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Code Overview

Basic Features:

Spatial Discretization: Discontinuous Galerkin, nodal basis

Time Integration: Explicit Runge-Kutta (4t order and 8t order available)
Riemann solver: Roe, SLAU2"

Quadrature: One quadrature point per basis function

Non-Standard Features:
ICB reconstruction: compact technique, adjusts Riemann solver arguments

Compact Gradient Recovery (CGR): Mixes Recovery with traditional mixed formulation
for viscous terms

Shock Capturing: PDE-based artificial dissipation inspired by C-method'" of Reisner et al.

Discontinuity Sensor: Detects shock/contact discontinuities, tags “troubled” elements

tKitamura & Shima, JCP 2013
1 ++Reisner et al., JCP 2013 IVI UNIVERSITY OF MICHIGAN




Recovery Conceptt

Exact Distribution U DG solution: Uj' , Uy Recovered solution: f,z
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tVan Leer & Nomura, AIAA Conf. 2005
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Recovery Demonstration: p = 3

U(x) versus x
2

(z) = exp(x) x sin(mx)?
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Recovery Demonstration: p = 3

U(x) versus x

—U(x) = exp(x) X sin(mz)?

Recovered solution
(degree2p+1 =7
polynomial) more accurate at
interface
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Recovery Demonstration: p = 3

U(x) versus x
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ICB reconstructions (degree

p + 2 = 4) equal at closest
guadrature points
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Our Approach vs. Conventional DG

 For diffusive fluxes: CGR maintains compact stencil®, offers advantages over BR2
— Larger allowable explicit timestep size
— Improved wavenumber resolution

For advection problems: / o ;(/"(lx — _/ OEV - F(UM)dx
J. 4 JS.

DG weak form: Must calculate flux along interfaces
— Conventional approach (upwind DG): plug in left/right values of DG solution

' 0 - ' .
/ ok —Uhdx = —/ OF(F -n)ds + / (Vo) - F(UM))da
¢ a0, Ja,

(/)(
), Ot 1

Conventional approach: F = Rie(U},Up,ny)

Our approach: ICB reconstruction scheme'™
— Replace left/right solution values with ICB reconstruction: F = Rie(U;“?,US" ny)

T Johnson & Johnsen, AIAA Aviation 2017
4 +1 Khieu & Johnsen, AIAA Aviation 2014
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Taylor-Green Test (WS1)

* Code setup: p2 elements, uniform hex mesh (27 DOF/element), RK4 time integration
— Reference result taken from HIOCFD3 workshop
— Our approach allows larger stable time step

Enstrophy-based KEDR 21° elements Enstrophy-based KEDR, 42° elements
0.014 ; 0.014 .
""'ICB+CGR 63° DOF ""'ICB+CGR 126 DOF

0.012(-="conventional DG, 63° DOF|  / \ 0.012--"conventional DG, 126” DOF

—reference / —reference /-

LUQO_OOS : e 31\;10.008_. O Y U S
o s ~ -

w : § W

OO : ‘ ; : O0

ICB+CGR: 2.5 CPU-hours ICB+CGR: 75 CPU-hours
Conventional: 9.2 CPU-Hours Conventional: 304 CPU-Hours
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Energy Spectrum Computation

1) Populate velocity (u, v, w) on evenly-spaced 3D grid x
2TL

> h=2E
N

2) Build discrete r = (r*,rY,r%)
> rf ==+ h(+5);j €01, .., 5)

3) Foreach r(jy, j, j;): average over entire grid (all x) for velocity correlation
» R, =<ulx+nrulx) >

» R,,(r) =<v(x+rvx) >

» R, (r) =<wlkx+rwk) >

4) Open Matlab
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Energy Spectrum Computation

5) Build 3D Fourier transform of each correlation:
» U=fftn(Ry),V = fftn(Ry,), W = fftn(wa)

6) Calculate energy spectrum:

1 . __
E(K) = ;5 (e iz + Wi ez + Wy

( \
Vkx? + ky? + kz2 = K

7) Normalize: scale E(K) to achieve f;:lE(K)dK = piﬂfﬂ g(u2 +v2 + w?)dx
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Conclusions

Were the verification cases helpful and which ones were used?
— TGV: First 3D simulation, demonstrates value of ICB+CGR for nonlinear problem

What improvements are needed to the test case?
— TGV: Standardize energy spectrum calculation and make reference data more easily
accessible

Did the test case prompt you to improve your methods/solver
— Yes: added 3D capability

What worked well with your method/solver?
— Feature resolution on Cartesian meshes (ICB very helpful)

What improvements are necessary to your method/solver?
— ICB/CGR robustness on non-Cartesian elements
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Spare Slides
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Vortex Transport Case (VI1)

Setup 1: p = 1, RK4, SLAU Riemann solver

Setup 2: p = 3, RK8" (13 stages), SLAU Riemann solver

ICB usage: Apply ICB on Cartesian meshes, conventional DG otherwise

EQ: Global L, error of v:

