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Motivation

Goal

A case that features:

Accessible geometry
Spacing large enough to asses wake growth and interaction
Tractable run times
Minimal far-field boundary interactions
Prediction

Why?

Look beyond Figures of Merit on bodies

Impactful and interesting flow physics in off-body regions

Wake propagation is central to many control and design problems

down stream control surfaces
minimum interval takeoff / landing
swarms
wind and solar arrays
pedestrian safety and comfort
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Motivation BANC-I Tandem Cylinders

BANC-I Tandem Cylinders

Benchmark problems for Airframe Noise Computations-I Workshop:
Tandem Cylinders [1–3]

Accessible geometry
Spacing large enough to asses wake growth and interaction

3.7D separation [1]
Important spanwise variation occurs over many cylinder diameters [1–3]

Tractable run times
Resolution challenges: Small-scale, Kelvin-Helmholtz instabilities grow
in the shear layers ... the wake must be propagated to the downstream
cylinder without excessive diffusion [1]
Grid points needed can easily be in the hundreds of millions [1–3]
Requires a sufficiently long sample to compute the statistics [1–3]

Minimal far-field boundary interactions
Periodic boundary conditions employed in nearly all the simulations
undoubtedly have some nonphysical effect on the flow [1]

Prediction
Experimental data sets were available to the 15 participants [1–3]

Tandem Spheres

Analytic or geometric

10D separation

Geometry does not require extended domain

No periodic boundaries

Is there an experiment? CD = 0.39 for a single sphere [4].
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Motivation Approach

Approach

A case that features:

Accessible geometry
Spacing large enough to asses wake growth and interaction
Tractable run times
Minimal far-field boundary interactions
Prediction

Tandem Spheres

Analytic or geometric

10D separation

Geometry does not require extended domain

No periodic boundaries

Is there an experiment? CD = 0.39 for a single sphere [4].
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Participants

Participants

ZJ Wang, Kansas Univ.

Johan Jansson, KTH/BCAM

Marian Zastawny, Siemens

Philip Johnson (WS1), Univ. of Michigan

Kevin Holst, Univ. Tennessee - Space Institute

Grids

Hexahedral and tetrahedral girds were provided by Steve Karman of
Pointwise and Samuel James of GridPro in CGNS and gmsh file
formats [5].
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Prerequisite

Prerequisite

Why focus on wake physics? To quantify

Energy dissipation rate
Kinetic energy spectrum
Vorticity transport and distribution
Agreement between transient / steady state
Difference between up stream / down stream bodies

HOW5: WS1 Taylor-Green Vortex [6]

Energy dissipation rate

Enstrophy

Kinetic energy spectrum

Vorticity traces

Code verification and order assessment
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Case Specification

Case Specification

Prediction of complex unsteady multi-scale flow under low Mach and low
Reynolds number conditions [5].

Two spheres of diameter D whose centers are separated by 10D along
the stream wise centerline

Far field boundaries: characteristic

Sphere surface boundaries: adiabatic wall

Mach number (M∞ = 0.1)

Temperature is (T∞ = 300K )

Density (ρ∞ = 1.225 kg/m3)

Reynolds number based on single sphere diameter, D, (ReD = 3900)

Prandlt number (Pr = 0.72)

Characteristic time scale (t∗ = t U∞
D )

Compare quantities of interest during t∗ ∈ [100, 200]
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Mandatory Computations and Results

Figures of Merit

Converged average drag coefficient (CD) and Strouhal Number (St) based
on lift for the down stream sphere during t∗ ∈ [100, 200]

Integral quantities for both spheres:
1 Mean values: lift coefficient CL, drag coefficient CD

2 Root-means-squared values: CL, CD

Surface quantities on x − y , x − z , and y − z planes passing through
the center of each sphere:

1 Mean values: pressure coefficient CP , skin friction coefficient Cf

2 Root-means-squared values: CP , Cf

S. L. Wood (JICS) Tandem Spheres January 7, 2018 9 / 11



Mandatory Computations and Results

Flow Quantities

Quantities
1 Mean values on stream wise and transverse transects:

1 u, v, and w velocity components (non-dimensionalized by U∞)
2 Reynolds stresses (u′u′, u′v ′, v ′v ′) (non-dimensionalized by U2

∞)
2 Root-means-squared values on stream wise and transverse transects:

1 u, v, and w velocity components (non-dimensionalized by U∞)
2 Reynolds stresses (u′u′, u′v ′, v ′v ′) (non-dimensionalized by U2

∞)
3 Frequency spectra at points:

1 Total velocity
2 Pressure coefficient CP

3 Turbulent kinetic energy

Locations
1 Three Stream wise sample lines
2 Six y Transverse samples lines
3 Six z Transverse samples lines
4 Three Points

Provide details of the computational resources utilized in terms of DOF, work units, and time marching scheme.

Provide details of the computational hardware and parallelization strategy utilized.
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