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WS1: Taylor-Green Vortex



Case description
• Flow conditions:  

Re = U0 L / ν = 1,600 and ∞ 
M = U0 / a0 = 0.1 

• Solver: DIGASO 
• Discretization scheme:  

- Space: 3rd-order IEDG 
- Time: 3rd-order DIRK(3,3) 

• Quadrature rule: Gauss-Legendre with 
exact integration of polynomials up to 
5th-order 

• Number of elements: 64 x 64 x 64 hexes 
• Baseline CFL number: 0.375 
• Studies presented:  

- Riemann solver 
- SGS model: ILES, Smagorinsky, WALE, 

Vreman 
- Time-step size
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Source: G. Giangaspero et al., HiOCFD3, 2015
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Effect of SGS model
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• All SGS models produce unphysical dissipation in the laminar regime 
• Built-in ILES capability in DG more accurate than explicit SGS models to detect SGS scales 

and add numerical dissipation only under those conditions
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ILES with different Riemann solvers Explicit vs. implicit LES
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Effect of time-step size

• Vorticity and entropy modes captured with local CFL ~ 1. Acoustic modes require        
CFL << 1 (recall M0 = 0.1) 

• Optimal LES implementations likely with local CFL > 1: Global CFL >>> 1 for wall-
bounded flows

Time evolution of kinetic energy dissipation rate Numerical generation of entropy 

Laminar regime Turbulent regime Laminar regime Turbulent regime
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(Just acoustic 
waves)



WS2: Turbulent Channel Flow



Case description

Reτ=182 Reτ=544
Δx+ 23.8 71.2
Δy+avg 5.69 17.0
Δy+wall 0.438 1.310
Δz+ 14.3 42.7
Δt+ 0.290 0.740

• Flow conditions:  
Reτ =182 and 544    |    M = 0.1 

• Channel size: 4π𝛿 x 2𝛿 x 2π𝛿 

• Solver: DIGASO 

• Discretization scheme:  
- Space: 3rd- and 5th- order IEDG 
- Time: 3rd-order DIRK(3,3) 

• Quadrature rule: Gauss-Legendre with 
exact integration of polynomials up to 
5th- and 9th-order, respectively. 

• Number of elements: 48 x 32 x 40 

• Studies presented:  
- SGS model

Mesh resolution in wall units

Source: P. Blonigan et al., APS DFD Meeting 2016

Riemann solver study is 
presented in (Fernandez et al., 2017b) 
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Effect of SGS model

• ILES more accurate than explicit LES at both Reynolds numbers 
• Viscous sublayer: Accurately resolved in all cases (except Smagorinsky-LES) 
• Log layer: Accurately resolved in all cases

Viscous layer Buffer layer Log layer Viscous layer Buffer layer Log layer

Reτ = 182 Reτ = 544
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Effect of SGS model

• Buffer layer: Not accurately resolved. All simulations introduce too much “numerical 
transport of momentum” (not the same as “numerical dissipation”!) 

• Ratio “momentum transport-to-dissipation” due to discretization errors and explicit 
SGS models is larger than the true SGS value

Reτ = 182 Reτ = 544

Viscous layer Buffer layer Log layer Viscous layer Buffer layer Log layer
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Effect of accuracy order

• 3rd- and 5th-order accurate LES 
have same number of DOFs and 
time-step size 

• LES predictions improve by 
increasing accuracy order 

• Accurately resolving the large 
turbulent scales by using a high-
order method plays a more 
important role than that of the 
subgrid scales

Reτ = 544

Viscous layer Buffer layer Log layer
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CS2: T106C LTP cascade



Case description
• Solver: DIGASO 
• Discretization scheme: 

- Space: 3rd-order IEDG 
- Time: 3rd-order DIRK(3,3) 

• Number of elements: 118,680 isoparametric hexes 
            (baseline mesh) 

• Time-step size: Δt = 5 · 10-3 c / v∞ (CFLglobal = 6.6) 
• LES model: No model (ILES) 
• Riemann solver: Lax-Friedrichs-type in (Fernandez et al., 2017b)

• Quadrature rule: Gauss-Legendre with exact integration of polynomials up to 5th-order

