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Abstract— In this paper we present a methodology for achiev-
ing real-time control of systems modeled by partial differential
equations. The methodology uses the explicit solution of the
model predictive control (MPC) problem combined with model
reduction. The explicit solution of the MPC problem leads to on-
line MPC functionality without having to solve an optimization
problem at each time step. Reduced-order models are derived
using a goal-oriented, model-based optimization formulation
that yields efficient models tailored to the application at
hand. The approach is demonstrated for reduced-order output
feedback control of a large-scale linear time invariant state
space model of the discretized heat equation.

I. INTRODUCTION

Distributed systems such as those representing flow dy-

namics are modeled mathematically by a set of partial

differential equations (PDEs). In order to simulate such

systems, the PDEs are usually discretized using a set of tools

known as computational fluid dynamics (CFD). For many

applications, CFD models are often linearized around steady-

state operating points, leading to linear systems of potentially

very high order. Although often acceptable for simulation

purposes, the high order of the discretized (and linearized)

models may be prohibitive for controller design. Model-order

reduction has emerged as a powerful tool to address such

issues. The recent textbook [3] provides a comprehensive

overview of the field.

Model predictive control (MPC) is a control strategy

that has been widely accepted in the industrial process

control community and implemented successfully in many

commercial applications. The greatest strength of MPC is

the intuitive way in which constraints can be incorporated in

a multivariable control problem formulation. However, the

traditional MPC strategy demands a great amount of online

computation, limiting the use of these kinds of controllers

to processes with relatively slow dynamics, since an opti-

mization problem (often a constrained quadratic program)

is solved at each samplingtime step. It has recently been

shown that much of the computational effort in traditional

MPC can be done offline. In [7] and [26] the authors present

algorithms for solving multiparametric quadratic programs

(mpQPs) that are used to obtain explicit solutions to the

MPC problem. Thus, the explicit model predictive controller

(eMPC) accomplishes online MPC functionality without
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solving an optimization problem at each time step. This has

several advantages: 1) The online computational time can

be reduced to the microsecond-millisecond range, and 2)

MPC functionality is achieved with low complexity, easily

verifiable real-time code, justifying the employment of eMPC

in embedded and safety-critical systems. In [13], the authors

use eMPC for attitude control for spacecraft.

Several authors have considered model-order reduction for

control of large-scale systems, among them [16], [5], [21],

[6], [2]. In [14] the authors demonstrate that model predictive

control based on a linear reduced-order model derived from a

CFD model using proper orthogonal decomposition performs

well for the control of an industrial glass-feeder. It is stated

that in order to use the reduced-order simulation models for

that purpose, the models should be at least 100 times faster

than real time. In order to achieve this challenging goal, very

low order models that target the control problem at hand are

needed. The methodology presented in this paper deals with

this problem in two ways. First, our model reduction method-

ology yields reduced models that are appropriate for use in

controller design. Second, eMPC gives a further reduction in

computational requirements compared to MPC. Thus, eMPC

facilitates implementation of constrained optimal control in

applications that are described by models of high order, while

being characterized by fast sampling or low cost, such as

mechatronics, MEMS, rotating machinery and acoustics; for

instance for active control of combustion instability. Here,

we demonstrate the methodology for output regulation of

the discretized heat equation.

Throughout the paper, positive (semi-) definiteness for

matrices is indicated by ≻ 0 (� 0) and superscript ∗ indicates

complex conjugate transpose. The H2-norm of a linear time-

invariant system is denoted by ‖·‖
H2

.

II. MODEL-ORDER REDUCTION

The goal of model reduction is to derive a model of low

order that preserves the input-output behavior of the high-

fidelity model. In addition, one may wish to preserve spe-

cific properties of the high-fidelity model, such as stability,

passivity etc. In the control community, algorithms such as

optimal Hankel model reduction [1], [9], [15] and balanced

truncation [19] are known to have strong guarantees on the

quality of the reduced model by providing upper bounds for

the approximation error. Although attempts have been made

to extend these algorithms to large-scale settings ([24], [12],

[17], [8]), model reduction of very large-scale models with

rigorous guarantees on quality remains a challenge.



