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 Finite-element methods (FEM)
 Compact stencils
 Clear path to exact linearization

 Reaching machine convergence is common and expected
 High number of computation operations per memory fetch

 More suitable for emerging hardware architectures
 Seeking to increase accuracy, robustness, and efficiency over more established 

discretizations
 Standardized test cases (TMR, DPW, HLPW, HiOCFD, …)
 Code verification
 Performance assessment (memory consumption and computational cost)

 Mesh convergence study
 Linear and nonlinear convergence study (less studied)

 Focus of this talk: Solution strategies and convergence histories
 More details on mesh convergence results in Marshall Galbraith’s talk

Introduction
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Description of Code

HOMA Solver (High-Order Multilevel Adaptive Solver)

 SUPG, RANS, neg-SA, strong and weak implementation of BCs.

 Fully implicit with exact linearization through automatic diff.

 Non-Linear Strategies: 
 Pseudo Transient Continuation (PTC)
 P-multigrid (PMG) solver based on Full Approximation Scheme (FAS)

 Principal Linear Solver: Flexible GMRes (FGMRes)
 Built-ins: 

 Local ILU(k)
 Implicit Line Relaxation (with Double-CFL Strategy)
 Additive Schwarz (Restrictive)

 External Packages: PETSc (Used only for comparing with home-developed 
solvers.)
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Description of Code

 References:

 Ahrabi, B. R. and Mavriplis D. J., “Scalable Solution Strategies for Stabilized Finite-
Element Flow Solvers on Unstructured Meshes”, 55th AIAA Aerospace Sciences 
Meeting, AIAA Paper 2017-0517, Dallas, TX, January 2017.

 Ahrabi, B. R. and Mavriplis D. J., “Scalable Solution Strategies for Stabilized Finite-
Element Flow Solvers on Unstructured Meshes, Part II”, 23rd AIAA Computational 
Fluid Dynamics Conference, AIAA AVIATION Forum, AIAA Paper 2017-4275, Denver, 
CO, June 2017.

 Ahrabi, B. R., Brazell, M. J., and Mavriplis D. J., “An Investigation of Continuous and 
Discontinuous Finite-Element Discretizations on Benchmark 3D Turbulent Flows 
(Invited)”, 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, January 2018.
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Transonic and Subsonic Turbulent Flow over DPW-6 Configuration
HiOCFD5 Coarse Mesh

433,893 DoFs for P1, and 3,401,021 DoFs for P2

Mesh  is curved

Matrix-based lines shown in red
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 Free stream conditions: M = 0.85, Re = 5e+6, Alpha = 2.75o

 Good shock resolution even on the coarse mesh

Transonic Turbulent Flow over DPW-6 Configuration
Flow Visualization
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 Free stream conditions: M = 0.85, Re = 5e+6, Alpha = 2.75o

 Meshes are coarse for these simulations
 Large difference between P1 and P2 solutions

1 count

Transonic Turbulent Flow over DPW-6 Configuration
Aerodynamic Forces
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Subsonic Turbulent Flow over DPW-6 Configuration
Aerodynamic Forces

 Free stream conditions: M = 0.3, Re = 5e+6, Alpha = 2.75o

 Meshes are coarse for these simulations
 Large difference between P1 and P2 solutions

1 count
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Transonic Turbulent Flow over DPW-6 Configuration
Convergence Histories

Free stream conditions:
• M = 0.85
• Re = 5e+6
• Alpha = 2.75o

Nonlinear solver: 
• PTC 

Linear solver: 
• FGMRes
• Relative tol. = 10-4

Linear preconditioner:
• Dual-CFL line solver (PILJ)

See Refs. [1,2]
• Maximum number of sweeps 

per line = 200
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Transonic Turbulent Flow over DPW-6 Configuration
Convergence Histories

 Slight dependency on the mesh resolution, 
But, remember that finer grids are not much finer!
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 But why line preconditioner? Why not ILU(k)?
 We go with lines because…

1. Strong scalability
• Linear and nonlinear convergence are independent of number of partitions

2. Significantly less memory (hundreds of times)
• More suitable for emerging HPC architectures

3. More tunability
• Increased effectiveness using more iterations in preconditioning 

4. More computational efficiency



Implicit Line Preconditioner

 Identify and solve implicitly along strong connections.
 Attempt to reproduce success of line solver observed in FV.
 Works well on 1st order Jacobian matrix BUT not on 2nd order. (Diagonal dominancy)
 To solve

Connectivity pattern for a P1 Discretization
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Slide From 
AIAA Paper 2017-4275



Implicit Line Preconditioner

 Identify and solve implicitly along strong connections.
 Attempt to reproduce success of line solver observed in FV.
 Works well on 1st order Jacobian matrix BUT not on 2nd order. (Diagonal dominancy)
 To solve

Connectivity pattern for a P2 discretization
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• Gauss elimination does not produce any fill-ins
• ILU(0) gives exact factorization