Spanwise vorticity

14

Mach number



Flow fields on the periodic plane

Time average Instantaneous

Mach number

Spanwise vorticity
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Non-dimensional grid size
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Pressure and skin-friction coefficients

• Two types of inflow/outflow boundary conditions are considered 
• Small differences in Cp and Cf observed



Amplitude of instabilities - Suction side Amplitude of instabilities - Pressure side 

Natural transition through 2D 
unstable modes

The nomenclature and details of the post-processing strategy are described 
in (Fernandez et al., 2017a)
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Analysis of boundary layer instabilities



The nomenclature and details of the post-processing strategy are described in (Fernandez et al., 2017a)

Displacement and momentum thickness Shape parameter

19

Suction side boundary layer



Summary

20

• Implicit LES outperformed explicit SGS models for the transition prediction, wall-
free turbulence and wall-bounded turbulence cases considered. 

• Minor differences between Riemann solvers: DG methods have an auto-
correction mechanism to compensate for overshoots in the Riemann solver. 

• DG methods have a built-in implicit LES capability and add numerical 
dissipation in under-resolved turbulence simulations. 

• Built-in implicit SGS model in DG methods is more accurate than explicit models 
since they add numerical dissipation only when SGS’s are present in the flow 

• Higher order are important to capture detailed physics in turbulent flows at 
higher Reynolds number. 

• Optimal LES implementations are likely  achieved with local CFLlocal > 1  
(CFLglobal >> 1 for wall-bounded flows).



• IEDG is the hybridized DG method of choice: It inherits computational 
efficiency from EDG and BC robustness from HDG. 

• Below ~5th order accuracy, IEDG allows for more efficient implementations 
than other DG methods. 

• Beyond ~5th order accuracy, memory requirements and flop count 
become prohibitive, and IEDG does not provide any advantages.  

21

• ILU(0) + RAS(1) type preconditioners are extremely efficient for most LES 
cases considered. 

• Accuracy and stability of ILU deteriorates for low cell Peclet numbers 
(time-step size needs to be reduced more than linearly w.r.t. mesh size): 
Issues for wall-resolved LES at Re > 500,000. 

• Efficiency and scalable nonlinear solvers are required for these methods 
to be adopted in industrial applications.

Summary



Questions?

pablof@mit.edu cuongng@mit.edu peraire@mit.edu

For additional details:

P. Fernandez, N.C. Nguyen, J. Peraire, The hybridized Discontinuous Galerkin method for Implicit Large-
Eddy Simulation of transitional turbulent flows, J. Comput. Phys. 336 (1) (2017) 308–329. 

P. Fernandez, N.C. Nguyen, J. Peraire, Subgrid-scale modeling and implicit numerical dissipation in DG-
based Large-Eddy Simulation, In: 23rd AIAA Computational Fluid Dynamics Conference, Denver, USA, 
2017. 

P. Fernandez, N.C. Nguyen, J. Peraire, A physics-based shock capturing method for unsteady laminar 
and turbulent flows, In: 56th AIAA Aerospace Sciences Meeting, Gaylord Palms, USA, 2018. 

SciTech talk: 

Title: A physics-based shock capturing method for unsteady laminar and turbulent flows 

Session: FD-03, CFD for Capturing Flow Discontinuities 

Setting: Monday, January 8, 9:30 AM, Room Sun 5



Hybridized DG methods



• The hybridized DG approach (Nguyen et al., 2015) introduces additional variables       
on the element faces       . Then:

buh
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• Consider the unsteady compressible Navier-Stokes equations:

Hybridized DG schemes

rh(buh) = 0

• This yields a global problem:

Hybridized DGStandard DG
Global DOFs in standard DG methods
Global DOFs in hybridized DG methods

(qh,uh)
buh

K

@K

rh(uh) = 0



HDG

EDG

IEDG

• “Hybridized DG schemes” (Nguyen et al., 2015) are a family of numerical schemes 
• Different choices of the space for      lead to different schemes. Three examples:buh

Hybridized DG schemes

buhMethod Nature of      space
Hybridizable DG (HDG) (Peraire et al., 2010) Discontinuous across faces
Embedded DG (EDG) (Peraire et al., 2011) Continuous across faces

