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Abstract

The development of computational fluid dynamics algorithms and increased computational
resources have led to the ability to perform complex aerodynamic simulations. Obstacles
remain which prevent autonomous and reliable simulations at accuracy levels required for en-
gineering. To consider the solution strategy autonomous and reliable, high quality solutions
must be provided without user interaction or detailed previous knowledge about the flow to
facilitate either adaptation or solver robustness. One such solution strategy is presented for
two-dimensional Reynolds-averaged Navier-Stokes (RANS) flows and is based on: a higher-
order discontinuous Galerkin finite element method which enables higher accuracy with fewer
degrees of freedom than lower-order methods; an output-based error estimation and adap-
tation scheme which provides quantifiable measure of solution accuracy and autonomously
drive toward an improved discretization; a non-linear solver technique based on pseudo-time
continuation and line-search update limiting which improves the robustness for solutions to
the RANS equations; and a simplex cut-cell mesh generation which autonomously provides
higher-order meshes of complex geometries.

The simplex cut-cell mesh generation method presented here extends methods previously
developed to improve robustness with the goal of RANS simulations. In particular, analysis
is performed to expose the impact of small volume ratios between arbitrarily cut elements
on linear system conditioning and solution quality. Merging of the small cut element into its
larger neighbor is identified as a solution to alleviate the consequences of small volume ratios.
For arbitrarily cut elements randomness in the algorithm for generating integration rules is
identified as a limiting factor for accuracy and recognition of canonical element shapes are
introduced to remove the randomness. The cut-cell method is linked with line-search based
update limiting for improved non-linear solver robustness and Riemannian metric based
anisotropic adaptation to efficiently resolve anisotropic features with arbitrary orientations
in RANS flows. A fixed-fraction marking strategy is employed to redistribute element areas
and steps toward meshes which equidistribute elemental errors at a fixed degree of freedom.

The benefit of the higher spatial accuracy and the solution efficiency (defined as accuracy
per degree of freedom) is exhibited for a wide range of RANS applications including subsonic
through supersonic flows. The higher-order discretizations provide more accurate solutions
than second-order methods at the same degree of freedom. Furthermore, the cut-cell meshes
demonstrate comparable solution efficiency to boundary-conforming meshes while signifi-
cantly decreasing the burden of mesh generation for a CFD user.

Thesis Supervisor: David L. Darmofal
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Computational fluid dynamics (CFD) methods have improved greatly over the past few

decades, driven by the desire to perform more complex simulations. As Mavriplis et al. [86]

describes, “While it is true that capabilities exist that are used successfully in every-day

engineering calculations, radical advances in simulation capability are possible through the

coupling of increased computational power with more capable algorithms.” Controlling

simulation accuracy is a primary issue for the application of CFD to increasingly complex

problems.

A critical step in the application of CFD is mesh generation. Meshing is commonly

performed by engineers who are required to make decisions about where increased mesh

resolution is needed. CFD’s dependence on human interaction is costly in terms of man

hours and has the potential to introduce solution errors due to the mesh dependence of

CFD solutions. In addition, this dependence on human interaction limits the automation

that could be achieved with computational models. In 2007, following the third AIAA Drag

Prediction Workshop (DPW-III) [1, 121], Mavriplis [83] used a generic wing-alone geometry

at M∞ = 0.76, α = 0.5◦, and Re = 5 × 106 to demonstrate CFD’s dependence on the

initial mesh topology. Figure 1-1, taken from Mavriplis [83], shows the convergence of drag

with mesh refinement for two families of meshes representing the same wing geometry. Both

mesh families consist of four meshes and all the solutions were computed using the NSU3D

code, an unstructured mesh Reynolds-averaged Navier-Stokes (RANS) solver [84, 85, 87].
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The first set of meshes was generated at NASA Langley using the VGRID grid generation

program [109], while the second set of meshes was generated independently at the Cessna

Aircraft Company. Typical industry practice for an isolated wing problem is to use one

to four million elements. However, as illustrated by Figure 1-1, even with an increase in

refinement of an order of magnitude more than typical industry practice, the spread in the

computed drag between the two meshes is approximately four drag counts. A Breguet range

equation analysis demonstrates that a difference of one drag count for a long-range passenger

jet corresponds to approximately four to eight passengers [42, 120]. Thus, the spread of four

drag counts between the two mesh families is significant. Generating solutions to engineering-

required accuracy of one to one tenth of a drag count is necessary for CFD to be a useful

design tool [125].
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Figure 1-1: Computed drag convergence for a wing-alone configuration at
M∞ = 0.76, α = 0.5◦, and Re = 5 × 106 with global mesh
refinement taken from Mavriplis [83]. Convergence of drag is
plotted for the refinement of two mesh families of the same wing
geometry.

In addition to ensuring engineering-required error levels, improving the robustness of

RANS solution algorithms is critical. Convergence to a steady state solution can be chal-

lenging and tests the limits of a non-linear solver. Generally, while the linear systems are
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poorly conditioned, the lack of robustness stems form the non-linearity of the problem. The

convergence results of Bassi et al. [18], Figure 1-2, confirm the author’s experience. Typically,

in RANS simulations, residual convergence history is dominated by slow overall convergence

and a lack of Newton convergence. The poor convergence tends to include spurious residual

jumps where, over a single iteration, the residual norm will increase by over an order of

magnitude. The residual jump is often followed by a period of residual decrease, but the

process appears to arbitrarily repeat itself.

p = 0
p = 1 p = 2 p = 3

Figure 1-2: Convergence history for p = 0 → 3 of RANS simulations of an
RAE2822 airfoil (M∞ = 0.734, α = 2.79◦, Rec = 6.5×106, 8,096
q = 3 quadrilateral elements) taken from Bassi et al.[18].

1.2 Objectives

Algorithm advances are required, in order to meet the demand for more complex CFD

simulations. The objective of this work is to develop a reliable solution strategy that provides

engineering-required accuracy for the two-dimensional RANS equations. To be reliable the

strategy must be fully autonomous without requiring user interaction or detailed previous

knowledge about the flow to facilitate either adaptation or solver robustness. To achieve the
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desired reliability and engineering-required accuracy, this work presents a solution strategy

that incorporates a higher-order discretization, cut-cell meshes, output-based adaptation,

and a line search based non-linear solver technique.

1.3 Solution Strategy Background

1.3.1 Higher-Order Method

For the last couple of decades, finite volume discretizations have been the industry standard

for CFD in the aerospace industry. Complex simulations using finite volume discretization

have been made possible through improvement in computational hardware and solution

algorithms. However, traditional industrial finite volume schemes are second-order accurate,

where a global uniform mesh refinement results in reduction of solution error by a factor of

four, but an increase of eight in the number of degrees of freedom in three dimensions [86].

Higher spatial accuracy may be obtained with fewer degrees of freedom by using a higher-

order finite volume scheme, but higher-order finite volume schemes based on reconstruction

of the cell or nodal averages extend the numeric stencil and complicate the treatment of

boundary conditions [100].

