RADGUM:

The Recovery-Assisted DG code of the University of Michigan (WS1 case only)

January 6th, 2017 5th International Workshop on High-Order CFD Methods Kissimmee, Florida

Philip E. Johnson & Eric Johnsen

Scientific Computing and Flow Physics Laboratory Mechanical Engineering Department University of Michigan, Ann Arbor

Code Overview

Basic Features:

- Spatial Discretization: Discontinuous Galerkin, nodal basis
- **Time Integration:** Explicit Runge-Kutta (4th order and 8th order available)
- Riemann solver: Roe, SLAU2[†]
- Quadrature: One quadrature point per basis function

Non-Standard Features:

- ICB reconstruction: compact technique, adjusts Riemann solver arguments
- Compact Gradient Recovery (CGR): Mixes Recovery with traditional mixed formulation for viscous terms
- Shock Capturing: PDE-based artificial dissipation inspired by C-method^{††} of Reisner et al.
- Discontinuity Sensor: Detects shock/contact discontinuities, tags "troubled" elements

Recovery Concept†

Exact Distribution U

DG solution: U_h^A , U_h^B

Recovered solution: f_{AB}

$$U = x + y + \sin(2\pi xy)$$

$$U_A^h = \sum_{m=1}^K \hat{U}_A^m \phi^m$$
$$U_B^h = \sum_{m=1}^K \hat{U}_B^m \phi^m$$

$$U_B^h = \sum_{m=1}^K \hat{U}_B^m \phi^m$$

$$f_{AB} = \sum_{m=1}^{2R} \hat{f}_{AB}^m \psi^m(\vec{x})$$

$$\int_{\Omega_A} f_{AB} \phi^k dA = \int_{\Omega_A} U_A^h \phi^k dA \quad \forall k \in \{1..K\}$$

$$\int_{\Omega_B} f_{AB} \phi^k dA = \int_{\Omega_B} U_B^h \phi^k dA \quad \forall k \in \{1..K\}$$

$$\int_{\Omega_B} f_{AB} \phi^k dA = \int_{\Omega_B} U_B^h \phi^k dA \quad \forall k \in \{1..K\}$$

Recovery Demonstration: p = 3

Recovery Demonstration: p = 3

Recovery Demonstration: p = 3

Our Approach vs. Conventional DG

- For diffusive fluxes: CGR maintains compact stencil[†], offers advantages over BR2
 - Larger allowable explicit timestep size
 - Improved wavenumber resolution
- For advection problems: $\int_{\Omega_e} \phi_e^k \frac{\partial}{\partial t} U_e^h d\mathbf{x} = -\int_{\Omega_e} \phi_e^k \nabla \cdot \mathcal{F}(U^h) d\mathbf{x}$
- DG weak form: Must calculate flux along interfaces
 - Conventional approach (upwind DG): plug in left/right values of DG solution

$$\int_{\Omega_e} \phi_e^k \frac{\partial}{\partial t} U_e^h d\mathbf{x} = -\int_{\partial \Omega_e} \phi_e^k (\tilde{\mathcal{F}} \cdot n^-) ds + \int_{\Omega_e} (\nabla \phi_e^k) \cdot \mathcal{F}(U_e^h) dx$$

- Conventional approach: $\tilde{\mathcal{F}} = Rie(U_L^h, U_R^h, n_L)$
- Our approach: ICB reconstruction scheme^{††}
 - Replace left/right solution values with ICB reconstruction: $\tilde{\mathcal{F}} = Rie(U_L^{ICB}, U_R^{ICB}, n_L)$

Taylor-Green Test (WS1)

- Code setup: p2 elements, uniform hex mesh (27 DOF/element), RK4 time integration
 - Reference result taken from HiOCFD3 workshop
 - Our approach allows larger stable time step

