 𝐶𝑦) as extra flow variables
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Approach: Store and evolve artificial dissipation coefficients (𝐶𝑥, 𝐶𝑦) as extra flow variables



Recovery Demonstration: 𝒑 = 𝟑
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Recovery Demonstration: 𝒑 = 𝟑

Recovered solution 
(degree 2𝑝 + 1 = 7
polynomial) more accurate at 
interface
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Ω𝐴 Ω𝐵



Recovery Demonstration: 𝒑 = 𝟑

ICB reconstructions (degree 
𝑝 + 2 = 4) equal at closest 
quadrature points
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Ω𝐴 Ω𝐵



• For diffusive fluxes: CGR maintains compact stencil†, offers advantages over BR2
― Larger allowable explicit timestep size 
― Improved wavenumber resolution

• For advection problems: 

• DG weak form: Must calculate flux along interfaces
― Conventional approach (upwind DG): plug in left/right values of DG solution

• Conventional approach:

• Our approach:  ICB reconstruction scheme††

― Replace left/right solution values with ICB reconstruction:

Our Approach vs. Conventional DG

†† Khieu & Johnsen, AIAA Aviation 2014
† Johnson & Johnsen, AIAA Aviation 2017
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Vortex Transport Case (VI1)
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Setup 1: 𝑝 = 1, RK4, SLAU Riemann solver
Setup 2: 𝑝 = 3, RK8† (13 stages), SLAU Riemann solver
ICB usage: Apply ICB on Cartesian meshes, conventional DG otherwise

EQ: Global 𝐿2 error of 𝑣:

𝐸𝑣 =
 Ω 𝑣 − 𝑣0

2𝑑𝑉

 Ω 𝑑𝑉

Convergence: order 2𝑝 + 2 on 
Cartesian mesh, order 2𝑝 on 
perturbed quad mesh

† Cash & Karp, ACMTMS 1990



Shock-Vortex Interaction (CI2)
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Configurations: Cartesian (𝑝 = 1), Cartesian (𝑝 = 3), Irregular Simplex 𝑝 = 1
Setup: RK4 time integration, SLAU (Cartesian) and Roe (Simplex) Riemann solvers
Shock Capturing: PDE-based artificial dissipation
ICB usage: Only on Cartesian grids

Quad
𝑝 = 1
𝑁𝑦 = 300

Quad
𝑝 = 3
𝑁𝑦 = 300

Simplex 
𝑝 = 1
𝑁𝑦 = 300



Taylor-Green Test (WS1)
• Code setup: p2 elements, uniform hex mesh (27 DOF/element), RK4 time integration

― Reference result taken from HiOCFD3 workshop
― Our approach allows larger stable time step
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ICB+CGR: 2.5 CPU-hours
Conventional: 9.2 CPU-Hours

ICB+CGR: 75 CPU-hours
Conventional: 304 CPU-Hours



Conclusions
• Were the verification cases helpful and which ones were used?

― Vortex transport: Shows that ICB is implemented properly
― TGV: demonstrates value of ICB+CGR for nonlinear problem

• What improvements are needed to the test case?
― Meshes for vortex transport problem are tough to work with (GMSH input file 

preferred)
― Shock-Vortex interaction: No improvement, test case is perfect
― TGV: Standardize energy spectrum calculation and make reference data more easily 

accessible

• Did the test case prompt you to improve your methods/solver
― Yes: added shock capturing on non-Cartesian elements
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Conclusions
• What worked well with your method/solver?

― Feature resolution on Cartesian meshes (ICB very helpful)

• What improvements are necessary to your method/solver?
― Implicit/Explicit time integration for advection-diffusion
― Recovery troublesome on non-Cartesian elements
― Parallel efficiency with solution-adaptive approach
― Curved elements
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CGR = Mixed Formulation + Recovery

• Must choose interface  𝑈 approximation from available data
― BR2: Take average of left/right solutions at the interface
― Compact Gradient Recovery (CGR):  𝑈 = recovered solution

• Interface gradient: CGR formulated to maintain compact stencil

Gradient approximation in 𝛀𝒆:

Weak equivalence with 𝛁𝐔:

Integrate by parts for 𝝈 weak form:
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• Recovery: reconstruction technique introduced by Van Leer and Nomura† in 2005
• Recovered solution (𝑓𝐴𝐵) and DG solution (𝑈ℎ) are equal in the weak sense
• Generalizes to 3D hex elements via tensor product basis