Higher-order finite element discretizations provide an alternative for achieving higher

accuracy with fewer degrees of freedom than second-order schemes. This work uses the

discontinuous Galerkin (DG) method. The DG method can maintain a compact nearest

neighbor stencil (viewed element-wise), as the solution representation is discontinuous across

elements and coupling comes only through face fluxes. Higher-order accuracy is obtained in

the DG method by increasing the polynomial order used to represent the solution in each

element.

The DG method was originally introduced for the neutron transport equation by Reed

and Hill [111]. One of the first extensions to the original DG method was by Chavent

and Salzano [27] who applied it to non-linear hyperbolic problems using Godunov’s flux.

Cockburn, Shu, and their co-authors were influential in expanding the use of the DG method.

They combined DG spatial discretization with Runge-Kutta explicit time integration for non-

linear hyperbolic problems [29–31, 33, 34]. Separately, Allmaras and Giles [4, 5] developed a

20



second-order DG scheme for the Euler equations. This method is based on taking moments

of the Euler equations as suggested by van Leer [119].

DG has also been extended to elliptic problems, beginning with interior penalty (IP)

methods [7, 127]. More recently, Bassi and Rebay developed two methods (BR1 and

BR2) [15, 16] and applied them to the Navier-Stokes equations. Similarly, Cockburn and

Shu developed local discontinuous Galerkin (LDG) for convection-diffusion problems [32].

However, LDG has an extended stencil when it is used for unstructured grid problems in

multiple dimensions. The extended stencil led to the development of compact discontinuous

Galerkin (CDG) by Peraire and Persson [104]. Rigorous frameworks for analyzing various

DG methods have been developed by numerous researchers including Arnold et al. [8] who

presented a unified framework to analyze stability and convergence of DG schemes for elliptic

problems.

The DG method has additionally been applied to the RANS equations. Specifically,

Bassi and Rebay [14, 18] have successfully used the BR2 method for the RANS equations

with a k-ω turbulence model [128]. Nguyen et al. [92] used CDG for RANS with the Spalart-

Allmaras (SA) turbulence model [115]. Since then, Landmann et al. [77], Burgess, Nastase,

and Mavriplis [24], and Hartmann and Houston [63] have also applied variants of the DG

discretization to the RANS equations. This work builds off the implementation of Oliver

and Darmofal [94, 96, 98], which uses the BR2 method with the SA turbulence model for

closure.

1.3.2 Output-Based Error Estimation and Adaptation

Output-based error estimation and adaptation autonomously reduces discretization error

by estimating the error in a solution output and generating an improved mesh. Figure 1-

3 shows an illustration of the adaptive framework. In this setting, a CFD user specifies

a problem, an output of interest, a maximum allowable error, and a maximum run-time.

From these inputs the adaptive strategy proceeds by (1) running a simulation on an existing

(typically coarse) mesh, (2) computing an error estimate for the output of interest, and (3)

determining whether the error tolerance or time constraint was met or if the mesh should be

adapted and the process repeated. In the case where the mesh is adapted, the error estimate

must be localized to identify regions where the mesh resolution requires improvement. The
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Figure 1-3: Illustration of the autonomous output-based error estimation
and adaptation strategy.

adaptation strategy is based on two elements: the output-based error estimate and the

mechanics of changing the discretization to improve output error.

Error Estimate

Many methods exist for estimating the error in a solution. For instance, local error

estimates can be performed by computing the difference between the current solution and

a solution computed on a refined discretization, either from a refined mesh or increased

solution order. This estimation strategy focuses on local solution errors and can be viewed

similarly to feature-based adaptation where refinement requests are based on large local

gradients. The local error estimation can fail in convection problems where small upstream

errors can propagate and significantly change output evaluation [116]. For example, small

errors can affect the location of boundary layer separation or a shock and lead to a significant

change in outputs such as lift or drag.

The error estimation method used in this work is based on the Dual Weighted Residual

(DWR) method from Becker and Rannacher [19, 20]. In the DWR method, the error in

a solution output, such as lift or drag, is expressed in terms of weighted residuals. The

weighted residuals are constructed using the dual problem and Galerkin orthogonality of the

finite element discretization. The solution to the dual problem, the adjoint, relates local

perturbations to an output of interest. For output-based error estimation the perturbations

are the discretization error of the primal problem. The adjoint highlights aspects of the

discretization which are most influential to the output of interest, thus it plays a central role

in performing output-based error estimation. With the DWR method, asymptotically sharp

error estimates can be achieved by multiplying local residuals with the adjoint solution.
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Many researchers in the literature have applied the DWR method to the DG discretization

with minor differences [45, 59, 61, 62, 65, 78, 82].

Extensions to the DWR method also appear in the literature. Pierce and Giles [52,

54, 108] presented the opportunity for improved output functional evaluation through error

correction in the absence of Galerkin orthogonality. Venditti and Darmofal [124] were the

first to apply an output-based error estimation and anisotropic adaptive method to the RANS

equations. Their work concluded that for a standard finite volume scheme the output-based

adaptive approach was superior in terms of reliability, accuracy in computed outputs, and

computational efficiency relative to adaptive schemes based on feature detection.

Adaptation

Once an error estimate has been computed, the goal of adaptation is to modify the

discretization to decrease the estimated error. There are three general adaptation options:

h-adaptation, where the interpolation order remains fixed and the element sizes, h, are

adjusted; p-adaptation, where the interpolation order, p, in elements with large error is in-

creased to add resolution while the mesh remains unchanged [9, 82, 114]; or hp-adaptation,

where both the interpolation order and the element size are changed [50, 51, 57, 58, 67, 116,

126]. All three of these adaptation strategies have strengths and weaknesses. p-adaptation is

dependent on solution regularity. In the presence of solution discontinuities, higher-order in-

terpolations demonstrate Gibbs phenomenon and p-adaptation will be ineffective. However,

if sufficient solution smoothness is present, p-adaptation exhibits spectral convergence (in

the limit of global increase in solution order). h-adaptation, though limited to polynomial

convergence, is particularly useful in shock or boundary layer cases where increased solution

resolution is locally needed. The solution regularity of CFD problems in aerospace is lim-

ited by singularities and singular perturbations. To achieve engineering required accuracy,

resolution of the singular features is needed as opposed to high asymptotic convergence of

the error. hp-adaptation would be the most effective adaptation procedure, but the decision

between h and p refinement is not trivial.

This work depends on Riemannian metric based anisotropic h-adaptation to efficiently

resolve features such as shocks, wakes, and boundary layers with arbitrary orientations.