One model reduction method that has been used with

considerable success in large-scale settings is the proper

orthogonal decomposition (POD). POD is popular due to

its simplicity and because it is applicable to very large-scale

and nonlinear models. However, there are several limitations

associated with using POD; in particular, POD-based reduced

models lack the quality guarantees of those derived using

more rigorous methods such as balanced truncation. Even

in the case of stable linear time invariant (LTI) systems,

reduction via POD can lead to undesirable and unpredictable

results, such as unstable reduced models.
In [28], a goal-oriented model-based reduction algorithm

was proposed. This methodology is targeted at applications

in optimal control and optimal design, and addresses some

of the limitations of POD. In this paper we compare the

performance of eMPC using reduced-order models from

these two projection-based model reduction algorithms; the

POD method of snapshots [23] and the goal-oriented model-

based reduction algorithm [28].
A. Model reduction by projection

For the order reduction of an LTI system,

ẋ = Ax + Bu (1a)

y = Cx, (1b)

where x ∈ R
n is the system state, u ∈ R

m contains the

m inputs to the system, y ∈ R
p contains the p outputs and

the constant coefficient matrices A, B, C are of appropriate

dimensions, model reduction by projection works as follows.

It is assumed that the state x (t) can be approximated as a

linear combination of r basis vectors

x ≈ Φx̂, (2)

where x̂ ∈ R
r is the reduced state and Φ ∈ R

n×r is a

projection matrix containing as columns the r basis vectors

φ1, φ2, . . . , φr. Substituting Φx̂ for x into (1), and requiring

the resulting residual to be orthogonal to the space spanned

by Φ, gives the reduced LTI state-space model

˙̂x = Âx̂ + B̂u (3a)

ŷ = Ĉx̂, (3b)

where Â = ΦT AΦ, B̂ = ΦT B, Ĉ = CΦ and ŷ is the

output of the reduced model. The POD and the goal-oriented

model-based methodology both use the general projection

framework just described; however, the two methods differ in

the computation of the projection matrix Φ. In the method of

snapshots the POD basis is found based on a set of snapshots

x (ti) , i = 1, 2, . . .M , where M is the number of snapshots

and x (ti) is the solution of (1a) at time ti. The POD basis is

computed as the set of left singular vectors of the snapshot

matrix

X = [x(t1) x(t2) · · · x(tM )] . (4)

For a given number of basis vectors, the POD basis mini-

mizes the error E between the original snapshots and their

representation in the reduced space, defined by

E =

M
∑

i=1

[x (ti) − x̃ (ti)]
T

[x (ti) − x̃ (ti)] , (5)

where x̃ (ti) = ΦΦT x (ti). Consequently, POD only mini-

mizes the approximation error for a set of data (defined by

the snapshots) and no quality guarantees can be made re-

garding the reduced-order model that results from projection

onto the POD basis.
B. Goal-Oriented Model-Based Reduction

In [28], a cost similar to that minimized in the POD

procedure is used as an objective function in an optimization

formulation. The key difference in that formulation is that

the model-based optimization approach enforces the reduced-

order governing equations as constraints. In addition, the

cost is targeted to minimize the output error, while the

POD minimizes the error of state prediction over the entire

domain. The use of output error as a metric is motivated by

a need for reduced models for optimal control and optimal

design applications and, intuitively, might lead to different

properties in output-feedback implementations.

The optimization problem in [28] can be formulated as

min
Φ,x̂

1

2

∫ T

0

(y − ŷ)
T

(y − ŷ) dt +
β

2

(

1 − φT
j φj

)2
(6)

subject to:

ΦT Φ ˙̂x = ΦT AΦx̂ + ΦT Bu
ŷ = CΦx̂,

(7)

where the optimization problem seeks to find the rth-order

basis Φ ∈ R
n×r, and the corresponding reduced-order state

solution x̂ ∈ R
r so that the 2-norm of the error between

the full-order and reduced-order output is minimized. The

full-order output y (t) is obtained from simulating the high-

fidelity model over a selected set of inputs and the interval

t ∈ [0, T 〉. The second term in the cost function (6) is

a regularization term that penalizes the deviation of the

length of the basis vectors from unity, with β > 0 as a

regularization parameter. This regularization acts only in the

null space of the projected Hessian matrix of the first term

of (6). Therefore, the reduced output approximation, ŷ, is

unaffected by the regularization term, yet the conditioning

of the optimization problem is improved. Note, however,

that there remains a null space of the projected Hessian

matrix that admits arbitrary rotations of the basis vectors; the

optimization method chosen to solve (6)–(7) should therefore

be tolerant of singular projected Hessian matrices.

As described in [28] in a computationally efficient imple-

mentation of the method, the basis functions are assumed

to be a linear combination of a finite collection of full-state

snapshots. In this case, the number of optimization variables

becomes Mr, where M is the number of snapshots and r is

the dimension of the reduced state.