Interior Embedded DG (IEDG) (Fernandez et al., 2016) Interior faces: Continuous 
Boundary faces: Discontinuous



Hybridized DG. Efficiency and accuracy

• Optimal accuracy (         ) in     . 
• Superconvergence (         ) in      can be 

inexpensively achieved (HDG only) 
• Optimal accuracy (          ) in      (HDG only)

Accuracy order

Standard DG

HDG

EDG
IEDG

p+ 1

p+ 1

p+ 1

p+ 1

p

qhuh

p

p+ 1 p

Accuracy

uhp+ 2

uh

qh

p+ 1

p+ 1

• Non-zero entries in Jacobian of 
global system:

NNZ ⌘

Nc ⌘

Number of non-zeros
Number of mesh verticesNp ⌘
Number of components of the PDE

Accuracy order
2nd 3rd 4th 5th

Standard DG 480 3,000 12,000 36,750
HDG 756 3,024 8,400 18,900
EDG 15 230 1,311 4,410
IEDG <15 <230 <1,311 <4,410

Values of            (tetrahedra)

Efficiency

NNZ = NpN
2
c ↵NNZ

↵NNZ



Parallel implementation and 
iterative solvers



• The hybridized DG discretization yields a nonlinear system of 
equations at every time-step 

• An efficient and scalable solution procedure is required for these  
methods to be adopted in industrial applications 

• We discuss next on parallel iterative solvers

rh(buh) = 0

Parallel iterative solver
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Nonlinear system: Newton or quasi-Newton method
• Initial guess         at time-step    computed with a reduced-

basis minimum-residual algorithm:
bun,0
h n

Parallel iterative solver



Linear system: Restarted GMRES method
• Parallel preconditioner        : “Traced node”-based                                  

.     overlapping restrictive additive Schwarz (Cai et al., 1999): 

• Subdomain preconditioner: Block incomplete LU 
factorization with zero fill-in (BILU0) and MDF reorder 
(Persson et al., 2008)
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Number of subdomains (i.e. 
processors)

Restriction operator onto 
the       overlap subdomain 
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Nonlinear system: Newton or quasi-Newton method
• Initial guess         at time-step    computed with a reduced-

basis minimum-residual algorithm
bun,0
h n

M�1 :=
NX

i=1

R0
i (Kh)

�1
i R�

i

(Kh)i = R�
i Kh R�

i

��
R�

i ⌘

N ⌘

��
M�1

Parallel iterative solver
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Nonlinear system: Newton or quasi-Newton method
• Initial guess         at time-step    computed with a reduced-

basis minimum-residual algorithm
bun,0
h n

Linear system: Restarted GMRES method
• Parallel preconditioner        : “Traced node”-based                                  

.     overlapping restrictive additive Schwarz (Cai et al., 1999) 
• Subdomain preconditioner: Block incomplete LU 

factorization with zero fill-in (BILU0) and MDF reorder 
(Persson et al., 2008)
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Parallel iterative solver



Others:
• Mixed-precision approach for Newton-GMRES algorithm 
• Adaptive quadrature rules 
• Stabilized ILU factorization (sILU) 
• Minimum Interaction Domain Decomposition (MIDD)
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Nonlinear system: Newton or quasi-Newton method
• Initial guess         at time-step    computed with a reduced-

basis minimum-residual algorithm
bun,0
h n

Linear system: Restarted GMRES method
• Parallel preconditioner        : “Traced node”-based                                  

.     overlapping restrictive additive Schwarz (Cai et al., 1999) 
• Subdomain preconditioner: Block incomplete LU 

factorization with zero fill-in (BILU0) and MDF reorder 
(Persson et al., 2008)
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Parallel scalability

Number of processors
4096 8192 16384 32768 65536
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• Numerical discretization: 
- Space: 3rd-order IEDG 
- Time: 3rd-order DIRK(3,3) 

• Additional details: 
- Time-step size is kept content in all runs 
- Computing platform: Titan (OLCF) 
- One MPI rank per physical core 
- GPU computing and hybrid OpenMP/MPI 

parallelization disabled

• Weak scaling for LES of Ecole Centrale de Lyon compressor cascade 

• Low-speed compressor cascade with Reynolds numbers ranging from 200,000 to 400,000
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