Global re-meshing of the simplex mesh is performed at each adaptation iteration. The el-

ement size requests in the adapted mesh are based on a fixed-fraction marking strategy.
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With fixed-fraction marking, refinement is requested for a fixed percentage of elements with

the largest error while coarsening is requested for a percentage of the elements with the

smallest error. The fixed-fraction marking strategy used in this work is distinct from tradi-

tional fixed-fraction adaptation based on hierarchical subdivision of elements. The marking

strategy is a means to redistribute element sizes within a requested metric field but does not

cause a discrete change in the degrees of freedom.

One of the advantages of h-adaptation is it allows for anisotropic mesh refinement. For

anisotropic mesh indicators the solution Hessian of Mach number has been used by Venditti

and Darmofal [122, 124] for second-order schemes. For a second-order scheme aligning the

anisotropic metric with the Hessian equidistributes the interpolation error in the principle

metric directions. Fidkowski and Darmofal [45] generalized the Hessian-based analysis to

higher-order schemes by basing the principle stretching directions of an element on the

maximum p+ 1 derivative. A more direct approach to mesh adaptation has also been used

for anisotropic mesh adaptation by selecting the local mesh refinement of a single element

which results in the most competitive subdivision of that element in terms of reduction of

the error estimate [26, 51, 66, 101, 117]. An additional method proposed by Leicht and

Hartmann [78] uses the inter-element jumps inherent to the DG solution to indicate where

anisotropic adaptation is required.

1.3.3 Cut-Cell Mesh Generation

Two details of the solution strategy described above motivate the use of cut-cell mesh gener-

ation. The first motivation for cut cells comes from the use of a higher-order discretization,

where boundary conditions must contain higher-order information about the geometries

they represent. The second motivator for the cut-cell method is adaptation, which requires

repeated, reliable, and autonomous mesh generation.

Mesh generation about complex three-dimensional shapes is difficult even for linear (i.e.

planar-faced) elements, in particular when high anisotropy is desired near the surface to

resolve boundary layers. Mesh generation for boundary layers is sufficiently difficult that

many researchers have adopted a hybrid approach. The hybrid approach employs a fixed

highly-anisotropic structured boundary layer mesh coupled to an unstructured mesh that fills

the computational domain [81, 102, 103]. Even in cases where it is feasible to generate linear
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Figure 1-4: Diagram of the options for converting a linear boundary con-
forming mesh to a mesh containing higher-order geometry in-
formation.

boundary-conforming meshes, conversion to a higher-order curved-boundary surface may

push through an opposing face as shown in Figure 1-4. One practice to generate a higher-

order mesh, also shown in Figure 1-4, is to globally curve a linear boundary conforming mesh

with elasticity [93, 98, 107].

A method to tackle the problem of reliably generating meshes of complex geometries

with higher-order information is the cut-cell method, shown in Figure 1-4. Purvis and

Burkhalter [110] were the first to consider a cut-cell method for a finite volume discretization

of the full non-linear potential equations. Purvis and Burkhalter started with a structured

Cartesian mesh that did not conform to the geometry and simply “cut” the geometry out.

Cut cells allow the grid generation process to become automated, taking a process which

was previously human-time intensive and dominated the solution procedure and making it a

preprocessing step. While relieving the mesh generation process, the cut-cell method requires

an ability to discretize on the arbitrarily shaped cut cells. Purvis and Burkhalter’s method

used rectangular/box shaped cells from which the geometry was cut out in a piecewise linear

fashion. Although the linear intersections did not provide higher-order geometry, Purvis and

Burkhalter laid the foundation for future work with Cartesian cut cells. The full potential

equation was also solved using a Cartesian cut-cell method by Young et al.[132] in TRANAIR.
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Cart3D, a three-dimensional Cartesian solver for the Euler equations [3], is a current

example of the benefits of adding robust cut-cell mesh generation to a flow solver. Cart3D

is based on embedding boundaries into Cartesian hexahedral background meshes and has

proven capable of handling very complex geometries, like in the space shuttle debris calcula-

tions performed by Murman et al.[2]. Work by Nemec [89–91] has added adjoint-based error

estimates and adaptive refinement, which has provided an automated solution procedure for

the Euler equations. Along with Cart3D, Cartesian embedded mesh generation has been

used extensively in the literature [28, 49, 68].

While providing a robust meshing algorithm, a Cartesian cut-cell mesh limits the achiev-

able directions of anisotropy, making the discretization of arbitrarily-oriented shock waves,

boundary layers, or wakes highly inefficient. An application of a Cartesian cut-cell method to

the Euler equation for transonic and supersonic flows by Lahur and Nakamura [75, 76] demon-

strates the ease in which adaptation can be performed with a Cartesian cut-cell method, yet

also the inability for axis aligned anisotropic elements to align with arbitrarily-oriented shock

waves. The simplex cut-cell method, introduced by Fidkowski and Darmofal [43–45], offers

an autonomous route for generating computational meshes with high arbitrary anisotropy

and curved geometry information. Combining the simplex cut-cell method with a higher-

order discretization, like the DG method in this work, provides the necessary tools to solve

viscous flows over complex geometries. Fidkowski demonstrated the ability of the simplex

cut-cell method to solve Euler and Navier-Stokes flows in two dimensions and Euler flows in

three dimensions. The method was also used to model a rotor in hover [88].

The cut-cell method is well suited to the DG discretization. DG allows for inter-element

jumps of the solution so forming a continuous basis within the computational domain is

not necessary. Due to the nature of the cutting procedure the resulting element shapes are

arbitrary and the possibility exists for large jumps in element volume across a common face.

In order to incorporate cut-cell meshes into a DG discretization, the capability is needed to

represent solutions and integrate the residual on arbitrarily shaped elements.
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1.4 Thesis Overview

The primary contributions of this work are the following:

• Development of the capability to reliably solve high Reynolds number two-dimensional

RANS problems using a higher-order, adaptive, cut-cell method

• Quantification of the impact on solution efficiency (defined as accuracy per degree of

freedom) in the transition from boundary-conforming elements to simplex cut cells on

a wide range of aerospace problems including subsonic through supersonic conditions

and complex geometries

• Analysis of the impact of small volume ratios on linear system conditioning and solution

quality, particularly boundary output evaluation, to identify its root cause and develop

a method based on the analysis to alleviate the consequences of small volume ratios

• Development of a line-search globalization technique based on the unsteady residual

of a pseudo-transient evolution to improve the robustness of non-linear solvers

• Quantification of the impact of randomness on the algorithm for generation integration

rules for cut elements and development of integration rules based on canonical shapes

where applicable, while otherwise, removal of randomness from the general algorithm

for arbitrarily shaped elements

• Development of an adaptation strategy that is less dependent on solution regularity

and poor error estimates in under-resolved meshes

There are four primary research groups working on adaptation and higher-order DG

discretizations of the RANS equations: the ProjectX team here at MIT, the Hartmann led

research group at DLR (the German Aerospace Center), the research group of Fidkowski at

University of Michigan, and Bassi’s research group at Universitá di Bergamo. The groups

share the common ability to use the DG discretization to perform high-fidelity RANS sim-

ulations, but have different methodologies. Currently, the other three research groups rely

on structured quadrilateral and hexahedral meshes. The contributions made in this thesis

have lead to the unique capability to solve the higher-order DG discretization of the RANS

equations on unstructured meshes with simplex cut-cell based adaptation. The unstructured
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simplex meshes allow for arbitrarily oriented anisotropy to resolve all flow features uncovered

by output-based adaptation, and the cut-cell method provides reliable higher-order geometry

representation while decreasing the strain of mesh generation. The simplex meshes reduce

simulation cost in terms of degrees of freedom compared to structured meshes for flows with

arbitrarily oriented anisotropic features.