Model reduction for control is a challenging task, which

is somewhat different from model reduction for simulation

purposes. A reduced-order model that yields a good approx-

imation of the high-fidelity model in open loop may not

necessarily provide a good approximation in the closed loop,

since the system dynamics change once the feedback loop is

closed. One way to address this problem is to perform model

reduction and control design iteratively, as was done in [4],



in an attempt to approximate the closed-loop dynamics of

the high-order model. Another common approach is to use

frequency weighting in order to emphasize the importance

of approximation quality in the bandwidth of the closed-

loop system. Our goal-oriented model-based approach aims

to create reduced models suitable for control applications, by

targeting the projection basis to output functionals of interest,

and by bringing additional knowledge of the reduced-order

governing equations into the construction of the basis.
III. MPC VIA MULTIPARAMETRIC QUADRATIC

PROGRAMMING

A brief outline of the standard MPC formulation will be

given before we address the explicit solution. For further

reading on MPC, the reader is advised to consult the textbook

[18] or [22] for a tutorial.
A. A standard MPC formulation

The plant under consideration is modeled by a discrete-

time LTI state space model

xk+1 = Adxk + Bduk, (8)

yk = Cdxk, (9)

where k ∈ Z, and xk ∈ R
n, uk ∈ R

m and yk ∈ R
p

denote the state, input and output, respectively, at step k.

The matrices Ad, Bd and Cd are of appropriate dimension.

The input u and output y are constrained by

ymin ≤ yk ≤ ymax, umin ≤ uk ≤ umax (10)

for all k > 0. For the regulator problem the model predic-

tive controller solves at time k the following optimization

problem on the time horizon k to k + N :

min
Uk

Jmpc (Uk, xk) , subject to (11)

umin ≤ uk+i ≤ umax, i = 0, 1, . . . , N − 1 (12)

ymin ≤ yk+i ≤ ymax , i = 1, . . . , N, (13)

where Uk =
[

uk uk+1 . . . uk+N−1

]T
is the sequence

of future control inputs that yields the best predicted output

with respect to the performance criterion on the prediction

horizon N . The cost function is given by

Jmpc (Uk, xk) = xT
k+NPxk+N (14)

+

N−1
∑

i=0

(

xT
k+iQxk+i + uT

k+iRuk+i

)

,

where P , Q and R are weighting matrices of appropriate

dimension. P and Q penalize deviation of the states xk+i at

the end of the prediction horizon and over the entire horizon,

respectively, and R penalizes use of control action u. The

first control input is applied to the process, before the whole

optimization is repeated at the next sample. The optimization

problem is then slightly different, having been updated by

a new process measurement, a new starting point and an

additional time slice at the end of the time horizon. The

following assumptions are made.
Assumption 1: The cost matrices in (14) satisfy P � 0,

R ≻ 0 and Q � 0.
Assumption 2: (Ad, Bd) form a stabilizable pair, that is,

all the unstable modes are controllable through Bduk.

B. Computing the control input

Sensitivity analysis is a technique used to describe how

the solution to a mathematical program changes with small

changes in the problem parameters. Closely related is para-

metric programming, where the solution is found explicitly

for a range of parameter values. Mathematical programs that

contain more than a single parameter are commonly referred

to as multiparametric programs [25].

It is well established that implementing a model predictive

controller requires solving a quadratic program (QP) in Uk

at each time step, see e.g. [18]. With some manipulations,

the problem in (11)-(13) can be written

min
Uk

{

1

2
UT

k HUk + xT
k FUk

}

(15)

subject to: GUk ≤ W + Exk, (16)

where the matrices H , F , G, W and E are functions of

the weighting matrices P , Q, R and the bounds umin,

umax, ymin and ymax. If Assumption 1 is met, then H ≻
0 and the problem is strictly convex. The Karush-Kuhn-

Tucker conditions (KKT) are then sufficient conditions for

optimality, giving a unique solution Uk [20]. The problem

(15)-(16) can be viewed as a multiparametric program in Uk,

where xk is a vector of parameters.

C. The explicit MPC formulation

By defining

z , Uk + H−1FT xk, (17)

the problem in (15)-(16) can be transformed into

min
z

{

1

2
zT Hz

}

(18)

subject to: Gz ≤ W + Sxk, (19)

which is a multiparametric quadratic program in z, parame-

trized by xk . The matrix S is found as S = E + GH−1FT .

By considering the KKT conditions for the quadratic pro-

gram in z, the solution z∗ is seen to remain optimal in a

neighborhood of xk where the active set remains optimal.

