Results from HPCMP CREATE[™]-AV Kestrel Component COFFE for the 6th Drag Prediction Workshop Cases

J. Taylor Erwin, Ryan S. Glasby, and Douglas L. Stefanski Joint Institute for Computational Sciences, University of Tennessee

Steve L. Karman, Jr. Pointwise, Inc.

Outline – COFFE DPW6

- Kestrel Component COFFE Availability
- CFD Verification and Validation Effort
- COFFE Solver Discretization Update

DPW6 Results

- NACA0012
- 3D Mesh Convergence -- Drag
 - Wing Body (WB)
 - Wing Body Nacelle Pylon (WBNP)
- Alpha Sweep for Wing Body
- Conclusions
- Acknowledgments

CFD Verification & Validation Effort

- Extensive V&V Effort
- Verification
 - MMS
 - Joukowski airfoil
- Validation
 - DPW6
 - HLPW3
 - Robin Fuselage (shown here)
 - Laminar Sphere
 - 2D Supersonic Base-flow
 - NASA TMR Cases
 - NACA0012
 - ONERA-M6
 - 3D Bump
 - Hemisphere Cylinder

Solver Discretization Update

- The SU/PG discretization utilized in COFFE is outlined here:
 - Ryan S. Glasby, J. Taylor Erwin, Douglas L. Stefanski, Steven R. Allmaras, Marshall C. Galbraith, W. Kyle Anderson, and Robert H. Nichols. "Introduction to COFFE: The Next-Generation HPCMP CREATE[™]-AV CFD Solver", 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, (AIAA 2016-0567).
- For these calculations, the SU/PG stabilization term, and the shock indicator are defined as:

$$\sum_{i} \iiint \left[\nabla \phi_{i} \bullet \frac{\partial F_{c}(u_{h})}{\partial u_{h}} \right] [\tau] \left[PDE_{StrongForm} \right]$$
$$\left[\tau \right]^{-1} = \sum_{i} \left(\left| \nabla \phi_{i} \bullet \frac{\partial F_{c}(u_{h})}{\partial u_{h}} \right| + \nabla \phi_{i} \bullet \frac{\partial F_{v}(u_{h}, \nabla u_{h})}{\partial (\nabla u_{h})} \bullet \nabla \phi_{i} \right)$$
$$\varepsilon_{shock} = \frac{(u \bullet \nabla p)h}{(u \bullet \nabla p)h + \kappa_{shock}cp}, \text{ if } u \bullet \nabla p > 0, \varepsilon_{shock} = 0, \text{ if } u \bullet \nabla p < = 0$$

DPW6 Task 1 – NACA0012

- 2D NACA0012 Airfoil from the Turbulence Modeling Resource (TMR) <u>http://turbmodels.larc.nasa.gov/</u>
- Flow conditions: Mach = 0.15, Re_c = 6 million, angle-of-attack = 10 degrees
- Far-field boundary condition at 500 chords
- Grids: <u>http://turbmodels.larc.nasa.gov/naca0012numerics_grids.html</u>
- Expected $C_L = 1.0909 1.0911$, $C_D = 0.012270 0.012275$
- COFFE Forces calculated:
 - 6. Family II 225 x 65
 - 5. Family II 449 x 129
 - 4. Family II 897 x 257
 - 3. Family II 1793 x 513
 - 2. Family II 3585 x 1025

- $C_{L} = 1.0866643, C_{D} = 0.01300284$
- $C_L = 1.0909380, C_D = 0.01227414$
- $C_L = 1.0909723, C_D = 0.01225952$
- $C_{L} = 1.0909464, C_{D} = 0.01227657$
- $C_{L} = 1.0909141, C_{D} = 0.01228354$
- Density residual converged to 10[^]-15, SA-neg turbulence model

$\textbf{NACA0012} - \textbf{C}_{L}, \, \textbf{C}_{D}$

- Grid 5, 57,824 nodes:
- COFFE C_L = 1.0909380, C_D = 0.01227414
- CFL3D C_L = 1.0873493, C_D = 0.01282844
- FUN3D $C_L = 1.0905788, C_D = 0.01275673$
- Tau C_L = 1.0891050, C_D = 0.01255115