The two-dimensional, adaptive, cut-cell solution strategy presented in this thesis has

provided a foundation for three-dimensional cut cells for RANS problems. A concern with

the simplex cut-cells technique based on linear background meshes was that the resolution

of boundary layer features would be inefficient [43]. The results presented in Chapter 7 pro-

vide quantifiable evidence that linear based cut-cell meshes can provide equivalent solution

efficiency in comparison to boundary-conforming meshes at engineering-required accuracy.

The high solution efficiency on the complex two-dimensional problems explored in this thesis

provide a motivation for the extension to three-dimensions.

While the contributions have been made for the advancement of a solution strategy for

RANS problems, the contributions are intended to be generally applicable to a wide range

of problems resulting for the discretization of PDEs. This work relies on the discontinuous

Galerkin finite element discretization of the RANS-SA equations presented in Chapter 2.

Chapter 3 presents the development of a line-search globalization technique to improve

the robustness of non-linear solvers based on pseudo-time continuation. Chapters 4 and 5

describe advancements made to the two-dimensional simplex cut-cell technique. Special

attention is paid to the analysis of the impact of small volume ratios which result from

the cut-cell method. Chapter 6 reviews the output-based error estimation and adaptation

method used in this work. The solution strategy is applied to a wide range of aerospace

problems in Chapter 7. Finally, conclusions and ideas for future work are given in Chapter 8.
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Chapter 2

Discretization of the RANS-SA

Equations

The chapter begins with a brief review of the Reynolds-averaged Navier-Stokes (RANS) equa-

tions and the Spalart-Allmaras (SA) turbulence model in Sections 2.1 and 2.2. Section 2.3

shows the spatial discretization and the chapter concludes with Section 2.4, a summary of

the shock capturing employed in this work.

2.1 The RANS Equations

The solution to the compressible Navier-Stokes equations for turbulent flows of engineering

interest poses a prohibitively expensive problem due to the large range of temporal and

spatial scales present in the flows. It is common to solve the Reynolds-averaged Navier-

Stokes (RANS) equations which govern the turbulent mean flow. The RANS equations are

derived by averaging the Navier-Stokes equations. Favre averaging is used for compressible
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flows. The form of the RANS equations in this work are

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0, (2.1)
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∂t
(ρ̄ũi) +
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where ρ denotes the density, ui are the velocity components, p is the pressure, e is internal

energy, h is the enthalpy, T is the temperature, sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain-rate tensor,

µ is the dynamic viscosity, µt is the dynamic eddy viscosity, Pr is the Prandtl number,

Prt is the turbulent Prandtl number, d is the spatial dimension, and the summation on

repeated indices is implied. The (̄·) and (̃·) notation indicates Reynolds-averaging and Favre-

averaging.

The RANS equations, Equations (2.1) through (2.3), contain more unknowns than equa-

tions requiring closure to solve the system. The remaining unknown, which cannot be

computed, is µt. µt relates the mean flow viscous stresses to the stresses due to turbulent

fluctuations. The Spalart-Allmaras turbulence model, described in Section 2.2, closes the

RANS system of equations.

To simplify the notation for the remainder of this thesis, the (̄·) and (̃·) will be left

off. Standard Navier-Stokes flow variables will correspond to their appropriate averaged

quantities. For instance, ρ is the Reynolds-averaged density and ui is the Favre-averaged

velocity.

2.2 The SA Turbulence Model

A turbulence model is necessary, in order to close the RANS equations. This work relies on

the Spalart-Allmaras (SA) turbulence model [115]. The specific form of the model is based

off the work of Oliver [98]. Oliver incorporated modifications to the original SA model to
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alleviate issues of negative ν̃, the working variable for the SA equation. The SA equation is

particularly susceptible to negative ν̃ when employing a higher-order discretizations.

The SA model was selected because of its wide use in the aerospace industry and high

regard. The model has accurately simulated attached and mildly separated aerodynamic

flows [25, 36, 55, 129].

The model takes the form of a PDE for ν̃, which is algebraically related to the eddy

viscosity, µt. The eddy viscosity is given by

µt =

 ρν̃fv1 ν̃ > 0

0 ν̃ ≤ 0.
,

where

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
,

and ν = µ/ρ is the kinematic viscosity. Then, ρν̃ is governed by

∂

∂t
(ρν̃) +

∂

∂xj
(ρuj ν̃) = P −D

+
1

σ

[
∂

∂xj

(
η
∂ν̃

∂xj

)
+ cb2ρ

∂ν̃

∂xj

∂ν̃

∂xj

]
, (2.4)

where the diffusion constant, η, is

η =

 µ (1 + χ) , χ ≥ 0

µ
(
1 + χ+ 1

2χ
2
)
, χ < 0.

, (2.5)

the production term, P , is

P =

 cb1S̃ρν̃, χ ≥ 0

cb1Sρν̃gn, χ < 0,
, (2.6)

the destruction term, D, is

D =

 cw1fw
ρν̃2

d2
, χ ≥ 0

−cw1
ρν̃2

d2
, χ < 0.

, (2.7)
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S is the magnitude of the vorticity, such that

S̃ =

 S + S̄, S̄ ≥ −cv2S

S +
S(c2v2S+cv3S̄)

(cv3−2cv2)S−S̄ , S̄ < −cv2S,
, (2.8)

and

S̄ =
ν̃fv2

κ2d2
, fv2 = 1− χ

1 + χfv1
.

The remaining closure functions are

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r),

r =
ν̃

S̃κ2d2
, gn = 1− fgnχ

2

1 + χ2
,

where d is the distance to the nearest wall, cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41,

cw1 = cb1/κ
2 +(1+ cb2)/σ, cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9, and Prt = 0.9.

In this work, only fully turbulent flows are considered. Hence, the laminar suppression

and trip terms from the original SA model are omitted.

The form of the SA model shown in Equation (2.4) is modified from that in [115].