The region in which this active set remains optimal can be

shown to be a polyhedron in the parameter space (that is, the

state space) [7]. The mpQP in z can be solved offline for the

state space area of interest. Computing the control input at a

time step k then becomes a straightforward task: Given the

system state xk, the optimal control inputs Uk are obtained

through an affine mapping,

uk = Kixk + ki, (20)

where the subscript i denotes the ith affine function. K and k
are constant within each polyhedral region in the parameter

space. The online effort is thus reduced from solving a

potentially large optimization problem at each time step for

traditional MPC, to evaluation of a piecewise affine function

of the current state. By implementing the piecewise affine

function as a binary search tree, the online computational

time is logarithmic in the number of regions in the state

space partition [27].



IV. REDUCED-ORDER CONTROL

Implementing MPC or eMPC directly on the high-fidelity

model is infeasible in large-scale settings, for instance when

working with models obtained from CFD analysis. We will

therefore use reduced-order control, where the reduced-order

models will be used to design output-feedback controllers for

the high-fidelity model.

The eMPC control input is computed based on the current

state vector at every iteration. The reduced-order state must

therefore be estimated in an observer or a Kalman filter. Here,

we use a linear observer of the form1

˙̂x = Âx̂ + B̂u + L (y − ŷ) (21)

ŷ = Ĉx̂ (22)

to estimate the reduced-order state. The linear observer

should be designed such that the matrix
(

Â − LĈ
)

is

Hurwitz.

The overall complexity of the proposed control scheme

is given by the offline model reduction cost plus the cost

of solving the eMPC problem offline for the reduced-order

model. The former is determined by the number of optimiza-

tion variables in the optimization problem (6)-(7), which is

Mr. The cost of solving the eMPC problem increases with

the number of parameters in the mpQP problem. Also, the

memory required to store the eMPC solution online increases

rapidly as the size of the solution grows. The scheme is

therefore limited to cases where the reduced-order models

can be made reasonably small, i.e. in the order of 10. Further

complexity reduction techniques, such as input blocking, can

be used to make the eMPC procedure more tractable in cases

where the number of parameters (reduced-order states) is

large.

V. NUMERICAL RESULTS

To investigate the implementation of the reduced-order

control setup described above, we consider the ´heatcont’

benchmark described in [10]. The benchmark is a single-

input single-output LTI of the form (1) with 200 states, which

are the temperatures at different locations in a thin rod, and

it is based on spatial discretization of the one-dimensional

heat diffusion equation. The input u is a heat source located

at 1/3 of the rod length, and the output y is the temperature

recorded at 2/3 of the length.

The procedure of finding the optimal basis that minimizes

the criterion (6) is described in detail in [28], and is just

mentioned briefly here. To solve the constrained optimization

problem (6)-(7), we choose to eliminate the state variables x̂
and state equations (7) and solve an equivalent unconstrained

optimization problem in the Φ variables. The analytic gra-

dient can be found through basic calculus of variations and

use of adjoint variables, and an unconstrained optimization

algorithm that uses a trust-region-based Newton method

[11] can be used to determine the optimal basis. Since

the optimization problem is nonlinear and nonconvex, it is

1With a slight abuse of notation, we let x̂ denote both the reduced state
and its estimate.

r He

2
for GOMBR He

2
for POD

1 0.6213 0.7959
2 0.0647 0.5023
3 0.0230 0.0692
4 0.0217 0.0627
5 0.02087 0.0841
6 0.02085 0.0742
7 0.0207 0.0468
8 0.0020 0.0020
9 0.0012 0.0012
10 8.6236 × 10−4 38 × 10−4

TABLE I

ASSESSMENT OF REDUCED-ORDER MODELS OF ORDER 1 TO 10. THE

REDUCED-ORDER MODELS WITH THE OPTIMIZED BASIS GIVE A

SIGNIFICANT REDUCTION IN THE RELATIV 2-NORM OF THE ERROR

SYSTEM, ESPECIALLY FOR LOW ORDERS.

important to generate a good initial guess. One possibility is

to pick the POD basis as an initial guess. Alternatively, the

initial guess for the case of r basis vectors can be chosen to

be the solution of the optimization problem for r − 1 basis

vectors plus an arbitrary rth vector. This iterative procedure

can be initialized at any value r ≥ 1 with the POD basis

vectors as an initial guess on the first iteration.

A. Open loop evaluation

Reduced-order models of order 1 to 10 are compared in

Table I in terms of the relative H2 norm of the corresponding

error systems, defined as

He
2 ,

‖G (s) − Gr (s)‖
H2

‖G (s)‖
H2

, (23)

where G (s) and Gr (s) are the transfer functions of the full-

order and reduced-order models, respectively. The reduced-

order models are generated by comparing snapshots of the

step response of the high-fidelity model at 20 time instants.