Nodes required to reach target range

57,824
14,680,064
3,674,625
3.674.625

DPW6 Task 2 – CRM Description

- NASA Common Research Model
- Vassberg et. al., AIAA 2008-6916
- Reference:
 - Area, S = 594,720.0 in²
 - Chord, c = 275.8 in
 - Span, b = 2,313.50 in

Task 2 – CRM Mesh Convergence

- Conditions: Mach = 0.85, Re_{MAC} = 5 million, target C_L = 0.5
- Meshes made of only tetrahedral elements with a maximum angle < 176 degrees
- P1 WB meshes, alpha 2.75 geometry

level	initial wall spacing	growth factor	cells	nodes
Coarse	1.285×10^{-3}	1.2	26,780,170	4,533,286
Medium	1.118×10^{-3}	1.2	36,108,376	6,095,629
Fine	9.72×10^{-4}	1.2	47,905,028	8,080,127
Extra Fine	8.45×10^{-4}	1.2	61,454,600	10,362,607

• P1 WBNP meshes, alpha 2.75 geometry

level	initial wall spacing	growth factor	cells	nodes
Coarse	1.285×10^{-3}	1.2	42,101,763	7,101,719
Medium	1.118×10^{-3}	1.2	54,273,284	9,146,625
Fine	9.72×10^{-4}	1.2	70,854,330	11,935,490
Extra Fine	8.45×10^{-4}	1.2	95,124,160	16,015,360

P1 FINE mesh WBNP

WB/WBNP Cf_x Contours P1 FINE Mesh

Task 2 – P2 Meshes – 3rd Order

• P2 WB meshes, alpha 2.75 geometry

level	initial wa	all spacing	growth factor	cells	nodes
Coarse	3.354	$\times 10^{-3}$	1.5	2,763,020	3,752,826
Medium	2.236	$\times 10^{-3}$	1.5	5,795,210	7,845,870
Fine	1.4906	7×10^{-3}	1.4	13,906,580	18,773,425

• P2 WBNP meshes, alpha 2.75 geometry

level	initial wall spacing	growth factor	cells	nodes
Tiny	4.5×10^{-3}	1.3	6,117,384	8,257,688
Coarse	3×10^{-3}	1.5	7,384,729	9,988,320
Medium	2×10^{-3}	1.5	16,307,305	22,008,177
			<u> </u>	

P2 Surface Coefficient of Pressure

- Well resolved Lambda Shock at wing tip
- X pattern on upper wing surface of WBNP
- Shock located slightly upstream for WBNP

Task 2 – Mesh Convergence WB/WBNP

- <u>https://aiaa-dpw.larc.nasa.gov/Workshop6/presentations/2_10_DPW6_Summary-Draft-ET.pdf</u>
- COFFE P1 results are designated as M
- C_D within spread with fully tetrahedral meshes with <10 million DOFs

Task 2 – Mesh Convergence WB/WBNP

- SA-neg WB, SA-neg-QCR WBNP
- $C_L = 0.5 + / -0.0001$
- Difference in P2 mesh converged C_D for WB and WBNP ~ 0.0023
- Wind tunnel Δ C_D ~ 0.00215 0.0024

Surface Coefficient of Pressure Span-wise Cuts WB – Finest Meshes COFFE

Surface Coefficient of Pressure Span-wise Cuter Coefficient of Pressure Span-wise Cuter Coefficient Stress Workshop Solutions

 <u>https://aiaa-</u> <u>dpw.larc.nasa.gov/</u>
<u>Workshop6/presentations/</u>
<u>2_10_DPW6_Summary-</u> <u>Draft-ET.pdf</u>

Е гаус-іб

Surface Coefficient of Pressure Span-wise Cuts WBNP – Finest Meshes COFFE

Surface Coefficient of Pressure Span-wise Cuter Coefficient of Pressure Span-wise Cuter Coefficient Stress Workshop Solutions