The first modification is the expansion of the original model to compressible flows. The

remainder of the modifications handle the case of negative ν̃. Though the exact solution to

Equation (2.4) is for non-negative ν̃, the discrete solution does not necessarily maintain this

property. In fact the solution overshoots which can result from higher-order discretizations

on an under-refined mesh, amplifying the occurrence of negative ν̃ values. Negative ν̃ values

have a strong detrimental impact on the non-linear solution convergence. The complete

analysis of the impact of negative ν̃ and the modifications to correct this behavior can be

found in Oliver [98]. The only implemented change made from the model presented by Oliver

is the default value of fgn . The function gn, and the constant value fgn = 103, were originally

selected by Oliver to keep ν̃P > 0 for mildly negative ν̃ (specifically for χ > −
√

1/999).

Over the course of this work, improved robustness in the non-linear solver is experienced

for RANS-SA solutions when fgn is increased to 105. The increase in fgn leads to a slightly

slower nominal convergence, but superior reliability is experienced.
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2.3 Spatial Discretization

The RANS-SA equations can be expressed as a general conservation law given in strong

form as

∇ · F(u)−∇ · Fv(u,∇u) = S(u,∇u) in Ω, (2.9)

where u = [ρ, ρui, ρE, ρν̃]T is the conservative state vector, F is the inviscid flux, Fv is the

viscous flux, S is the source term, and Ω is the physical domain.

The discontinuous Galerkin finite element method takes the strong form of the conser-

vation laws in Equation (2.9) and derives a weak form. The domain, Ω, is represented

by Th, a triangulation of the domain into non-overlapping elements κ, where Ω̄ = ∪κ̄ and

κi∩κj = ∅, i 6= j. The set of interior and boundary faces in the triangulation are represented

by Γi and Γb, respectively. The function space of discontinuous, piecewise-polynomials of

degree p, Vph, is given by

Vph ≡ {v ∈ [L2(Ω)]r | v ◦ fκ ∈ [P p(K̃refs)]
r, ∀κ ∈ Th},

where r is the dimension of the state vector, P p denotes the space of polynomials of order

p on the reference element K̃refs, and fκ denotes the mapping from the reference element to

physical space for the element κ. The specific mapping, fκ used in this work will be detailed

in Section 4.5.

To generate the weak form of the governing equations Equation (2.9) is weighted by a

test function, vh ∈ Vph, and integrated by parts. The weak problem is: find uh(·, t) ∈ Vph
such that

Rh(uh,vh) = 0, ∀vh ∈ Vph, (2.10)

where

Rh(uh,vh) = Rh,I(uh,vh) +Rh,V (uh,vh) +Rh,S(uh,vh),
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and Rh,I , Rh,V , and Rh,S denote the discretizations of the inviscid, viscous, and source terms,

respectively.

The discretization of the inviscid terms is given by

Rh,I(wh,vh) ≡ −
∑
κ∈Th

∫
κ
∇vTh · F(wh)

+
∑
F∈Γi

∫
F

(v+
h − v−h )TH(w+

h ,w
−
h , ~n

+) +
∑
F∈Γb

∫
F
vThFb · ~n,

where (·)+ and (·)− denote trace values taken from opposite sides of a face, ~n+ is the normal

vector pointing from + to −, H is a numerical flux function for interior faces, and Fb is the

inviscid boundary flux. The Roe flux [112] is used for the numerical flux, H. The inviscid

boundary flux, Fb, is evaluated at a boundary state, ub(wh,B.C), which can depend on both

the interior state and the boundary conditions. The specific implementation of boundary

conditions can be found in Oliver [97] and Fidkowski et al. [46].

The viscous terms are discretized using the second method of Bassi and Rebay [16, 17],

BR2. Following the method of Bassi and Rebay, the strong form of the conservations laws,

Equation (2.9), is written as a system of equations,

∇ · F −∇ · Q = 0 (2.11)

Q−Fv = 0, (2.12)

where the viscous flux, Fv, has a linear dependence on the state gradients such that Fv(u,∇u) =

A(u)∇u, and A is the viscosity matrix. A weak form of the system of equations given in

Equations (2.11) and (2.12) is again generated by multiplying the system with test functions,

vh ∈ Vph and τ h ∈
(
Vph
)d

, respectively, and integrating by parts to obtain

∑
κ∈Th

∫
κ
Rh,I(wh,vh) +

∑
κ∈Th

[∫
κ
∇vTh · Qh −

∫
∂κ

v+
h Q̂ · n̂

]
= 0 (2.13)

∑
κ∈Th

[∫
κ
τTh · Qh +

∫
κ
wT
h∇ ·

(
ATτ h

)
−
∫
∂κ

(
Âw

)T
τ+
h · n̂

]
= 0, (2.14)

where (̂·) denotes numerical flux approximations given discontinuous data across element
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faces. By defining τ h ≡ ∇vh and integrating by parts the viscous residual can be written as

Rh,V (wh,vh) =
∑
κ∈Th

[∫
κ
∇vTh · A∇wh

+

∫
∂κ
∇
(
vTh
)+ (Âw −A+w+

h

)
· n̂−

∫
∂κ

v+
h Q̂ · n̂

]
. (2.15)

From the BR2 discretization the numerical approximation for the fluxes are Âw =

A+ {wh} and Q̂ = {A∇uh} − ηf {~rf (wh)}. A detailed review of the stability, compact-

ness, and dual consistency of different numerical flux options appears in [8]. With BR2 the

viscous discretization becomes

Rh,V (wh,vh) =∑
κ∈Th

∫
κ
∇vTh · (A(wh)∇wh)

−
∑
f∈Γi

∫
f

[
JwhKT ·

{
AT (wh)∇vh

}
+ JvhKT · ({A(wh)∇wh} − ηf {~rf (wh)})

]
−
∑
f∈Γb

∫
f

[
(w+

h − ub)T (~n+ · AT (ub)∇v+
h )

+vThFbv
(
~n · (A(ub)∇wh − ηf~rbf (wh))

)]
, (2.16)

where Fbv is the viscous boundary flux, ~rf and ~rbf are auxiliary variables, ηf is a stabilization

parameter, and the jump, J·K, and average, {·}, operators have be introduced to simplify the

notation. The jump and average operators for scalar variables, θ, and vector variables, φ,

are given by

{θ} =
1

2
(θ+ + θ−),

{
~φ
}

=
1

2
(~φ+ + ~φ−),

JθK = (θ+~n+ + θ−~n−),
r
~φ
z

= (~φ+ · ~n+ + ~φ− · ~n−).

The auxiliary variables are defined by the following problems: for each interior face, Γi,

find ~rf ∈ [Vph]d such that

∑
κ∈Th

∫
κ

~τTh ·~rf (wh) =

∫
Γi

JwhKT ·
{
AT (wh)~τ h

}
, ∀~τ h ∈ [Vph]d,
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and find ~rbf ∈ [Vph]d

∑
κ∈Th

∫
κ

~τTh ·~rbf (wh) =

∫
Γb

(w+
h − ub)T (AT (wb)~τ+

h ) · ~n+, ∀~τ h ∈ [Vph]d,

for boundary faces.