Dual CFL Strategy for Implicit Line Solver

Solved using tridiagonal solver

 Solved using block tridiagonal/pentadiagonal solver:

 Newton-Krylov system:

 Preconditioner system:

 Reformulate the preconditioner system as a defect correction method:

Solved using FGMRes

Dual CFL
Strategy

 Explained as a Preconditioned Implicit Line Jacobi (PILJ) method

𝑛𝑛𝑜𝑜 outer iterations

𝑛𝑛𝑖𝑖 inner iterations
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Slide From 
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Comparison of line and ILU(k) preconditioners on the
Subsonic Turbulent Flow over DPW-6 Configuration

• Memory efficiency
• Computational efficiency
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Subsonic Turbulent Flow over DPW-6 Configuration

P1 solution P2 solution
(Initialized by converged P1 solution)
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 Free stream conditions: M = 0.3, Re = 5e+6, Alpha = 4.0o

 HiOCFD5 coarse mesh
 Preconditioner: Line (PILJ)



Subsonic Turbulent Flow over DPW-6 Configuration

P2 solution, with ILU(2), 0-overlap

 ILU(2) is sufficient to solve the P1 problem)

P2 solution, with ILU(3 ), 0-overlap
(Initialized by converged P1 solution)
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 Free stream conditions: M = 0.3, Re = 5e+6, Alpha = 4.0o

 HiOCFD5 coarse mesh
 Preconditioner: ILU(k) 



Subsonic Turbulent Flow over DPW-6 Configuration

P2 solution, with ILU(2), 1-overlap

 Overlapping does not make any significant improvements

P2 solution, with ILU(3 ), 1-overlap
(Initialized by converged P1 solution)
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 Free stream conditions: M = 0.3, Re = 5e+6, Alpha = 4.0o

 HiOCFD5 coarse mesh
 Preconditioner: ILU(k) + Restrictive Additive Schwartz (RAS)



Subsonic Turbulent Flow over DPW-6 Configuration
Comparison of Memory Consumption

Fill = ratio of the number of non-zero entries in the factorized matrix over the 
number of non-zero entries in the original matrix

Fill (ILU 3 )
Fill (PILJ)

=340

And this is just for k=3
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Subsonic Turbulent Flow over DPW-6 Configuration
Comparison of Run Time
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 Free stream conditions: M = 0.3, Re = 5e+6, Alpha = 4.0o

 HiOCFD5 coarse mesh



 Feasibility of a high-order SUPG solver was demonstrated for the 
transonic flow over common research model.

 The effectiveness of the implicit line preconditioner was demonstrated 
for high-order continuous finite-element methods.

 Nonlinear convergence showed slight dependency on the mesh 
resolution.

 Memory and computational efficiency of the line preconditioner was 
compared with ILU(k)

Conclusions
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Thank you!
Any questions?
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Backup Slide:
- More details on the line preconditioner
- Demonstration of the strong scalability
- Effect of different node orderings on ILU(k)



Lines on P1 and DPW-4 Configuration (Transonic)

 A transonic turbulent test case
 Flow conditions: M = 0.85, Re = 5 million, alpha = 2.0o

 Comparison of PILJ and ILU(k) on a P1 problem
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Transonic Turbulent Flow over DPW-4 Configuration
Custom Unstructured Mesh

6,861,035 DOFs for P1

Matrix-based lines shown in red
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Transonic Turbulent Flow over DPW-4 Configuration

Flow conditions: M = 0.85, Re = 5 million, alpha = 2.0o

27HiOCF5 CR1-Common Research Model 
Behzad R Ahrabi et al. (UW)January 6, 2018



Transonic Turbulent Flow over DPW-4 Configuration

 Slow Progress

Flow conditions: M = 0.85, Re = 5 million, alpha = 2.0o

Deactivates the dual-CFL strategy
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Transonic Turbulent Flow over DPW-4 Configuration

By decreasing CFLcap

 Fast Progress

Flow conditions: M = 0.85, Re = 5 million, alpha = 2.0o
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Transonic Turbulent Flow over DPW-4 Configuration

By decreasing CFLcap
and using more sweeps:

 Faster Progress

Flow conditions: M = 0.85, Re = 5 million, alpha = 2.0o
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Transonic Turbulent Flow over DPW-4 Configuration

np = 90 np = 180

Convergence behavior is independent of number of partitions
 Strong scalability

Flow conditions: M = 0.85, Re = 5 million, alpha = 2.0o
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Transonic Turbulent Flow over DPW-4 Configuration
Strong Scaling using PILJ

Can we get the same behavior with ILU(k)? Not always…
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Transonic Turbulent Flow over DPW-4 Configuration

np = 180 np = 360

Do overlapping or reordering methods solve this issue? Not always…

Flow conditions: M = 0.85, Re = 5 million, alpha = 2.0o
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Transonic Turbulent Flow over DPW-4 Configuration
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Transonic Turbulent Flow over DPW-4 Configuration
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