 <u>https://aiaa-</u> <u>dpw.larc.nasa.gov/</u>
<u>Workshop6/presentations/</u>
<u>2_10_DPW6_Summary-</u> <u>Draft-ET.pdf</u>

Surface Coefficient of Pressure Nacelle Cuts WBNP– Finest Meshes COFFE

Surface Coefficient of Pressure Nacelle Cuts WBNP – Finest Meshes Workshop Solutions

<u>https://aiaa-</u>
<u>dpw.larc.nasa.gov/</u>
<u>Workshop6/presentations/</u>
<u>2_10_DPW6_Summary-</u>
<u>Draft-ET.pdf</u>

Case 2: Wing-Body-Nacelle-Pylon - Nacelle Pressures Finest Grid M=0.85. CL=0.50 DOD

DPW6 Task 2 Summary -- COFFE

- Capable of computing accurate forces with minimal degrees of freedom – higher order solution
- SU/PG 3-D discretization
- No:
 - Face based upwinding or Riemann problem 1D
 - Riemann problem assumes piecewise constant UL and UR
 - Face duplication significant duplication of DOFs
 - Stencil extension
 - Gradient reconstruction 1D in the BL
 - Explicit limiting
 - Partial linearization
 - Partial non-linear convergence
- Capable of utilizing fully tetrahedral meshes
 - Eases mesh generation
 - Enables anisotropic adaptation
- Robust shock capturing with no mesh shock-alignment
- Extremely efficient automated non-linear path

DPW6 Task 3 – Alpha Sweep

- Conditions: Mach = 0.85, Re_{MAC} = 5 million, angle-of-attack = 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, and 4.0 degrees
- Different geometry for each angle-of-attack loaded wind tunnel model
- Meshes made of only tetrahedral elements with a maximum angle < 176 degrees
- MEDIUM P1 WB meshes, ~6,000,000 nodes per geometry
- Density residual converged to 10^-15
- SA-neg and SA-neg QCR-2000

Task 3 – Alpha Sweep – Forces

https://aiaadpw.larc.nasa.gov/ Workshop6/presentations/ 2_10_DPW6_Summary-Draft-ET.pdf

COFFE Results – Alpha 2.5, Cf_x

COFFE Results – Alpha 2.5, Cp

COFFE Results – Alpha 2.5, Cf_x

COFFE Results – Alpha 2.75, Cf_x

COFFE Results – Alpha 2.75, Cp

COFFE Results – Alpha 2.75, Cf_x

COFFE Results – Alpha 3.0, Cf_x

COFFE Results – Alpha 3.25, Cf_x

COFFE Results – Alpha 3.25, Cf_x

COFFE Results – Alpha 3.25, Cp

COFFE Results – Alpha 3.25, Cf_x

COFFE Results – Alpha 3.5, Cf_x

COFFE Results – Alpha 3.5

COFFE Results – Alpha 3.5, Cp

COFFE Results – Alpha 3.5, Cf_x

COFFE Results – Alpha 4.0, Cf_x

COFFE Results – Alpha 4.0, Cp

COFFE Results – Alpha 4.0, Cf_x

Conclusions

- High quality tetrahedral meshes without large angles generated by Steve Karman with Pointwise software
- Task 2/3 Cases generally took ~2-3 hours
- Subdomain decomposition with ~11,000 nodes per process
- Difference in mesh converged for task 2 C_D for P2 WB and WBNP ~ 0.0023
- SA-QCR improved the CL/CD vs. alpha polar for task 3

Acknowledgements

- Material presented in this paper is a product of the Air Vehicles element of the HPCMP CREATE[™] program. The authors would like to thank the HPCMP for the many hours of computing time that are so critical for the successful development and validation of COFFE.
- The authors would also like to thank their colleagues on the CREATE[™]-AV senior management and Kestrel teams for their support and hard work in producing the exceptional HPCMP CREATE[™]-AV Kestrel product. Specifically, a special thanks goes to Dr. Robert Meakin and Dr. Nathan Hariharan as well as Dr. Scott Morton and Dr. David McDaniel.