For all cases in this work the stabilization parameter is set to ηf = 20. For the BR2

discretization, ηf larger than the number of faces per element implies stability, so an ηf = 20

is conservative. The conservative value of ηf is selected based on the arbitrary number of

faces which can result from the cut-cell mesh generation algorithm presented in Chapter 4.

The source term is discretized using the asymptotically dual consistent or mixed formu-

lation of Oliver [95]. The source discretization is given by

Rh,S(wh,vh) = −
∑
κ∈Th

∫
κ
vThS(wh, ~qh), (2.17)

where ~qh ∈
[
Vph
]n

satisfies

∑
κ∈Th

∫
κ

~τ h · ~qh = −
∑
κ∈Th

∫
κ
wh∇ · ~τ h +

∑
f∈Γi

∫
f

(JŵK · {~τ h}+ {ŵ} J~τ hK)

+
∑
f∈Γb

∫
f
ub~τ h · ~n, ∀~τ h ∈

[
Vph
]d
, (2.18)

and ŵ = ŵ(w+
h ,w

−
h ) is a numerical flux function. Oliver proved that ŵ(w+

h ,w
−
h ) = {wh}

provided an asymptotically dual consistent discretization of the source term. The variable

~qh, in Equation (2.17), can be rewritten in terms of ∇wh and lifting operators. Beginning

by integrating Equation(2.18) by parts to give

∑
κ∈Th

∫
κ

~τ h · ~qh =
∑
κ∈Th

∫
κ

~τ h · ∇wh +
∑
f∈Γi

[∫
f
Jŵ −whK · {~τ h}+

∫
f
{ŵ −wh} J~τ hK

]
+
∑
f∈Γb

∫
f
(wb −wh)~τ h · ~n, ∀~τ h ∈

[
Vph
]d
. (2.19)

Lifting operators ~rh and ~̀h can then be defined by: find ~rh(wh) ∈ [Vph]d and ~̀h(wh) ∈ [Vph]d
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such that

∑
κ∈Th

∫
κ

~τ h ·~rh(wh) = −
∑
F∈Γi

∫
F

Jŵ −whK · {~τ h}

−
∑
F∈Γb

∫
F

(wb −wh)~τ h · ~n, ∀~τ h ∈
[
Vph
]d
, (2.20)

∑
κ∈Th

∫
κ

~τ h · ~̀h(wh) = −
∑
F∈Γi

∫
F
{ŵ −wh} J~τ hK , ∀~τ h ∈

[
Vph
]d
. (2.21)

Combining Equations (2.19) through (2.21) allows for the state variable ~qh to be expressed

as

~qh = ∇wh −~rh(wh)− ~̀h(wh). (2.22)

Finally, Oliver’s mixed formulation of the source discretization is obtained when ~qh as given

in Equation (2.22) is substituted into Equation (2.17),

Rh,S(wh,vh) ≡ −
∑
κ∈Th

∫
κ
vThS(wh,∇wh −~rh(wh)− ~̀h(wh)). (2.23)

2.4 Shock capturing

Shock capturing is performed using the PDE-based artificial viscosity model from Barter [12].

In this model, a shock indicator that measures the local regularity of the solution is used

as the forcing term of an elliptic PDE, which in turn generates a smooth artificial viscosity

field. The artificial viscosity PDE, which augments the original conservation law, is given

by

∂ε

∂t
= ∂

∂xi

(
C2
τ (M−1)ij

∂ε
∂xj

)
+ 1

τ

[
h̄
pλmax(u)SK(u)− ε

]
(2.24)

where ε is the artificial viscosity,

τ =
hmin

C1pλmax(u)
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is the time scale based on the maximum wave speed, λmax(u), and the element size, hmin =

(λmax(M))−1/2. M = {M(x)}|x∈Ω is the smooth Riemannian metric tensor field discussed

in Section 6.2 which is defined by the tessellation of the mesh, Th. The average length scale

throughout the domain is given by

h̄ = (det(M))−
1
2d ,

and SK is the shock indicator based on the jump in a scalar quantity across an element face.

The jump indicator is cast as,

Sk =
1

|∂κ|

∫
∂κ

∣∣∣∣ JcK{c}
∣∣∣∣ · n̂

where jumps in speed of sound, c, are chosen to locate shocks. The two constants are set to

C1 = 3.0 and C2 = 5.0.

Unlike Barter’s original equation that used axis aligned bounding boxes to measure the

local element sizes, a Riemannian metric tensor measures the local length scale for the

PDE [131]. The new formulation provides consistent diffusion of artificial viscosity indepen-

dent of the coordinate system and enables sharper shock capturing on highly anisotropic

elements with arbitrary orientations.

When shock PDE-based capturing is incorporated into RANS-SA system, the shock

state, ε, is appended to the state vector and an additional source term is included in the

system. The strong form of the governing equations, Equation (2.9), becomes

∇ · F(u)−∇ · Fv(u,∇u) = S(u,∇u) + G(u) in Ω, (2.25)

where the state vector is u = [ρ, ρui, ρE, ρν̃, ε]
T , and G(u) is the source term due to the

artificial viscosity equation.

The weak form of the coupled RANS-SA PDE-shock system finds uh(·, t) ∈ Vph such that

∑
κ∈Th

∫
κ
Rh,I(uh,vh) +Rh,V (uh,vh)

+Rh,S(uh,vh) +Rh,G(uh,vh) = 0, ∀vh ∈ Vph. (2.26)
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The discretization of the shock source term is

Rh,G(wh,vh) = −
∑
κ∈Th

∫
κ
vTh

[
1

τ

(
h̄

p
λmaxSk(wh)− ε

)]
.

ε included in the RANS equations following the physical viscosity model of Persson and

Peraire [105], such that the kinematic viscosity is redefined as

νε = ν + ε. (2.27)

νε is used in place of the kinematic viscosity in the RANS equations (Equations (2.1), (2.2),

and (2.3)) but not in the SA model, Equation (2.4).
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Chapter 3

Non-Linear Solution Technique

One of the primary objectives of this work is to develop a reliable solution strategy for solving

the two-dimensional RANS equations. To accomplish that objective, advancements were

made to improve the robustness of the non-linear solution technique. This chapter details

the standard pseudo-time continuation technique employed to solve non-linear problems in

Section 3.1 and presents in Section 3.3 a line-search based globalization technique to increase

the sphere of convergence for RANS problems.

3.1 Pseudo-Time Continuation

The non-linear solver employed in this work is based on pseudo-time continuation. The

steady-state conservation law given in Equation (2.9) is recast as an unsteady system of

equations,

∂u

∂t
+∇ · F(u)−∇ · Fv(u,∇u) = S(u,∇u) in Ω,

and time integration drives toward the steady-state solution. The spatially discrete problem

is cast as the initial value problem of given U(0), find U(t) such that

M
dU

dt
+Rs(U) = 0,
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where M is the block-diagonal mass matrix,

Mij =
∑
κ∈Th

∫
κ
vTi vj ,

and Rs(·) is the spatial residual vector presented in Section 2.3. The ith component of Rs(·)

is denoted as

[Rs(U)]i = Rh(uh,vi).