It is seen that the goal-oriented model based reduction

algorithm from [28] (labeled GOMBR in Table I) leads to

a significant increase in approximation quality from POD in

most cases for this metric, especially for low r. The goal-

oriented basis is optimized with the POD basis as the initial

guess in most cases. For r = 4, 5, 6 and 7 we use the iterative

procedure discussed in Section II-A.

B. Closed loop evaluation

We consider the objective of regulating the output of

the large-scale system to zero based on the reduced-order

models. The controller weights are chosen to reflect this

objective, by setting Q = CT Q̃C, where Q̃ ∈ R
p×p is the

weight on the output.

To compare the performance of the reduced-order models

in closed loop, we first implement an output-feedback infinite

horizon LQ-regulator based on the reduced-order models.

The input from the LQ regulator is given by u = −Kx̂,

where K is a constant feedback matrix, and x̂ is the reduced

state, in this case. The results are shown in Figure 1 and 2 for

simulation of an optimized and a POD reduced-order model,

respectively, with the same weights and r = 3. The figures

clearly illustrate that the reduced-order model obtained with

an optimized basis performs much better in closed loop than



the one with a POD basis, and emphasizes the observation

from Table I, that the optimized reduced-order models give

a better approximation, particularly for small r.
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Fig. 1. Output-feedback LQ regulator for the high-fidelity model based
on a reduced-order model with optimized basis for r = 3. Top: Estimated
output from the reduced-order model ŷ vs. output from the high-fidelity
model y. Bottom: Control input.
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Fig. 2. Output-feedback LQ regulator for the high-fidelity model based on
a reduced-order model with POD basis for r = 3. Top: Estimated output
from the reduced-order model ŷ vs. output from the high-fidelity model y.
Bottom: Control input.

In real-world control problems there will always be some

constraints on the state, input and/or output variables. To

handle this, eMPC is a better choice than the unconstrained

LQ regulator. To illustrate and visualize the setup, we first

consider the case where r = 2, that is we have only 2 states in

the reduced-order model. We set the prediction (and control)

horizon N = 2. To demonstrate the controller’s ability to

enforce constraints, we constrain the control input such that

|u| < 1000. First, the explicit solution to the MPC problem

is solved in an offline phase for the relevant area of the

reduced-order state space. This solution is used to control the

high-fidelity model in the output-feedback setup described

in Section IV. The system is initialized with a non-zero

output. The resulting response is shown in Figure 3 for an

optimized basis, where it is seen that the bound constraint on

the control input is active during the first half second or so. It

can also be observed that the output from the reduced-order

model converges relatively slowly (compared to Figure 1) to

the output of the high-fidelity model, after about 0.5 s. The

partition of the state space into regions with constant (Ki, ki)
is shown in Figure 4, with the phase plane trajectory of the

reduced state x̂ for the simulation in Figure 3 indicated by

the dotted line.
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Fig. 3. Closed-loop performance with r = 2 and an optimized basis. Top:
High-fidelity y and estimated ŷ. Bottom: eMPC control input, constrained
such that |u| < 1000. The input constraint is seen to be active during the
first half second.
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Fig. 4. Example of state-space partition for a reduced-order model with
r = 2, with state trajectory starting in o and ending in ∗. The different
color shades indicate the 21 regions Ri in the state space. The controller
feedback matrices (Ki, ki) are constant within each region.

Based on simulations, the reduced-order models generated

with the optimized basis perform better in closed loop than

the POD models. For this benchmark, they are able to handle

higher controller gains, the output is regulated faster to the

origin and the control action is smoother. This is illustrated

by Figure 5. The difference in performance may be attributed

to the way in which the goal-oriented models are targeted to

give an accurate approximation of the output. For r = 5 it is



also observed that the output from the reduced-order models

converge to the ´true’ output an order of magnitude faster

than for r = 2, resulting in a better closed-loop response.

This is what one would expect; adding more states to the

reduced-order model leads to better approximations.
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Fig. 5. Performance comparison for r = 5 with eMPC horizon N =
10. Top: Output of the full model using reduced-order control based on
optimized- and POD basis. Bottom: Control input for the two different cases.

VI. CONCLUSIONS

The case study presented in this paper demonstrates the

importance of reduced-order models that are appropriate

for use in a controller design context. For the example

presented here, reduced models derived using the goal-

oriented, model-based approach led to substantially better

closed-loop performance than those derived using the POD,

which does not account for system outputs. The proposed

methodology is also applicable to more complicated control

tasks, such as nonlinear MPC and reference tracking, for

which the explicit solution of the MPC problem can still be

found (approximately, in some cases).
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