High-Order Workshop Results for Case MC1 High-Lift Common Research Model (HiLPW3)

Michael J. Brazell, Behzad R. Ahrabi, and Dimitri J. Mavriplis

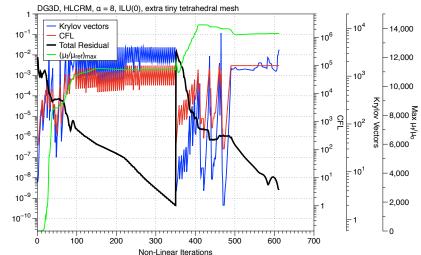
Department of Mechanical Engineering University of Wyoming

January 7, 2018

- Discontinuous Galerkin Finite Element Method
- Modal basis functions
- Hybrid mixed element unstructured meshes (tetrahedra, prisms, pyramids, and hexahedra)
- *p*-enrichment and *h*-refinement using non-conforming elements (hanging nodes)
- Independent polynomial degree for solution and mapping basis
- ► Non-linear system solver: PTC Newton-Rhapson method
- Linear system solver: preconditioned flexible-GMRES (Saad 1986)
- ► Line implicit Jacobi, Gauss-Seidel relaxation, ILU(0)

Physics

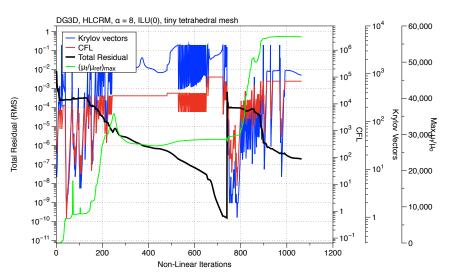
- Compressible Navier-Stokes in conservative variables
- ▶ PDE-based Artificial Viscosity (Barter and Darmofal, Burgess)
- Spalart-Allmaras turbulence model (negative-SA variant)
- Inviscid flux: Lax-Friedrichs, Roe, AUFS
- ► Viscous flux: symmetric interior penalty (SIP)



$$\alpha = 8^{\circ}$$
, Roe Flux, ILU(0)
time/dof = $\frac{cputime \times procs}{\tau \times dofs}$

case	р	dof $ imes 10^{6}$	CL	CD	time/dof
1	1	21.6	1.7763	0.17369	1.13
2	1	70.2	1.7725	0.17314	1.60
3	2	54.1	1.7868	0.17274	0.46
4	2	175.6	1.7814	0.17253	0.28

Residual, extra tiny mesh



Total Residual (RMS)

Residual, tiny mesh

- Challenging case
- Not enough runs to draw any conclusions
- ▶ Initializing p=2 with p=1 still difficult and time consuming
- ▶ p=1 tetrahedral meshes are painful for DG
- If meshing goes in direction of pure tetrahedral need to develop cell-based lines that do not rely on prisms
- ► ILU(0) requires a lot of memory, lines will help with this but also need matrix free high-order preconditioners