Jo W —=vg)2dV
J, AV

Convergence: order 2p + 2 on
Cartesian mesh, order 2p on
perturbed quad mesh

T Cash & Karp, ACMTMS 1990
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Shock-Vortex Interaction (Cl2)

Configurations: Cartesian (p = 1), Cartesian (p = 3), Irregular Simplex (p = 1)
Setup: RK4 time integration, SLAU (Cartesian) and Roe (Simplex) Riemann solvers
Shock Capturing: PDE-based artificial dissipation
ICB usage: Only on Cartesian grids

p(y) along Line 4 (.1’ = 1. 05) Ny =300

—Caﬂesmn -pl|
| —Cartesian-p3 |-
——Simplex-pl |

| Simplex
p=1 g
Ny =300 }
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CGR = Mixed Formulation + Recovery

Gradient approximation in Q,: o(z € Q) ZO (€) &8
k=0

Weak equivalence with VU: /Q OF oedr = /Q ¢F VU"dx VEk €{0,1,..,p

(54

Integrate by parts for ¢ weak form: / ¢ oedx = [¢* U] — L Ul vorde VEk€{0,1,...,p}
J Qe J Q.

« Must choose interface U approximation from available data
— BR2: Take average of left/right solutions at the interface
— Compact Gradient Recovery (CGR): U = recovered solution

* Interface gradient: CGR formulated to maintain compact stencil

M UNIVERSITY OF MICHIGAN



The Recovery Concept

* Recovery: reconstruction technique introduced by Van Leer and Nomura® in 2005
* Recovered solution (f45) and DG solution (U™) are equal in the weak sense
* Generalizes to 3D hex elements via tensor product basis

0.2

Recoverezgjolutlon for Zap: —Exact

. . —DG solution
r) = wo\r / i
faB(r) Z pu(r) fis -='Recovered solution

n=0

Kgr = 2p + 2 constraints for f 4p:

/ C./’I,fx fap dx = q/)’fl Uﬁ dr Vk € {0,1,...,p}
. 52,1 ¢ QA

/ % fap dx = / o Uk dx Vk € {0,1,...,p}
QB Q13

Interface Solution along Z,p :

R(UA,Ug) = fan(0) 1 05 0 0.5 1

Representations of U(x) = sin3(x — g)

tVan Leer & Nomura, AIAA Conf. 2005
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Recovery Demonstration: All Solutions

U(x) versus x

2 | | —U(x) = exp(x) X sin(mx)?
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The ICB reconstruction

* Each interface gets a pair of ICB reconstructions, § Example: p = 1 (2 DOF/element)
one for each element: U=e sm(?’ix)

K;cp = p + 2 coefficients per element:

Kicn di . yIcB A
U (r) = ) v () O

n=1

Kicn

Z l/)n

n=1

Constraints for U’CB (Similar for U’CB)

/ " U’CB(II::/ ot Uhdx vk € {0,1, ...p}
Joa

JQA

/ Op UBde = | ©p Ukdx
Qp Qp

* Choice of Oy affects behavior of ICB scheme
— Illustration uses O = 1

M UNIVERSITY OF MICHIGAN



The ® Function: ICB-Modal vs. ICB-Nodal

e ICB-Modal (original): ®, = 05 = 1 is lowest mode in each element’s solution

* ICB-Nodal (new approach): O is degree p Lagrange interpolant
— Use Gauss-Legendre quadrature nodes as interpolation points
— Take ® nonzero at closest quadrature point

1.5 ;
- :

Sample O choice for p = 3:
Each ® is unity at quadrature
point nearest interface
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The ® Function: ICB-Modal vs. ICB-Nodal

ICB-Modal: Each U'“B matches
the average of U" in
neighboring cell

<

ICB-Nodal: Each U'“® matches
U" at near quadrature point

— (/“11('13 M — (]]('11 N
ICB-M . vena JTICB-N
""(/II" K (/],1
W )
) )
L _(]If ] | —[]“
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Fourier Analysis

* Fourier analysis performed on 2 configurations: | scheme F U
— Conventional: Upwind DG + BR2 uDG + BR2 Rie(U%, Ul n ;) (U
— New: ICB-Nodal + CGR ICB + CGR Rie(ULCB, UICB n7) R(U:, UR)

Analysis Procedure t :

oU 0*U oU
= I — a4

1) Linear advection-diffusion, 1D: — = ‘
ot Ox? Ox

2) Define element Peclet number:

3) Set Initial condition: U(z,0) =exp(iv'z)  w = hw'

4) Cast numerical scheme in matrix-vector form:

T Watkins et al., Computers & Fluids 2016 M UNIVERSITY OF MICHIGAN



Fourier Analysis

5) Diagonalize the update matrix: A=VAV~1
6) Calculate initial expansion weights, B: V3= 0,,L(w, 0)

* Watkins et al. derived estimate for initial error

growth:

— At =nth eigenvalue of A Eigenvalue corresponding
p+1 to exact solution:

— Bnl|An — A% -
D + Z | || | /\(::1: — —I(PE/,CU) .

n=1

g(wa PE Jh,

Im(A) vs w

Eigenvalue Example:
ICB+CGR, p = 2, PE; = 10,
1% = —i(10w) — w?

