

Cenaero

CS2 - Spanwise periodic DNS/LES of transitional turbine cascades

5th International Workshop on High-Order CFD Methods

Koen Hillewaert, M. Galbraith Contact: koen.hillewaert@cenaero.be

Case Overview

Case Overview Description: geometry and conditions

T106C (high lift)

- $Re_{2s} = 80.000$
- $M_{2s} = 0.65$
- Pitch/Chord = 0.95
- Span/Chord = 10%
- $\beta_1 = 32.7^{\circ}$

T106A (nominal lift)

- $Re_{2s} = 60.000$
- $M_{2s} = 0.4$
- Pitch/Chord = 0.798
- Span/Chord = 10%
- $\beta_1 = 45.5^{\circ}$ (blockage correction)

PROD-F-015-01 Spanwise periodic computations

Case Overview Description: wind tunnel conditions

- Air near vacuum $P^t \simeq 10.000 \ Pa$ and ambient temperature $T^t \simeq T_{amb} \simeq 290 K$
- Controlled conditions near the cascade
 - Inlet: total conditions T_1^t , P_1^t and flow angle β_1
 - Outlet: static pressure p_2
- Isentropic outlet Mach number M_{2s}

$$M_{2s} = \sqrt{\frac{2}{\gamma - 1} \left(\left(\frac{P_1^t}{p_2}\right)^{-\frac{\gamma}{\gamma - 1}} - 1 \right)}$$

Isentropic outlet Reynolds number Re_{2s} •

$$Re_{2s} = \frac{\rho_{2s}v_{2s}C}{\mu_{2s}}$$

with

$$f_{2s} = \left(1 + \frac{\gamma - 1}{2}M_{2s}^2\right) \quad T_{2s} = T_1^t \cdot f_{2s}^{-1} \qquad \rho_{2s} = \frac{P_1^t}{\mathcal{R}T_1^t} \cdot f_{2s}^{-\frac{1}{\gamma - 1}}$$

$$v_{2s} = M_{2s}\sqrt{\gamma \mathcal{R}T_{2s}} \quad \mu_{2s} = \mu_0 \left(\frac{T_0}{T_{2s}}\right)^{3/2} \frac{T_0 + S}{T_{2s} + S}$$

Case Overview Description: computations

Cenae

- Boundary conditions
 - Inlet: total conditions $P_1^t = T_1^t = 1$ and flow angle β_1
 - Outlet: static pressure p_2

$$p_2 = f_{2s}^{-\frac{\gamma}{\gamma-1}}$$

- Gas properties
 - thermodynamic

$$\mathcal{R} = 1$$
 $\mathcal{C}_p = \frac{\gamma}{\gamma - 1}$ $\gamma = 1.4$

- constant transport properties

$$\mu = \frac{\rho_{2s} v_{2s} C}{R e_{2s}} \qquad \qquad \kappa = \frac{\mu \mathcal{C}_p}{\kappa}$$

using isentropic state

$$v_{2s} = M_{2s} \sqrt{\gamma \cdot f_{2s}^{-1}}$$
 $\rho_{2s} = f_{2s}^{-\frac{1}{\gamma - 1}}$

Case Overview Description: 2D flow ?

Low Reynolds effects

- thick inlet boundary layers
- important secondary flow/horseshoe
- interaction with laminar separation bubble
- full 3D flow, non-constant blockage
- angle correction sometimes successful ...
- ... but apparently not in this case

Case Overview Description: vorticity field

Cenaerć

Case Overview Validation cases: DNS & LES capabilities

WS1 - transition of the Taylor-Green vortex Re = 1600

- DNS / LES of transitional flow
- validation DNS/LES/ILES
- kinetic energy budget
- role/importance of numerical dissipation
- resolution requirements Δ , Δt
- stability
- WS2 channel flow $Re_{\tau} = 550$
 - resolved LES of wall boundary layer
 - validation of LES/ILES
 - momentum budgets viscous / Reynolds stresses
 - resolution requirements $\Delta x^+,\,\Delta y^+,\,\Delta z^+$ and $\Delta t^+,$ as well as stretching

Case Overview Workshop meshes: coarse (21k Elements)

Case Overview Workshop meshes: coarse (21k Elements)

Case Overview Workshop meshes: baseline (118k Elements)

Case Overview Workshop meshes: baseline (118k Elements)

© Cenaero - All rights reserved

PROD-F-015-01

Case Overview IAG Stuttgart meshes(4359 Elements)

Cenaeró

Case Overview IAG Stuttgart meshes(4359 Elements)