The Recovery Concept

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑(𝒙 −
𝝅

𝟑
)

𝜴𝑨 𝜴𝑩

𝑟

Recovered Solution for           :

𝑲𝑹 = 𝟐𝒑 + 𝟐 constraints for 𝒇𝑨𝑩:

Interface Solution along            :

†Van Leer & Nomura, AIAA Conf. 2005



ΩA

• Recovered solution is continuous across the interface, uniquely defines (U, 𝛻𝑈)
― Conventional DG approaches for Navier-Stokes lack this property

Exact Distribution U DG solution: 𝑈ℎ
𝐴 , 𝑈ℎ

𝐵
Recovered solution: 𝑓𝐴𝐵

𝑈 = 𝑥 + 𝑦 + sin 2𝜋𝑥𝑦

Schematic from [Johnson & Johnsen, APS DFD 2015]

Recovery DG†

†Van Leer & Nomura, AIAA Conf. 2005

ΩA ΩB ΩB
ΩBΩA



Recovery Demonstration: All Solutions



• Each interface gets a pair of ICB reconstructions, 
one for each element:

𝑲𝑰𝑪𝑩 = 𝒑 + 𝟐 coefficients per element:

Constraints for 𝑼𝑨
𝑰𝑪𝑩: (Similar for 𝑼𝑩

𝑰𝑪𝑩)

• Choice of Θ𝐵 affects behavior of ICB scheme
― Illustration uses Θ𝐵 = 1

The ICB reconstruction

𝜴𝑨 𝜴𝑩

∀𝑘 ∈ {0,1, … 𝑝}

Example: 𝑝 = 1 (2 DOF/element)

𝑈 = 𝑒𝑥𝑠𝑖𝑛(
3𝜋𝑥

4
)

𝑟



The 𝚯 Function: ICB-Modal vs. ICB-Nodal
• ICB-Modal (original): ΘA = Θ𝐵 = 1 is lowest mode in each element’s solution

• ICB-Nodal (new approach): Θ is degree 𝑝 Lagrange interpolant
― Use Gauss-Legendre quadrature nodes as interpolation points
― Take Θ nonzero at closest quadrature point

Sample 𝚯 choice for 𝒑 = 𝟑:
Each Θ is unity at quadrature 
point nearest interface



The 𝚯 Function: ICB-Modal vs. ICB-Nodal

ICB-Modal: Each 𝑈𝐼𝐶𝐵 matches 
the average of 𝑈ℎ in 
neighboring cell

ICB-Nodal: Each 𝑈𝐼𝐶𝐵 matches 
𝑈ℎ at near quadrature point



• Fourier analysis performed on 2 configurations:
― Conventional: Upwind DG +  BR2
― New: ICB-Nodal + CGR

1) Linear advection-diffusion, 1D:

2) Define element Peclet number:

3) Set Initial condition:

4) Cast numerical scheme in matrix-vector form:       

Fourier Analysis
Scheme  𝑭  𝑼

uDG + BR2

ICB + CGR

Analysis Procedure † :

† Watkins et al., Computers & Fluids 2016



Eigenvalue corresponding 
to exact solution:

Fourier Analysis
5) Diagonalize the update matrix: 

6) Calculate initial expansion weights, 𝜷: 

• Watkins et al. derived estimate for initial error 
growth:

― 𝜆𝑛 = 𝑛𝑡ℎ eigenvalue of 

Eigenvalue Example:
ICB+CGR, 𝑝 = 2, 𝑃𝐸ℎ = 10,

𝜆𝑒𝑥 = −𝑖 10𝜔 − 𝜔2

† Watkins et al., Computers & Fluids 2016



Wavenumber Resolution

• To calculate wavenumber resolution:
1) Define some error tolerance(𝜖) and Peclet number (𝑃𝐸ℎ)

2) Identify cutoff wavenumber, 𝜔𝑓 according to:

3) Calculate resolving efficiency:

