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Aims and outline

Adaptive Direct FEM Simulation (DFS) results with P1 for CS1 together with
comparison to workshop-provided meshes.

Preliminary comparison to other leading high-order open source packages: PyFR and
Nek5000

Draft paper available on my home page: http://www.csc.kth.se/~jjan

Part of broader program for predictive adaptive DFS high and low Re simulation for
industrial challenge problems.

[stall prediction in HiLiftPW3]
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http://www.csc.kth.se/~jjan


Automated Computational Modeling

FEniCS(-HPC) open source FEM framework for automated solution of general PDE and Direct
FEM Simulation (DFS) methodology enables:

Automated discretization (generate code for linear system from PDE):

r = ( inner ( grad ( u ) , grad ( v ) ) − inner (f , v ))∗dx ⇒ Poisson.cpp

Automated error control (incl. parallel adaptive mesh refinement):

+ |M(e)| ≤ TOL ⇒

with M(e) a goal functional of the computational error e = u − U.

Automated modeling of unresolved subscales (i.e. turbulence):
(R(U), v) + (hR(U),R(v)) = 0, ∀v ∈ Vh (ILES: residual-based stabilization, Adaptive DNS/LES)

Goal: Autom. generate the solution, mesh and program from PDE
(residual) and goal functional M(e) (e.g. drag).



Direct FEM Simulation (DFS) methodology

Developed over a 20+ year period by Johnson, Hoffman, Jansson, etc.

Realized in the open source Unicorn/FEniCS-HPC software framework (available on BitBucket).
Incompressible Navier-Stokes in strong residual form:

R(û) =

{
∂t u + (u · ∇)u − ν∆u +∇p = 0

∇ · u = 0
û = (u, p)

Weak residual r(û, v̂) = (R(û), v̂)
No explicit turbulence model

Space-time cG(1)cG(1) FEM with Galerkin/least squares stabilization (acting as ILES)

r̄(Û, v̂) = r(û, v̂) + (δR(Û), R(v̂)) = 0

δ = κmin(h), κ ≈ 1, ∀v̂ ∈ V̂h, Û ∈ V̂h

Do-nothing duality-based adaptive error control method
Directly use err repr. M(ê) = r(Û, φ̂) gives error indicator EK = r(Û, φ̂)K
Adjoint prob. autom. gen.: r′(φ̂, v̂) = M(v̂)
Iteratively solve primal and dual problem, refine marked cells.

DFS acts as Adaptive DNS/LES

Large time steps by Schur-preconditioned fixed-point
Segregated fixed-point iteration between u and p, gives straightforward preconditioning of linear systems:
CG+bjacobi/ILU for continuity and BiCGStab+bjacobi/ILU (PETSc)
Schur-complement preconditioning allows large time-steps, up to 100x larger than simple fixed-point.

[Hoffman, Jansson, et. al., 2012 C&F], [Hoffman, Jansson, et. al. 2016, ECM], [Jansson, et. al. 2018, HiLift, Springer Brief]



CS1: Viz of adaptive results

Goal quantity: drag M(û)

Recall err. rep.: M(ê) = (−R(Û), φ̂)

Adjoint φ̂ weights error indicators upstream, zero weight downstream of downstream
sphere, residual R(Û) weights turbulent wakes.
See extra material for ref on computability by adjoint stability.


FEniCS-HPC_TandemSpheres_video_adaptive-iter-21_submit.mp4
Media File (video/mp4)



Time-evolution of CD
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Time evolution of the drag coefficient for various iterations of our
adaptive procedure.



Convergence order

We hope to contribute an interesting perspective on convergence order in
the setting of adaptive methods.

What is the order of convergence of an adaptive h-refinement method?

I Generalized length scale h = N
1
d

DOF

I Order of convergence e(h) = Chp or log(e(h)) = p log(Ch)

I Compute convergence sequence (ei , hi )

I Least-squares fit for p gives “effective order of convergence”.

Adaptive DNS/LES ⇒ asymptotic regime is DNS

We are interested in efficient computation ⇒ as coarse meshes as
possible typically in ILES regime which is non-smooth (refinement
uncovers finer scales).

Uniform refinement quasi-optimal for smooth solutions.



Adaptive mesh convergence
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Mesh convergence of the drag coefficients of the two spheres. Effective order of
convergence > 3. However, not interesting with asymptotic behavior. Allowing
coarsening could give different behavior, (Couchman/Galbraith).

We see a clear drag reduction for the downstream sphere, consistent with a
“slipstream” phenomenon.

2% away from experimental reference for upstream sphere.



Adaptive mesh convergence
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Mesh convergence of the drag coefficients of the two spheres.



