Verification of Moving Mesh Discretizations

Krzysztof J. Fidkowski

UNIVERSITY of MICHIGAN
COLLEGE of ENGINEERING

High Order CFD Workshop Kissimmee, Florida

January 6, 2018

How can we verify moving mesh results?

Goal:

Demonstrate accuracy of flow solutions on moving domains and meshes

Considerations:

- Inviscid versus viscous term discretization
- Solution field norm versus scalar outputs
- Integration quadrature requirements
- Mapping singularities
- Geometric conservation
- Boundary condition consistency

The arbitrary Lagrangian-Eulerian (ALE) method

ALE Idea: solve transformed PDE on a static reference domain

$$\begin{array}{rcl} & & & \\ & & & \\ \vec{X}, t & \Rightarrow & \vec{x}(\vec{X}, t) \\ \mathcal{G} & = & \frac{\partial \vec{x}}{\partial \vec{X}} \\ g & = & \det(\mathcal{G}) \\ \mathbf{u}_X & = & g \mathbf{u} \\ \vec{\mathbf{q}}_X & = & g \mathcal{G}^T \vec{\mathbf{q}} \\ \vec{v}_G & = & \frac{\partial \vec{x}}{\partial t} \\ \vec{\mathbf{H}}_X & = & g \mathcal{G}^{-1} \vec{\mathbf{H}} - \mathbf{u}_X \mathcal{G}^{-1} \vec{v}_G \\ \vec{n} da & = & g \mathcal{G}^{-T} \vec{N} dA \\ \vec{N} dA & = & q^{-1} \mathcal{G}^T \vec{n} da \end{array}$$

Key definitions

- \vec{X} reference-domain coordinates
- \vec{x} physical-domain coordinates =
- determinant of Jacobian matrix g
- \vec{v}_G grid velocity, $\partial \vec{x} / \partial t$ =

- u physical state =
- $\mathbf{u}_X =$ reference state Ħ
 - physical flux vector =
- $\vec{\mathbf{H}}_X$ reference flux vector =

Mesh Motion Verification

The transformed equations

 Integrate the evolution PDE over a time-varying volume v(t), apply the divergence theorem, transform terms to reference space, and apply the divergence theorem again,

$$\frac{\partial \mathbf{u}_X}{\partial t}\bigg|_{\vec{X}} + \nabla_X \cdot \vec{\mathbf{H}}_X(\mathbf{u}_X, \nabla_X \mathbf{u}_X) = \mathbf{0},$$

where

•
$$\mathbf{u}_X = g\mathbf{u}$$

• $\vec{\mathbf{H}}_X = g\mathcal{G}^{-1}\vec{\mathbf{H}} - \mathbf{u}_X\mathcal{G}^{-1}\vec{v}_G$

- ∇_X is the gradient with respect to the reference coordinates
- The transformed flux, $\vec{\mathbf{H}}_X$, separates into inviscid and viscous contributions,

$$\vec{\mathbf{H}}_X = \vec{\mathbf{F}}_X + \vec{\mathbf{G}}_X, \quad \vec{\mathbf{F}}_X = g\mathcal{G}^{-1}\vec{\mathbf{F}} + \mathbf{u}_X\mathcal{G}^{-1}\vec{v}_G, \quad \vec{\mathbf{G}}_X = g\mathcal{G}^{-1}\vec{\mathbf{G}}$$

Mesh Motion Verification

• To minimize code intrusion, express the reference-space fluxes in terms of the physical fluxes

$$\vec{\mathbf{F}}_{X} = g\mathcal{G}^{-1}\vec{\mathbf{F}} - \mathbf{u}_{X}\mathcal{G}^{-1}\vec{v}_{G} = g\mathcal{G}^{-1}\left(\vec{\mathbf{F}} - \mathbf{u}\vec{v}_{G}\right)$$
$$\vec{\mathbf{G}}_{X} = g\mathcal{G}^{-1}\vec{\mathbf{G}} = -g\mathcal{G}^{-1}\mathbf{K}\vec{\mathbf{q}} = -\underbrace{\mathcal{G}^{-1}\mathbf{K}\mathcal{G}^{-T}}_{\mathbf{K}_{X}}\vec{\mathbf{q}}_{X}$$

- Linearizations must be performed w.r.t reference states
- Viscous stabilization does not change (same as physical)!
- Boundary conditions (e.g. no slip) must incorporate the boundary velocity, v_G.