The unsteady terms of the governing equation are included to improve the robustness

of the non-linear solver, particularly through initial transients in the solution. For a generic

time integrator, using ∆t as time steps, the solution procedure can be broken down into

three phases [70]:

1. The initial phase: Un is far from the steady state solution and ∆t is required to be

small. The success of this phase is determined by the stability and accuracy of the

temporal integration. Increased accuracy of initial conditions decrease the impact of

the initial phase.

2. The intermediate phase: The solution is relatively accurate but ∆t is still small. The

goal of this phase is for ∆t to grow without a loss of solution accuracy. In this phase

the solution is only relatively accurate and, as ∆t grows, it is possible for a single poor

solution update to have a large adverse affect on the solution accuracy and the overall

convergence of the scheme.

3. The terminal phase: ∆t is large and the solution is quickly driven to the steady state

solution. Only a few iterations are required as Newton convergence is nearly achieved.

Since the goal is to solve for the steady-state solution, temporal accuracy is not a chief

concern. Therefore, a first-order backward Euler method is used for time integration. Given

a discrete solution, Un, the solution after one time step, Un+1 = Un + ∆U , is given by

solving

Mt(CFL)(Un+1 − Un) +Rs(U
n+1) = 0, (3.1)
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where Mt(CFL) is a time-weighted mass matrix such that

Mt
ij(CFL) =

∑
κ∈Th

1

∆tκ

∫
κ
vTi vj ,

and the local time step, ∆tκ, is based on a global CFL number. The local time step based

on a global CFL number within each element is

∆tκ = CFL
hκ
λκ
,

where hκ is a measure of element grid spacing taken as the minimum altitude of the element

(For a simplex element the altitude is the straight line through a vertex and perpendicular

to the opposite face) and λκ is the maximum convective wave speed over the element equal

to the magnitude of the velocity plus the speed of sound.

The solution process is marched forward in time until ‖Rs(Un) ‖2 is less than a user

specified tolerance. In the non-linear solver, the CFL number is updated at each time step

based on a physicality check. The physicality check requires that both the density and

internal energy, ρe = ρE − 1
2ρ(u2 + v2), are limited to changes of less than 10%. If they

change by less than 10% the CFL is increased by a factor of two. If density and internal

energy change by 100% or more, then no update is taken, the CFL number is decreased

by a factor of ten, and a new solution update, ∆U , is computed by solving Equation (3.1)

using the smaller ∆tκ. Otherwise, only a partial update of the solution, limiting density and

internal energy changes to 10%, is taken. The non-symmetric updates to the CFL number

based on physicality checks are due to the desire to slowly grow the CFL for increased time

accuracy in the case of a full update and the need to quickly attain higher time accuracy

when no update is taken. The physicality limits on the CFL number are summarized in

Table 3.1.
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Change in state Update CFL change

∆ρ and ∆ρe < 10%
full:

Un+1 = Un + ∆U
CFL← 2 · CFL

∆ρ or ∆ρe > 100%
none:

Un+1 = Un
CFL← CFL/10

otherwise
partial:

Un+1 = Un + 10% min
(
ρn

∆ρ ,
ρen

∆ρe

)
∆U no change

Table 3.1: Summary of physicality check limits on the global CFL number.

3.2 Pseudo-Time Solution Update

Steady simulations are the objective of this work, thus a single step of Newton’s method can

approximately solve Equation (3.1) at each time step [56],

∆U = Un+1 − Un = −
(

Mt(CFL) +
∂Rs
∂U

∣∣∣∣
Un

)−1

Rs(U
n). (3.2)

The Newton update, ∆U , requires the solution to a large linear system in the form Ax = b

at every time step, where

A = Mt(CFL) +
∂Rs
∂U

, x = ∆U, b = Rs(U
n). (3.3)

The matrix A is referred to as the Jacobian matrix. For the DG discretization the Jacobian

matrix has a block-sparse structure with Ne block rows of size nr, where Ne is the number

of elements in the tesselation Th and nr is the number of unknowns per element. In this case

nr = r×nbf , where r is the number of components in the state vector and nbf is the number

of basis functions per state. nbf is a function of the solution order, p, and the reference

element shape, as shown in Table 3.2. The block rows of the Jacobian matrix contain a

non-zero diagonal block, corresponding to the coupling between states within each element,

and nf off-diagonal blocks, corresponding to the coupling between states of neighboring

elements. nf is the number of faces per element (for triangles and quadrilaterals, nf is 3

and 4 respectively).
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p nbf , Triangle nbf , Quadrilateral

1 3 4

2 6 10

3 10 16

p (p+1)(p+2)
2 (p+ 1)2

Table 3.2: Number of basis functions per element, nbf , for a given solution
order and reference element.

Due to the size of the Jacobian matrix and its block-sparse structure, an iterative method

solves the linear system. As the Jacobian is non-symmetric, a restarted GMRES algorithm is

used [38, 113, 118]. In this work, an in-place Block-ILU(0) factorization [39] with block MDF

reordering [106] of the Jacobian matrix is the right preconditioner for the GMRES algorithm.

When the CFL number in Equation (3.1) is small, the Jacobian matrix is dominated by the

block diagonal and the linear system is relatively easy to solve iteratively. Unfortunately, as

the time step increases, the coupling between elements becomes increasingly important and

the linear system becomes more difficult to solve.

In order to decrease computational expense, an adaptive linear residual criteria is used for

each GMRES solve [38, 79]. The idea is based on the fact that when the norm of the spatial

residual is large, the accuracy of the linear solve has a limited impact on the performance

of the non-linear solver. For example, if the spatial residual norm is Rs(U
n) = O(1), then

driving the linear residual to r = O(10−14) is uneconomical. Given the linear residual at

iteration k of rk = b−Axk, the linear system is solved to a tolerance of:

‖ rm ‖2
‖ r0 ‖2

≤ KA min

[
1,

(
‖Rs(Un) ‖2
‖Rs(Un−1) ‖2

)2
]
,

where KA is a user defined constant set to 10−4 for this work and the min is included in

case the spatial residual increases at some iteration.

3.3 Line-Search Solution Update Limiting

Though a non-linear solver based on pseudo-time continuation and physicality checks has

proven to be successful for a wide range of Euler and Navier-Stokes problems [11, 43, 97],
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there are some cases where the non-linear solver fails to converge. Some limitations with

the solution procedure are the lack of temporal accuracy and the use of a single Newton

iteration at each time step. These approximations provide large time savings to the solution

procedure but allow for the possibility of poor solution updates, particularly in cases which

exhibit strong non-linearities. In fact, without physicality checks the updates can result in

a solution with either non-physical quantities (negative density or pressure for example) or

a solution which simply jumps between solution paths in a non-converging nature. The SA

turbulence model equation, described in Section 2.2, provides a highly non-linear test to the

existing solution process, which it often fails. Without limits on the updates to the SA state

in the existing solution procedure, updates from Equation (3.2) for the SA model can be as

large as three orders of magnitude relative to the SA working variable.