† Watkins et al., Computers & Fluids 2016



Scheme Comparison: 𝑷𝑬𝒉 = 𝟏𝟎

P Conventional ICB + CGR

1 0.0296 0.1103

2 0.0531 0.0776

3 0.0844 0.1113

4 0.1022 0.1225

5 0.1196 0.1304

P Conventional ICB + CGR

1 0.0940 0.2389

2 0.1200 0.1793

3 0.1451 0.1755

4 0.1677 0.2628

5 0.1743 0.1874

• Fourier analysis, Linear advection-diffusion
• Resolving efficiency measures effectiveness of update scheme’s consistent eigenvalue



Compact Gradient Recovery (CGR) Approach
• Similar to BR2: Manage flow of information by altering gradient reconstruction
• 1D Case shown for simplicity: Let 𝑔𝐴, 𝑔𝐵 be gradient reconstructions in Ω𝐴, Ω𝐵

 Perform Recovery over 𝑔𝐴, 𝑔𝐵 for  𝜎 on the shared interface

𝜴𝑨 𝜴𝑩



Example with 𝒑𝟏 elements:

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑 𝒙 +
𝒙𝟐

𝟐

ΩA ΩB

Process Description:

1. Start with the DG polynomials 𝑈𝐴
ℎ in 

Ω𝐴 and 𝑈𝑏
ℎ in Ω𝐵.

The ICB Approach (Specifically, ICBp[0])

• Recovery is applicable ONLY for viscous 
terms; unstable for advection terms.

• Interface-Centered Binary (ICB) 
reconstruction scheme modifies Recovery 
approach for hyperbolic PDE.



Process Description:

1. Start with the DG polynomials 𝑈𝐴
ℎ in 

Ω𝐴 and 𝑈𝑏
ℎ in Ω𝐵.

2. Obtain reconstructed solution 𝑈𝐴
𝐼𝐶𝐵

in Ω𝐴, containing 𝑝 + 2 DOF.

Example with 𝒑𝟏 elements:

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑 𝒙 +
𝒙𝟐

𝟐

ΩA ΩB

The ICB Approach (Specifically, ICBp[0])

 𝑈𝐴
𝐼𝐶𝐵𝜙𝑘𝑑𝑥

𝛺𝐴

=  𝑈𝐴
ℎ𝜙𝑘𝑑𝑥

𝛺𝐴

  ∀𝑘 ∈ {1. .𝐾} 

 𝑈𝐴
𝐼𝐶𝐵𝑑𝑥

𝛺𝐵

=  𝑈𝐵
ℎ𝑑𝑥

𝛺𝐵

                           



Process Description:

1. Start with the DG polynomials 𝑈𝐴
ℎ in 

Ω𝐴 and 𝑈𝑏
ℎ in Ω𝐵.

2. Obtain reconstructed solution 𝑈𝐴
𝐼𝐶𝐵

in Ω𝐴, containing 𝑝 + 2 DOF.

3. Perform similar operation for 𝑈𝐵
𝐼𝐶𝐵

4. Use ICB solutions as inputs to 
 𝑯𝒄𝒐𝒏𝒗(𝑈

+, 𝑈−)

Example with 𝒑𝟏 elements:

Representations of 𝑼 𝒙 = 𝒔𝒊𝒏𝟑 𝒙 +
𝒙𝟐

𝟐

ΩA ΩB

The ICB Approach (Specifically, ICBp[0])

 𝑈𝐴
𝐼𝐶𝐵𝜙𝑘𝑑𝑥

𝛺𝐴

=  𝑈𝐴
ℎ𝜙𝑘𝑑𝑥

𝛺𝐴

  ∀𝑘 ∈ {1. .𝐾} 

 𝑈𝐴
𝐼𝐶𝐵𝑑𝑥

𝛺𝐵

=  𝑈𝐵
ℎ𝑑𝑥

𝛺𝐵

                           

• ICB Method achieves 𝟐𝒑 + 𝟐 order of accuracy
• Generalizes to 2D via tensor-product basis



Discontinuity Sensor
Approach: Check cell averages for severe density/pressure jumps across element interfaces

1) Calculate  𝑈=cell average for each element
2) At each interface, use sensor of Lombardini to check for shock wave:

i. If Lax entropy condition satisfied (hat denotes Roe average at interface):

ii. Check pressure jump:

iii. If Φ > 0.01, tag both elements as “troubled”

3) At each interface, check for contact discontinuity
i. Calculate wave strength propagating the density jump:

ii. Check relative strength:

iii. If Ξ > 0.01, tag both elements as “troubled”