CS1: Viz of provided Pointwise-Mesh5

10% away from experimental reference for upstream sphere, no clear drag reduction
for downstream sphere.


FEniCS-HPC_TandemSpheres_video_Pointwise-Mesh5_submit.mp4
Media File (video/mp4)



CS1: Pointwise mesh convergence
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Mesh convergence of the drag coefficients of the two spheres, workshop meshes 3-5.

10% away from experimental reference for upstream sphere, no clear drag reduction
for downstream sphere.



PyFR - Pointwise Mesh1P3

PyFR simulations by: Ezhilmathi Krishnasamy (KTH)

Main observation: severe timestep restriction dt ≈ 10−4 ( 3 orders of
magnitude smaller than Unicorn/FEniCS-HPC). Implies many time steps
and ∼ 1 order of magnitude higher cost than Unicorn/FEniCS just for
Mesh1P3). CPU simulations, possibility for 5x speedup with GPU (ref.
conversation with Peter Vincent).


PyFR_TandemSpheres_prelim.mp4
Media File (video/mp4)



CS1: PyFR mesh convergence
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Mesh convergence of the drag coefficients of the two spheres, PyFR Mesh1 P1-3.

No clear mesh convergence, no clear drag reduction for downstream sphere. ∼ 1 order
of magnitude higher cost than Unicorn/FEniCS just for Mesh1P3). Work in progress
to compute on more meshes/orders.



Preliminary Nek5000 simulation

Nek5000 simulation by: Ricardo Vinuesa, Jing Gong and Philipp Schlatter (KTH)

ILES (or under-resolved DNS) regime with 1e7 grid points (4e7 DOFs) and dt ≈ 10−3

Work units: 5e6 Wall clock runtime: 13h CD values in progress


Nek5000_TandemSpheres_prelim.mp4
Media File (video/mp4)



MOOC - KTH/edX online course on adaptive FEM and
FEniCS

High Performance Finite Element Modeling MOOC supported by KTH MOOC
committee

Opened on October 17, 2017, already 4500+ students, join the fun!

Advanced part 2 on DFS, turbulence and HPC opens mid-March 2018.



Summary
I Adaptive DFS in Unicorn/FEniCS-HPC captures relevant qualitative and quantitative

results to 2% of exp. Parameter-free, no explicit turb. modeling.
I Adaptivity and large timesteps allow high efficiency and accuracy: meshes of ca. 1M

vertices, wall clock ∼1h using 1k cores.
I We wish to give perspective on convergence order in setting of adaptive methods. Effective

order of convergence > 3 with cG(1) (P1).
I Open source pays off: Unicorn 2017-2018 ∼2 orders of magnitude faster than Unicorn

2012-2014 (developed in-house for a few years), mostly due to Schur formulation enabling
large time-steps (ref. HiLiftPW2-3).

I Verification and validation of do-nothing duality-based adaptive method for low Re turbulent
flow. Automated formulation, no jump terms necessary or manual formulation.

Preliminary comparisons to leading open source high-order packages:
I Accurate Unicorn/FEniCS-HPC simulation ∼1 order of magnitude cheaper+faster than

preliminary Nek5000 simulation, drag comparison work in progress.
I Accurate Unicorn/FEniCS-HPC simulation ∼1 order of magnitude cheaper+faster than

PyFR simulations for finest PyFR simulation, severe timestep restriction for PyFR.

Future work:
I Can an ensemble-approach to parallel-in-time significantly extend parallel strong scaling?
I Extension to compressible flow, initial work for model problems already done.
I Investigate r-adaptivity, allows coarsening.

Acknowledgements:



Extra material



Parallel-in-time
Ensemble approach of partitions of time interval for bluff body, here α = 4.36
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[Jansson, Hoffman, preprint, 2017]



DFS computability of turbulent flow by adjoint stability

We demonstrate computability of 3D turbulent flow by stability of the 3D adjoint
problem. We describe this in the invited chapter “Computability and Adaptivity in
CFD” in Encyclopedia of Computational Mechanics.

We can bound the global error by:

|M(û)−M(Û)| ≤ CUh‖R(Û)‖|ψ̂|H1 (1)

We show that ‖
√
hR(Û)‖ and |

√
hψ̂|H1 are bounded, which gives computability.
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MSO4SC

H2020 project with BCAM, KTH, Atos, EU-maths-in, etc.

Objective: Construct an e-infrastructure that provides simple access to
supercomputing with open source mathematical frameworks such as
FEniCS-HPC, develop and manage simulations through a web-interface
with multiple infrastructures (supercomputers, cloud systems, etc.).

Enables simple, automatic and optimal management of ensemble and
adaptive simulation on a heterogenous set of computer resources.

mso4sc.eu

mso4sc.eu