Results Comparison

Results Comparison Computations

	Method	Resolution	DOF	Avg. CT	Ite/CT
		P4 coarse	1.1M	30	64479
		P5 coarse	1.7M	30	135406
Onera	LLF/SIP	P3 baseline	2.9M	30	27633
	Pascal basis	P4 baseline	5.1M	30	56419
		P5 baseline	8.2M	30	123096
	Roe/BR1	P6 coarse	1.5M	40	4838
IAG	Tensor basis	P7 coarse	2.7M	40	5908
MIT^1	IEDG ²	P2 baseline	3.2M ³	7.7	270
Canadana	Roe/SIP	P4 coarse	2.6M	20	451
Cendero	Tensor basis	P4 baseline	14.8M	18	902

¹Corrected post-processing ²Interior Embedded DG ³Before static condensation

Results Comparison Blade distributions: isentropic Mach number

Cenaero

© Cenaero - All rights reserved

Results Comparison Blade distributions: isentropic Mach number

Cenaerć

Results Comparison Blade distributions: friction coefficient

Cenaeró

Results Comparison Wake traverses: total pressure

Note: previous MIT results featured post-processing error, now corrected (HOW4 vs HOW5)

Results Comparison Wake traverses: loss coefficient

Cenaeró

Results Comparison Wake traverses: flow angle

Cenaeró

Results Comparison

Cenaerd

Wake traverses: Reynolds stress component < u'u' >

Results Comparison

Cenaero

Wake traverses: Reynolds stress component < v'v' >

Results Comparison Wake traverses: Reynolds stress component < u'v' >

Cenaero

Results Comparison Computational resources

	Method	Resolution	DOF	Ite/CT	WU/CT	WU/DOF/CT
Onera		P4 coarse	1.1M	64479	0.31M	0.292
		P5 coarse	1.7M	135406	1.23M	0.716
	LLF/SIP	P3 baseline	2.9M	27633	0.45M	0.141
	Pascal basis	P4 baseline	5.1M	56419	1.70M	0.332
		P5 baseline	8.2M	123096	4.64M	0.566
IAG	Roe/BR1	P6 coarse	1.5M	4838	0.10M	0.069
	Tensor basis	P7 coarse	2.7M	5908	0.15M	0.068
MIT	IEDG	P2 baseline	3.2M	270	0.04M	0.013
Cenaero	Roe/SIP	P4 coarse	2.6M	451	0.29M	0.110
	Tensor basis	P4 baseline	14.8M	902	4.38M	0.295

Results Comparison Computational resources

Cenaeró

	Method	Resolution	DOF	Ite/CT	WU/CT	WU/DOF/RES
Onera		P4 coarse	1.1M	64479	0.31M	$1.13\mu~s$
		P5 coarse	1.7M	135406	1.23M	$1.32\mu~s$
	LLF/SIP	P3 baseline	2.9M	27633	0.45M	$1.27\mu~s$
	Pascal basis	P4 baseline	5.1M	56419	1.70M	$1.47\mu~s$
		P5 baseline	8.2M	123096	4.64M	$1.15 \mu \ s$
IAG	Roe/BR1	P6 coarse	1.5M	4838	0.10M	$2.87\mu~s$
	Tensor basis	P7 coarse	2.7M	5908	0.15M	$2.31\mu~s$
MIT	IEDG	P2 baseline	3.2M	270	0.04M	0.17µ s
Cenaero	Roe/SIP	P4 coarse	2.6M	451	0.29M	2.68µ s
	Tensor basis	P4 baseline	14.8M	902	4.38M	$3.63\mu~s$

Conclusions

Conclusions Computational campaigns

Results

- Onera/Cenaero/MIT: close results
 - post-processing error MIT resolved
 - Similar numerical implementations
 - Used the same meshes!!
- IAG: error in mesh setup
 - Mesh has to be redone (smoothness of normals)
 - Wake refinement probably needed
 - Workshop-provided grids would likely close the gap

Timings

- Comparison are difficult
- Onera/Cenaero: comparable (despite EXP/IMP)
- IAG: Faster but not more efficient (large time-step)
- MIT: IEDG seems promising (DOF count? Dealiasing?)

Evolution of the test case

- true grid convergence studies and free mesh choice ?
- adaptative computations ?
- 3D full span computations ?

All options are costly ...

Experimental match

- Confirmed disagreement identified during HOW2
- Large scale three-dimensionality detected by 3D LES
- angle correction often used in literature does not help
- bad match probable reason for which very few LES / DNS in literature
- Data seems not suitable for RANS/transition model development for 2D transition modes → pure numerical data (DNS)
 - full specification possible, whereas not all can be measured
 - much more detailed data available
 - truely 2D conditions can be reproduced
- Data should be used for reference of 3D computations \rightarrow more detailed data are required
 - inlet boundary layer
 - characterization of 3D effects (spanwise traverses, ...)

