CR1 - DPW6 Common Research Model

Marshall C. Galbraith

Aerospace Computational Design Laboratory Department of Aeronautics and Astronautics Massachusetts Institute of Technology

Common Research Model (CRM) Overview

- Steady-state RANS
- Cruise condition transonic
- Wing-body representative of modern airliner

- Extensively studied in AIAA Drag Prediction Workshops 4, 5, and 6 with numerical data (mostly Finite Volume) from many groups
 - 55 contributions from 22 groups in DPW-5
 - 48 contributions from 25 groups in DPW-6
- References:
 - http://commonresearchmodel.larc.nasa.gov
 - https://aiaa-dpw.larc.nasa.gov
 - Figures are taken from DPW-5 and DPW-6 summary presentations

Fully turbulent transonic, no wind tunnel effects Mach = 0.85, Re = 5×10^6 , $C_L = 0.5 \pm 0.001$

- 2nd High-Order Workshop (3 Contributions)
 - Two: DG, P=1, mesh adaptive (SA or $k\omega$)
 - One: FV, 2nd-order central (SA)
- 3rd High-Order Workshop (Same 3 Contributors)
 - Two: DG, P=1, improved mesh adaptive (SA or $k\omega$)
 - One: FV, 2nd-order central (SA)
- 4th High-Order Workshop (1 Contributor)
 - One: FD, 5th-order WCNS-E5 (Menter-SST)

Fixed C_L Calculations

- Fixed C_L important for design
 - All DPW mesh refinement studies with fixed CL
- Increases computational requirements (find α)
- Many contributors to are students

Fixed α Calculations

6th CFD Drag Prediction Workshop Washington D.C. – June 2016

Case 3: CRM WB Static Aero-Elastic Effect:

- NASA Common Research Model, Wing-Body
- Mach=0.85: Mach=0.3
 - α=2.50°, 2.75°, 3.00°, 3.25°, 3.50°, 3.75°, 4.00°
- Grid Resolution Level:
 - 3) Medium,
- Chord Reynolds Number: 5x10⁶
- Measured Static Aero-Elastic Wing Deformation at each angle of attack

5th High-Order Workshop Participants

- Ryan Glasby and Taylor Erwin, U. of Tennessee SUPG P=1, P=2, negative-SA
- Behzad Ahrabi, U. of Wyoming SUPG P=1, P=2, negative-SA
- Michael Brazell, U. of Wyoming DG-SIP P=1, P=2, negative-SA
- Kyle Anderson, NASA Langley SUPG P=1, negative-SA
- Marshall Galbraith, MIT DG-BR2 P=1, P=2, negative-SA (Mach 0.3)

High-Order Workshop Meshes

New all tetrahedral grids. Not a family (no order of accuracy).

	Q1 Nodes	Q2 Nodes	Cells	DG P1	DG P2
ExtraTiny	0.18	1.5	1.0	4.3	10.7
Tiny	0.33	2.6	1.9	7.7	19.2
Coarse	0.43	3.4	2.5	10.0	25.0
Medium	0.82	6.5	4.8	19.1	47.8
Fine	1.8	14.5	10.7	42.8	107.0

Counts in millions

Coarse Grid Q2 by Steve Karman (Pointwise)

Galbraith (MIT)

Joukowski Airfoil Verification for High-Order Methods

- Misnomer: "High-order methods are less sensitive to the mesh"
 - Compact schemes less sensitive to poor shape (e.g. misaligned anisotropy) and mesh irregularity
 - Solution/Output accuracy sensitive to global distribution
- L^2 Solution Error: $O(h^{P+1})$
 - Solution smoothness
- Output functional error: $O(h^{2P})$
 - Solution and adjoint smoothness

- Reduce inviscid singularity
- Mach 0.5, $\alpha = 0^{\circ}$, Re = 1000
- Symmetric: $C_l \equiv 0$
- C-grid: Clustering at stagnation point and trailing edge

Optimal mesh distributions will observe $O(h^{2P})$ with fewer DOF

Summary for Joukowski Airfoil Verification

Fluent, Star-CCM, COFFE: 4th workshop. SANS vs. COFFE: Q=4?

Galbraith (MIT)

Summary for Joukowski Airfoil Verification

High-Order Workshop Meshes

FV: multi-block structured meshes from DPW-5 not high-order

High-Order Workshops 2, 3, 4 Intentionally poor quality Intended hanging-node adaptation

Current workshop meshes Intended to give good results

- Previous Workshops: Fixed C_L
- Current Workshop: Fixed α
- Drag Coefficient
- Same axis range to DPW-5 plots

• GRDFAC:
$$h^2 = \left(\frac{1}{\sqrt[3]{DOF}}\right)$$

- 2nd-order convergence yields straight lines
- Current workshop C_L and Idealized Profile Drag Coefficient (CDpi)

 $\textit{C}_{L}=0.5\pm0.001$

DPW-5

DLR P1 – residual hanging node UM P1 – drag adjoint hanging node

 $\textit{C}_{L}=0.5\pm0.001$

Galbraith (MIT)

CR1 - DPW6 Common Research Model

6 January 2018 14 / 24

4th High-Order Workshop, FD Meshes

National University of Defense Technology, China Menter-SST First submission with high-order finite difference

Level	Name	Label	Cells	$\Delta_1 Y^+$
1	Tiny	G1	1140240	2.155
2	Coarse	G2	3848310	1.437
3	Medium	G3	9121920	1.025
4	Fine	G4	30786480	0.683
5	Extra-Fine	G5	72975360	0.500

Table	1:	Multi-block	HO-grid	family.
-------	----	-------------	---------	---------

 $\textit{C}_{L}=0.5\pm0.001$

DPW-5

Galbraith (MIT)

DPW-5

First P2 results!

M=0.3

M=0.85

M=0.3

M=0.85

M=0.3

M=0.85

5th High-Order Workshop, *CDpi*

Idealized Profile Drag Coefficient: $CDpi = C_D - C_L^2/(\pi AR)$

M=0.3

Summary

2nd and 3rd Workshops:

"The present results demonstrate the applicability of DG for this scenario, but they do not show a clear advantage of DG over FV methods."

Summary

2nd and 3rd Workshops:

"The present results demonstrate the applicability of DG for this scenario, but they do not show a clear advantage of DG P=1 over FV methods."

2nd and 3rd Workshops:

"The present results demonstrate the applicability of DG for this scenario, but they do not show a clear advantage of DG P=1 over FV methods."

- Transonic RANS is still challenging (non-linear solver)
- Meshes matter
 - Previous Workshops: Intentionally poor hex meshes intended for hanging-node adaptation
 - Current Workshop: Intended to give good results
- First DG and SUPG P=2 results
 - Within the spread of DPW-6 results
- Discrepancies between FEM solutions unresolved
- Meshing is not well understood for high-order scheme

Open Discussion

Backup Slides

Uniformly Refined Families of Meshes

