

Tandem Spheres: Motivation and Case Specification

Stephen L. Wood¹ Ryan Glasby¹ Kevin Holst² ¹:JICS, UT-K, Oak Ridge, TN ²:UT-SI, Tullahoma, TN January 7, 2018

Outline

- Motivation
 - BANC-I Tandem Cylinders
 - Approach
- 2 Participants
- Prerequisite

 Case Specification
Mandatory Computations and Results

💿 Bibliography

Goal

A case that features:

- Accessible geometry
- Spacing large enough to asses wake growth and interaction
- Tractable run times
- Minimal far-field boundary interactions
- Prediction

Why?

- Look beyond Figures of Merit on bodies
- Impactful and interesting flow physics in off-body regions
- Wake propagation is central to many control and design problems
 - down stream control surfaces
 - minimum interval takeoff / landing
 - swarms
 - wind and solar arrays
 - pedestrian safety and comfort

BANC-I Tandem Cylinders

Benchmark problems for Airframe Noise Computations-I Workshop: Tandem Cylinders [1–3]

- Accessible geometry
- Spacing large enough to asses wake growth and interaction
 - 3.7 D separation [1]
 - Important spanwise variation occurs over many cylinder diameters [1-3]
- Tractable run times
 - Resolution challenges: Small-scale, Kelvin-Helmholtz instabilities grow in the shear layers ... the wake must be propagated to the downstream cylinder without excessive diffusion [1]
 - Grid points needed can easily be in the hundreds of millions [1-3]
 - Requires a sufficiently long sample to compute the statistics [1-3]
- Minimal far-field boundary interactions
 - Periodic boundary conditions employed in nearly all the simulations undoubtedly have some nonphysical effect on the flow [1]
- Prediction
 - Experimental data sets were available to the 15 participants [1–3]

Approach

A case that features:

- Accessible geometry
- Spacing large enough to asses wake growth and interaction
- Tractable run times
- Minimal far-field boundary interactions
- Prediction

Tandem Spheres

- Analytic or geometric
- 10 D separation
- Geometry does not require extended domain
- No periodic boundaries
- Is there an experiment? $C_D = 0.39$ for a single sphere [4].

Participants

- ZJ Wang, Kansas Univ.
- Johan Jansson, KTH/BCAM
- Marian Zastawny, Siemens
- Philip Johnson (WS1), Univ. of Michigan
- Kevin Holst, Univ. Tennessee Space Institute

Grids

Hexahedral and tetrahedral girds were provided by **Steve Karman** of **Pointwise** and **Samuel James** of **GridPro** in CGNS and gmsh file formats [5].

Prerequisite

Why focus on wake physics? To quantify

- Energy dissipation rate
- Kinetic energy spectrum
- Vorticity transport and distribution
- Agreement between transient / steady state
- Difference between up stream / down stream bodies

HOW5: WS1 Taylor-Green Vortex [6]

- Energy dissipation rate
- Enstrophy
- Kinetic energy spectrum
- Vorticity traces
- Code verification and order assessment

Case Specification

Prediction of complex unsteady multi-scale flow under low Mach and low Reynolds number conditions [5].

- Two spheres of diameter *D* whose centers are separated by 10*D* along the stream wise centerline
- Far field boundaries: characteristic
- Sphere surface boundaries: adiabatic wall
- Mach number ($M_{\infty}=0.1)$
- Temperature is ($T_{\infty} = 300 \, K$)
- Density ($ho_{\infty}=1.225~kg/m^3$)
- Reynolds number based on single sphere diameter, D, ($Re_D = 3900$)
- Prandlt number (*Pr* = 0.72)
- Characteristic time scale $(t^* = t \frac{U_{\infty}}{D})$
- Compare quantities of interest during $t^* \in [100, 200]$

Figures of Merit

Converged average drag coefficient (C_D) and Strouhal Number (St) based on lift for the down stream sphere during $t^* \in [100, 200]$

- Integral quantities for both spheres:
 - Mean values: lift coefficient C_L , drag coefficient C_D
 - 2 Root-means-squared values: C_L , C_D
- Surface quantities on x y, x z, and y z planes passing through the center of each sphere:
 - **(**) Mean values: pressure coefficient C_P , skin friction coefficient C_f
 - 2 Root-means-squared values: C_P , C_f

Flow Quantities

- Quantities
 - Mean values on stream wise and transverse transects:
 - () u, v, and w velocity components (non-dimensionalized by U_∞)
 - **2** Reynolds stresses (u'u', u'v', v'v') (non-dimensionalized by U^2_{∞})
 - Q Root-means-squared values on stream wise and transverse transects:
 - () u, v, and w velocity components (non-dimensionalized by U_∞)
 - **2** Reynolds stresses (u'u', u'v', v'v') (non-dimensionalized by U_{∞}^2)
 - In Frequency spectra at points:
 - Total velocity
 - **2** Pressure coefficient C_P
 - O Turbulent kinetic energy
- Locations
 - Three Stream wise sample lines
 - Six y Transverse samples lines
 - Six z Transverse samples lines
 - Three Points
- Provide details of the computational resources utilized in terms of DOF, work units, and time marching scheme.
- Provide details of the computational hardware and parallelization strategy utilized.

Presentation References I

- Lockard, D. P., "Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I workshop," *AIAA paper*, Vol. 353, 2011, p. 2011.
- [2] Palau-Salvador, G., Stoesser, T., and Rodi, W., "LES of the flow around two cylinders in tandem," *Journal of Fluids and Structures*, Vol. 24, No. 8, 2008, pp. 1304–1312.
- [3] Brès, G. A., Freed, D., Wessels, M., Noelting, S., and Pérot, F., "Flow and noise predictions for the tandem cylinder aeroacoustic benchmark a," *Physics* of Fluids, Vol. 24, No. 3, 2012, p. 036101.
- [4] Constantinescu, G., and Squires, K., "Numerical investigations of flow over a sphere in the subcritical and supercritical regimes," *Physics of fluids*, Vol. 16, No. 5, 2004, pp. 1449–1466.
- [5] "CS1 Tandem Spheres Re=3900,", 2017. URL https://how5.cenaero.be/content/cs1-tandem-spheres-re3900.
- [6] "WS1 DNS of the Taylor-Green vortex at Re=1600,", 2017. URL https: //how5.cenaero.be/content/ws1-dns-taylor-green-vortex-re1600.

S. L. Wood (JICS)