Enstrophy-based KEDR, 21³ elements

ICB+CGR: 2.5 CPU-hours

Conventional: 9.2 CPU-Hours

Enstrophy-based KEDR, 42³ elements

ICB+CGR: 75 CPU-hours

Conventional: 304 CPU-Hours

Energy Spectrum Computation

- 1) Populate velocity (u, v, w) on evenly-spaced 3D grid x
- $\rightarrow h = \frac{2\pi L}{N}$
- 2) Build discrete $\mathbf{r} = (r^x, r^y, r^z)$
- $r_j^x = -\frac{\pi L}{2} + h(j + \frac{1}{2}); j \in \{0, 1, \dots, \frac{N}{2}\}$
- 3) For each $r(j_x, j_y, j_z)$: average over entire grid (all x) for velocity correlation
- $ightharpoonup R_{uu}(\mathbf{r}) = \langle u(\mathbf{x} + \mathbf{r})u(\mathbf{x}) \rangle$
- $ightharpoonup R_{vv}(r) = \langle v(x+r)v(x) \rangle$
- $ightharpoonup R_{ww}(r) = \langle w(x+r)w(x) \rangle$
- 4) Open Matlab

Energy Spectrum Computation

- 5) Build 3D Fourier transform of each correlation:
- $\triangleright \ \widehat{U} = fftn(R_{uu}), \widehat{V} = fftn(R_{vv}), \widehat{W} = fftn(R_{ww})$
- 6) Calculate energy spectrum:

$$E(K) = \sum_{k=0}^{\infty} \frac{1}{2} (|\widehat{U}_{kx,ky,kz}| + |\widehat{V}_{kx,ky,kz}| + |\widehat{W}_{kx,ky,kz}|)$$

$$\sqrt{kx^2 + ky^2 + kz^2} = K$$

7) Normalize: scale E(K) to achieve $\int_{K=1}^{\infty} E(K) dK = \frac{1}{\rho \Omega} \int_{\Omega} \frac{\rho}{2} (u^2 + v^2 + w^2) dx$

Conclusions

- Were the verification cases helpful and which ones were used?
 - TGV: First 3D simulation, demonstrates value of ICB+CGR for nonlinear problem
- What improvements are needed to the test case?
 - TGV: Standardize energy spectrum calculation and make reference data more easily accessible
- Did the test case prompt you to improve your methods/solver
 - Yes: added 3D capability
- What worked well with your method/solver?
 - Feature resolution on Cartesian meshes (ICB very helpful)
- What improvements are necessary to your method/solver?
 - ICB/CGR robustness on non-Cartesian elements

SciTech Talk

Title: A Compact Discontinuous Galerkin Method for Advection-Diffusion Problems

Session: FD-33, High-Order CFD Methods 1

Setting: Sun 2, January 10, 9:30 AM

Acknowledgements

Computing resources were provided by the NSF via grant 1531752 MRI: Acquisition of Conflux, A Novel Platform for Data-Driven Computational Physics (Tech. Monitor: Ed Walker).

References

- ➤ Kitamura, K. & Shima, E., "Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes," *Journal of Computational Physics*, Vol. 245, 2013.
- Reisner, J., Serensca, J., Shkoller, S., "A space-time smooth artificial viscosity method for nonlinear conservation laws," *Journal of Computational Physics*, Vol. 235, 2013.
- > Johnson, P.E. & Johnsen, E., "A New Family of Discontinuous Galerkin Schemes for Diffusion Problems," 23rd AIAA Computational Fluid Dynamics Conference, 2017.
- ➤ Khieu, L.H. & Johnsen, E., "Analysis of Improved Advection Schemes for Discontinuous Galerkin Methods," 7th AIAA Theoretical Fluid Dynamics Conference, 2011.
- > Cash, J.R. & Karp, A.H., "A Variable Order Runge-Kutta Method for Initial Value Problems with Rapidly Varying Right-Hand Sides," ACM Transactions on Mathematical Software, Vol. 16, No. 3, 1990.