T Watkins et al., Computers & Fluids 2016 M UNIVERSITY OF MICHIGAN



Wavenumber Resolution

n+1
1 F

S(w, PE};,) — \/‘m Z |zﬁ‘nH/\'n, o )\(t:l:‘

n=1

e To calculate wavenumber resolution:
1) Define some error tolerance(e) and Peclet number (PE})

2) Identify cutoff wavenumber, wy according to: £ (w, PE},) < € for all w € [0,wy].

W
3) Calculate resolving efficiency: 71 = (p+ D) +f1)7r

T Watkins et al., Computers & Fluids 2016 M UNIVERSITY OF MICHIGAN



Scheme Comparison: PE;, = 10

Fourier analysis, Linear advection-diffusion
Resolving efficiency measures effectiveness of update scheme’s consistent eigenvalue
Resolving Efficiency: € = 1/10, PE, = 10 Resolving Efficiency: ¢ =1, PE, = 10

0.25¢ . 0.25¢
0.27 1 0.2t

0.15 ~ 1 0.15¢
&

0.14

%«-|CB+CGR 4«-|CB+CGR
3-conventional 3-conventional

4 5 3 4 5
Conventional | ICB + CGR Conventional | ICB + CGR
0.0296 0.1103 0.0940 0.2389
0.0531 0.0776 0.1200 0.1793
0.0844 0.1113 0.1451 0.1755
0.1022 0.1225 0.1677 0.2628

0.1196 0.1304 0.1743 0.1874
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Compact Gradient Recovery (CGR) Approach

e Similar to BR2: Manage flow of information by altering gradient reconstruction
* 1D Case shown for simplicity: Let g4, g be gradient reconstructions in (04, Qp
» Perform Recovery over g4, gg for 6 on the shared interface

/ q;)k:gAdm:/ VU dr Yk € {1..K}
JQA JA

o= R(QA,!]B)
/ o* gpdx :/ P*VUdx VEk e {1.K}
521; Szli

(U )R — (6FU) 1, — / (VoM \Urdx  VEk € {1..K}
2.

U=xf+(1-x)Ua U=xf+(1-x)Us
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The ICB Approach (Specifically, ICBp[0])

* Recovery is applicable ONLY for viscous Example with p1 elements:
terms; unstable for advection terms. Representations of U(x) = sin3(x) + x*
Interface-Centered Binary (ICB) z
reconstruction scheme modifies Recovery L ———_—
approach for hyperbolic PDE. 1/—DG solution

Process Description: 0.8

0.6}
1. Start with the DG polynomials U}f in

Q4 and Ul in Q5. 0.4
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The ICB Approach (Specifically, ICBp[0])

Process Description: .
P Example with p1 elements:
2
Start with the DG polynomials UZ in Representations of U(x) = sin’(x) + x;

Q4 and Ul in Qp. 19

—EXxact

Obtain reconstructed solution U.¢F 1/~ DG solution

in {4, containing p + 2 DOF.

0.8}
jU,{C%kdx: fujlq)kdx vk € {1..K} 0.6l

2y oy

ijCde= jU{}dx 0.4/

Qg Qp
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The ICB Approach (Specifically, ICBp[0])

Process Description:

Example with p1 elements:

2
Start with the DG polynomials UZ in Representations of U(x) = sin’(x) + x;

Q4 and Ul in Qp.

Obtain reconstructed solution U.¢F

in {4, containing p + 2 DOF.

fU,{C%kdx: fujlq)kdx vk € {1..K}

2y oy

ijCde= jUgdx

Qg Qp

Perform similar operation for UL‘B

B

Use ICB solutions as inputs to
HCORU(U+' U_)

ICB Method achieves 2p + 2 order of accuracy
Generalizes to 2D via tensor-product basis

1.2

—EXxact
1 —DG solution

0.8

0.6/

0.4
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Discontinuity Sensor

Approach: Check cell averages for severe density/pressure jumps across element interfaces

1) Calculate U=cell average for each element
2) At each interface, use sensor of Lombardini to check for shock wave:
i. If Lax entropy condition satisfied (hat denotes Roe average at interface):
Up —cL >U—C>UR —CR
ii. Check pressure jump:
PR — PLI 29
~ pL+pR ¢_(1+¢)2
ii. If® > 0.01, tag both elements as “troubled”

3) At each interface, check for contact discontinuity
i.  Calculate wave strength propagating the density jump: A@

ii. Check relative strength: &= Al
PL + PR

ii. IfZ>0.01, tag both elements as “troubled”
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