Outputs

• General form of boundary flux integral outputs:

$$J = \int_{\partial \Omega} \mathbf{o}^T \widehat{\mathbf{H}} \cdot \vec{n} \, da,$$

- $\mathbf{o} \in \mathbb{R}^s$ is a weight function that defines the output
- For 2D Navier-Stokes:
 - $\begin{array}{lll} \mathbf{o} = [0; \cos \alpha; \sin \alpha; 0] & \Rightarrow & \mathsf{Drag} \\ \mathbf{o} = [0; -y; x; 0] & \Rightarrow & \mathsf{Moment\ about\ origin} \\ \mathbf{o} = [0; v_{Gx}; v_{Gy}; 0] & \Rightarrow & \mathsf{Power} \end{array}$
- For example, if $\vec{v}_G = \vec{v}_0 + \vec{\omega} \times \vec{r}$, where \vec{r} is a position vector relative to some origin of rotation,

$$J = \int_{\partial\Omega} (\vec{v}_0 + \vec{\omega} \times \vec{r}) \cdot \vec{f}_{\text{surf}} \, da = \underbrace{\int_{\partial\Omega} \vec{v}_0 \cdot \vec{f}_{\text{surf}} \, da}_{\vec{v}_0 \cdot \vec{F}_{\text{net}}} + \underbrace{\int_{\partial\Omega} \vec{\omega} \cdot (\vec{r} \times \vec{f}_{\text{surf}}) \, da}_{\vec{\omega} \cdot \vec{T}_{\text{net}}}$$

Mesh Motion Verification

Inviscid field norm checK: Euler vortex

- Analytical vortex solution to the Euler equations
- Sinusoidal interior mesh deformation for testing

$$\begin{aligned} x(t) &= X + 2\sin(2\pi X/20)\sin(2\pi Y/15)\sin(2\pi t) \\ y(t) &= Y + 1.5\sin(2\pi X/20)\sin(2\pi Y/15)\sin(4\pi t) \end{aligned}$$

Pressure at final time

Deformed mesh

Mesh Motion Verification

Euler vortex results

Inviscid boundary output: bump

M=0.2. structured mesh, sinusoidal mesh motion

Mach contours

mesh at t = 0.0

mesh at t = 0.5

mesh at t = 1.5

Mesh Motion Verification

Inviscid boundary output: bump

- Monitor instantaneous drag output on the bump
- Compare moving mesh results to a static mesh
- Coarse (p = 3, $N_t = 40$) and fine (p = 4, $N_t = 60$) solutions
- Verification: error decreases with increasing resolution

Viscous boundary output: flat plate

M=0.2, Re = 1000, adapted mesh, sinusoidal mesh motion

Mesh Motion Verification

Viscous boundary output: flat plate

- Monitor instantaneous drag output on the flat plate
- Compare moving mesh results to a static mesh
- Coarse $(p = 2, N_t = 20)$ and fine $(p = 3, N_t = 40)$ solutions
- Verification: error decreases with increasing resolution

NACA 0012 airfoil in pitch/plunge motion

• Smooth plunge, h(t), and pitch, $\theta(t)$, motion, $0 \le t \le 1$

$$h(t) = \frac{1 - \cos \pi t}{2}, \quad \theta(t) = \frac{\pi}{6} \frac{1 - \cos 2\pi t}{2}.$$

• NACA 0012, *Re_c* = 5000, *M* = 0.2, steady-state IC

Mesh Motion Verification

Outputs

Outputs

Worskhop runs meshes: quasi-uniform refinement

Worskhop runs: details

- Considered spatial orders p = 1, 2, 3, 4, 5
- ESDIRK5 (5th order) time stepping
- Number of time steps depends on mesh and order:

	p = 1	p = 2	p = 3	p = 4	p = 5
Mesh 0	30	60	120	180	240
Mesh 1	60	120	180	240	320
Mesh 2	120	180	240	320	400

(these values were determined empirically)

• Error computed relative to a "truth" solution from a $p = 5, N_t = 800$, ESDIRK5 run on Mesh 3

Worskhop result: case 1, pure heaving

Truth lift integral = -2.33124734

Mesh Motion Verification

Worskhop result: case 1, pure heaving

Truth power integral = -1.3834990

Mesh Motion Verification

Worskhop result: case 2, flow aligning

Truth lift integral = 0.610038583

Mesh Motion Verification

Worskhop result: case 2, flow aligning

Truth power integral = -0.204899808

Mesh Motion Verification

Worskhop result: case 3, energy extracting

Truth lift integral = 1.6704741181

Mesh Motion Verification

Worskhop result: case 3, energy extracting

Truth power integral = 0.3637653632

Mesh Motion Verification