Spare Slides

Vortex Transport Case (VI1)

Setup 1: p = 1, RK4, SLAU Riemann solver

Setup 2: p = 3, RK8[†] (13 stages), SLAU Riemann solver

ICB usage: Apply ICB on Cartesian meshes, conventional DG otherwise

EQ: Global L_2 error of v:

$$E_{v} = \sqrt{\frac{\int_{\Omega} (v - v_{0})^{2} dV}{\int_{\Omega} dV}}$$

Convergence: order 2p + 2 on Cartesian mesh, order 2p on perturbed quad mesh

Shock-Vortex Interaction (CI2)

Configurations: Cartesian (p = 1), Cartesian (p = 3), Irregular Simplex (p = 1)

Setup: RK4 time integration, SLAU (Cartesian) and Roe (Simplex) Riemann solvers

Shock Capturing: PDE-based artificial dissipation

ICB usage: Only on Cartesian grids

CGR = Mixed Formulation + Recovery

Gradient approximation in Ω_e : $\sigma(x \in \Omega_e) = \sigma_e(x) = \sum_{k=0}^r \phi^k(\xi) \ \hat{\sigma}_e^k$

Weak equivalence with $\nabla \mathbf{U}$: $\int_{\Omega_e} \phi^k \ \sigma_e dx = \int_{\Omega_e} \phi^k \ \nabla U^h dx \quad \forall k \in \{0,1,...,p\}$

Integrate by parts for σ weak form: $\int_{\Omega_e} \phi^k \ \sigma_e dx = [\phi^k \ \tilde{U}]_L^R - \int_{\Omega_e} U_e^h \ \nabla \phi^k dx \quad \forall k \in \{0,1,...,p\}$

- Must choose interface \widetilde{U} approximation from available data
 - BR2: Take average of left/right solutions at the interface
 - Compact Gradient Recovery (CGR): \widetilde{U} = recovered solution
- Interface gradient: CGR formulated to maintain compact stencil

The Recovery Concept

- Recovery: reconstruction technique introduced by Van Leer and Nomura[†] in 2005
- Recovered solution (f_{AB}) and DG solution (U^h) are equal in the weak sense
- Generalizes to 3D hex elements via tensor product basis

Recovered Solution for \mathcal{I}_{AB} :

$$f_{AB}(r) = \sum_{n=0}^{2p+1} \psi^n(r) \ \hat{f}_{AB}^n$$

$K_R = 2p + 2$ constraints for f_{AB} :

$$\int_{\Omega_A} \phi_A^k \ f_{AB} \ dx = \int_{\Omega_A} \phi_A^k \ U_A^h \ dx \quad \forall k \in \{0, 1, ..., p\}$$
$$\int_{\Omega_B} \phi_B^k \ f_{AB} \ dx = \int_{\Omega_B} \phi_B^k \ U_B^h \ dx \quad \forall k \in \{0, 1, ..., p\}$$

Interface Solution along \mathcal{I}_{AB} :

$$\mathcal{R}(U_A, U_B) = f_{AB}(0)$$

Recovery Demonstration: All Solutions

The ICB reconstruction

• Each interface gets a pair of ICB reconstructions, one for each element:

$K_{ICB} = p + 2$ coefficients per element:

$$U_A^{ICB}(\mathbf{r}) = \sum_{n=1}^{K_{ICB}} \psi^n(\mathbf{r}) \ \hat{C}_A^n$$
$$U_B^{ICB}(\mathbf{r}) = \sum_{n=1}^{K_{ICB}} \psi^n(\mathbf{r}) \ \hat{C}_B^n$$

Constraints for U_A^{ICB} : (Similar for U_B^{ICB})

$$\begin{split} & \int_{\Omega_A} \phi_A^k \ U_A^{ICB} dx = \int_{\Omega_A} \phi_A^k \ U_A^h dx \quad \forall k \in \{0,1,\dots p\} \\ & \int_{\Omega_B} \Theta_B \ U_A^{ICB} dx = \int_{\Omega_B} \Theta_B \ U_B^h dx \end{split}$$

• Choice of Θ_B affects behavior of ICB scheme — Illustration uses $\Theta_B=1$

Example: p=1 (2 DOF/element) $U=e^x sin(\frac{3\pi x}{4})$

The @ Function: ICB-Modal vs. ICB-Nodal

- ICB-Modal (original): $\Theta_A = \Theta_B = 1$ is lowest mode in each element's solution
- ICB-Nodal (new approach): Θ is degree p Lagrange interpolant
 - Use Gauss-Legendre quadrature nodes as interpolation points
 - Take Θ nonzero at closest quadrature point

Sample Θ choice for p=3: Each Θ is unity at quadrature point nearest interface

The @ Function: ICB-Modal vs. ICB-Nodal

ICB-Modal: Each U^{ICB} matches the average of U^h in neighboring cell

ICB-Nodal: Each U^{ICB} matches U^h at near quadrature point

Fourier Analysis

- Fourier analysis performed on 2 configurations:
 - Conventional: Upwind DG + BR2
 - New: ICB-Nodal + CGR

Scheme	$\widetilde{\pmb{F}}$	$\widetilde{\pmb{U}}$
uDG + BR2	$\mathrm{Rie}(U_A^h,U_B^h,n_A^-)$	$\{\{U^h\}\}$
ICB + CGR	$\mathrm{Rie}(U_A^{ICB},U_B^{ICB},n_A^-)$	$\mathcal{R}(U_A^h, U_B^h)$

Analysis Procedure †:

Linear advection-diffusion, 1D:

$$\frac{\partial U}{\partial t} = \mu \frac{\partial^2 U}{\partial x^2} - a \frac{\partial U}{\partial x}$$

Define element Peclet number:

$$PE_h = \frac{ah}{\mu}$$

Set Initial condition:

$$U(x,0) = \exp(i\omega' x)$$

$$\omega = h\omega'$$

$$U(x,0) = \exp(i\omega' x)$$
 $\omega = h\omega'$ $\hat{U}_{m+J} = \exp(iJw) \cdot \hat{U}_m$

Cast numerical scheme in matrix-vector form:

$$\frac{\partial}{\partial t}\hat{\boldsymbol{U}}_{\boldsymbol{m}} = \frac{\mu}{h^2}\cdot\boldsymbol{\mathcal{A}}(\omega,PE_h)\hat{\boldsymbol{U}}_{\boldsymbol{m}}$$

Fourier Analysis

5) Diagonalize the update matrix:

$$\mathcal{A} = V \Lambda V^{-1}$$

6) Calculate initial expansion weights, β :

$$V\beta = \hat{U}_{m}(\omega, 0)$$

 Watkins et al. derived estimate for initial error growth:

—
$$\lambda^n = n^{th}$$
 eigenvalue of \mathbf{A}

$$\mathcal{E}(\omega, PE_h) = \frac{1}{\sqrt{p+1}} \sum_{n=1}^{p+1} |\beta_n| |\lambda_n - \lambda^{ex}|$$

Eigenvalue corresponding to exact solution:

$$\lambda^{ex} = -i(PE_h\omega) - \omega^2$$

ICB+CGR,
$$p = 2$$
, $PE_h = 10$, $\lambda^{ex} = -i(10\omega) - \omega^2$

Wavenumber Resolution

$$\mathcal{E}(\omega, PE_h) = \frac{1}{\sqrt{p+1}} \sum_{n=1}^{p+1} |\beta_n| |\lambda_n - \lambda^{ex}|$$

- To calculate wavenumber resolution:
 - 1) Define some error tolerance(ϵ) and Peclet number (PE_h)
 - 2) Identify cutoff wavenumber, ω_f according to: $\mathcal{E}(\omega, PE_h) \leq \epsilon \text{ for all } \omega \in [0, \omega_f]$.
 - 3) Calculate resolving efficiency: $\eta = \frac{\omega_f}{(p+1)\pi}$

Scheme Comparison: $PE_h = 10$

- Fourier analysis, Linear advection-diffusion
- Resolving efficiency measures effectiveness of update scheme's consistent eigenvalue

Р	Conventional	ICB + CGR
1	0.0296	0.1103
2	0.0531	0.0776
3	0.0844	0.1113
4	0.1022	0.1225
5	0.1196	0.1304

Р	Conventional	ICB + CGR
1	0.0940	0.2389
2	0.1200	0.1793
3	0.1451	0.1755
4	0.1677	0.2628
5	0.1743	0.1874

Compact Gradient Recovery (CGR) Approach

- Similar to BR2: Manage flow of information by altering gradient reconstruction
- 1D Case shown for simplicity: Let g_A , g_B be gradient reconstructions in Ω_A , Ω_B
 - ightharpoonup Perform Recovery over g_A , g_B for $\tilde{\sigma}$ on the shared interface

$$\int_{\Omega_A} \phi^k g_A dx = \int_{\Omega_A} \phi^k \nabla U^h dx \quad \forall k \in \{1..K\}$$

$$\int_{\Omega_B} \phi^k g_B dx = \int_{\Omega_B} \phi^k \nabla U^h dx \quad \forall k \in \{1..K\}$$

$$\tilde{\sigma} = \mathcal{R}(g_A, g_B)$$

$$\int_{\Omega_e} \phi^k g_e dx = (\phi^k \tilde{U})_R - (\phi^k \tilde{U})_L - \int_{\Omega_e} (\nabla \phi^k) U^h dx \quad \forall k \in \{1..K\}$$

$$ilde{U}=\chi f+(1-\chi)U_A$$
 $ilde{U}=\chi f+(1-\chi)U_B$ $ilde{\Omega}_A$ $ilde{U}=U_B$

The ICB Approach (Specifically, ICBp[0])

- Recovery is applicable ONLY for viscous terms; unstable for advection terms.
- Interface-Centered Binary (ICB)
 reconstruction scheme modifies Recovery
 approach for hyperbolic PDE.

Process Description:

1. Start with the DG polynomials U_A^h in Ω_A and U_b^h in Ω_B .

Example with p1 elements:

Representations of
$$U(x) = \sin^3(x) + \frac{x^2}{2}$$

The ICB Approach (Specifically, ICBp[0])

Process Description:

- 1. Start with the DG polynomials U_A^h in Ω_A and U_b^h in Ω_B .
- 2. Obtain reconstructed solution U_A^{ICB} in Ω_A , containing p+2 DOF.

$$\int_{\Omega_A} U_A^{ICB} \phi^k dx = \int_{\Omega_A} U_A^h \phi^k dx \quad \forall k \in \{1..K\}$$

$$\int_{\Omega_B} U_A^{ICB} dx = \int_{\Omega_B} U_B^h dx$$

Example with p1 elements:

Representations of
$$U(x) = sin^3(x) + \frac{x^2}{2}$$

The ICB Approach (Specifically, ICBp[0])

Process Description:

- 1. Start with the DG polynomials U_A^h in Ω_A and U_b^h in Ω_B .
- 2. Obtain reconstructed solution U_A^{ICB} in Ω_A , containing p+2 DOF.

$$\int_{\Omega_A} U_A^{ICB} \phi^k dx = \int_{\Omega_A} U_A^h \phi^k dx \quad \forall k \in \{1..K\}$$

$$\int_{\Omega_B} U_A^{ICB} dx = \int_{\Omega_B} U_B^h dx$$

- 3. Perform similar operation for U_{B}^{ICB}
- 4. Use ICB solutions as inputs to $\widehat{H}_{conv}(U^+, U^-)$
- ICB Method achieves 2p+2 order of accuracy
- Generalizes to 2D via tensor-product basis

Example with p1 elements:

Representations of
$$U(x) = sin^3(x) + \frac{x^2}{2}$$

Discontinuity Sensor

Approach: Check cell averages for severe density/pressure jumps across element interfaces

- 1) Calculate \overline{U} =cell average for each element
- 2) At each interface, use sensor of Lombardini to check for shock wave:
 - i. If Lax entropy condition satisfied (hat denotes Roe average at interface):

$$u_L - c_L > \hat{u} - \hat{c} > u_R - c_R$$

ii. Check pressure jump:

$$\phi = \frac{|p_R - p_L|}{p_L + p_R}, \qquad \Phi = \frac{2\phi}{(1 + \phi)^2}$$

- iii. If $\Phi > 0.01$, tag both elements as "troubled"
- 3) At each interface, check for contact discontinuity
 - i. Calculate wave strength propagating the density jump: $\Delta \widehat{\alpha_2} = \frac{\Delta \rho \widehat{c}^2 \Delta p}{\widehat{c}^2}$
 - ii. Check relative strength: $\xi = \frac{|\Delta \alpha_2|}{\rho_L + \rho_R}$, $\Xi = \frac{2\xi}{(1+\xi)^2}$.
 - iii. If $\Xi > 0.01$, tag both elements as "troubled"