In an unsteady simulation, the non-linear equation corresponding to backward Euler time

integration, Equation (3.1), would be solved iteratively for Un+1 which ensures that during

each time step the unsteady residual,

Rt(U
n+1) ≡ 1

∆t
M(Un+1 − Un) +Rs(U

n+1),

decreases or vanishes completely. Yet, since only a single Newton sub-iteration is used

to compute the update, nothing can be said about the unsteady residual at Un+1 for the

standard pseudo-time continuation procedure.

Line searches are introduced to increase the reliability of the non-linear solver by expand-

ing the global sphere of convergence of Newton’s method. The idea is that given a decent

direction, the line search ensures an “acceptable” update, where an “acceptable” update

is problem dependent. For a minimization problem the “acceptable” update might be one

that decreases the function being minimized [37]. Line searches have been used previously

in [6, 41, 56, 69, 70, 73, 74].

In this work, the purpose of using line-search limiting for the update, ∆U = Un+1−Un, is

to ensure a decrease in the unsteady residual at each time step which would exist naturally

if Equation (3.1) was solved iteratively. The line-search limiting performs the following

operations:
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Line-search η Update CFL change

η = 1 full update: Un+1 = Un + ∆U CFL← 2 · CFL

η < ηmin no update: Un+1 = Un CFL← CFL/10

otherwise partial update: Un+1 = Un + η∆U no change

Table 3.3: Summary of line-search limits on the global CFL number.

1. Take ∆U from physicality check

2. Set η = 1 and Ũ = Un + η ·∆U

3. Compute Rt(Ũ) = 1
∆tMη ·∆U +Rs(Ũ)

4. Do while
(
‖Rt(Ũ) ‖ > ‖Rs(Un) ‖

)
• Set η ← η

2

• Update Ũ = Un + η ·∆U

• Compute Rt(Ũ) = 1
∆tMη ·∆U +Rs(Ũ)

The line-search algorithm determines η such that the unsteady residual decreases. How-

ever, just as in large solutions updates with the physicality check presented in Section 3.1,

if the line-search η becomes less than 10%, no update is taken, the CFL is decreased by

a factor of two, and a new solution update is computed. Table 3.3 summarizes the CFL

number limiting by the line-search η.

A choice of what norm is appropriate to measure the unsteady residual remains for the

line search. If the system of equations being solved were non-dimensionalized, such that the

residual corresponding to each equation was of similar magnitude, then a single 2-norm of

the residual would suffice. However, in the case of the RANS equations, the SA equation

residual is difficult to balance relative to the Navier-Stokes equations (which often can be

suitably non-dimensionalized). In the case of a single residual norm performing a line search

when the equation residuals are not balanced, the line search will only track the equation

with the largest residual and have no control over the other equations. For that reason

the line search is performed over each equation of the residual individually, except for the

momentum equations which are combined due to their similarity. Step 4. of the line-search

limit is replaced by
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4. Do while
(
‖Rkt (Ũ) ‖ > ‖Rks (Un) ‖

)
, for k = mass, mom, energy, SA.

In the case of shock problems no line search is performed on the artificial viscosity PDE,

Equation (2.24), due to the small size of the time step required to guarantee a decrease in

its unsteady residual. Figure 3-1 shows the residual convergence history for three boundary-

conforming meshes for a subsonic simulation of the RANS equations over the RAE2822

airfoil (M = 0.3, α = 2.31◦, Re = 6.5×106). For a coarse grid, Figure 3-1(a), the line search

requires five more non-linear iterations to converge the problem. On the other hand, for

both of the finer meshes, Figure 3-1(b) and (c), the line search robustly enables the solution

to converge to the steady-state answer.
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Figure 3-1: Residual convergence for three boundary-conforming meshes
for a subsonic simulation of the RANS-SA equations over the
RAE2822 airfoil (M = 0.3, α = 2.31, Re = 6.5× 106).
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Chapter 4

Cut-Cell Mesh Generation

In order to incorporate cut-cell mesh generation into the DG discretization presented in

section 2.3, the cutting algorithm requires the capability to reliably intersect linear simplex

elements with a curved geometry and accurately integrate on the resulting cut elements.

The cutting algorithm is performed as a preprocessing step to the solution calculation. The

following sections describe advances to the implementation first presented by Fidkowski [43]

that allow for reliable simplex cut-cell simulations in two dimensions.

4.1 Geometry Definition

Cubic splines represent the higher-order embedded geometry. Cubic splines are an interpo-

lated fit through a set of spline knots that provide continuity in the slope and the second

derivative at each spline knot. The splines yield an efficient representation of higher-order

geometry while allowing for simple evaluation of the geometry between spline knots and

providing analytic intersection with linear segments. The geometry is a cubic function of a

single spline arc-length parameter, s.

The orientation of the splines defines the computational domain. As one travels along

the spline in increasing spline arc-length parameter the computational domain is always on

the left. Figure 4-1 shows an example of a spline and its knots for a NACA0012 airfoil. The

computational domain will be external to the airfoil based on the direction of increasing s.

The simplex background mesh, from which the higher-order geometry is cut, is utilized

to define the size of the computational domain and the boundary conditions. The boundaries
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s = 0

s = smax

Figure 4-1: Example of spline geometry representation of a NACA0012 air-
foil. The spline parameter, s, defines the computational domain
to be external to the airfoil.

of the background mesh are used to impose farfield or symmetry-plane boundary conditions.

For external flow problems, the background mesh is typically square or rectangular with

the airfoil centered in the domain as seen in Figure 4-2 (a). Figure 4-2 (b) shows that cuts

through symmetry planes support symmetric flows.

Spline geometry

Farfield boundary

(a) Domain representation for external flow
around an airfoil

Spline geometry

Farfield boundary

Symmetry

plane

(b) Domain representation for symmetric
external flow over an airfoil using a
symmetry plane

Figure 4-2: Illustration of embedded and farfield domain representation for
external flow over an airfoil.

Initial cut-cell meshes can be generated with geometric adaptation. Refinement is based

on isotropically refining elements whose bounding box intersects the embedded spline ge-

ometry until the refinement reaches a user prescribed number of elements. An element

bounding box is defined as the rectangle entirely containing the element that is aligned with

the longest segment connection two points in the element and has the smallest area measure.

Geometric adaptation provides a crude starting mesh for the output-based error estimation

and adaptation procedure described in Chapter 6.
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4.2 Intersection Algorithm

Starting with a cubic spline representation of the geometry and a simplex background mesh,

the intersection algorithm determines which elements are cut and the exact topology of those

cut elements. Point intersections between splines and element faces are computed by solving

a cubic intersection problem described in Appendix D of [43]. The point intersections will be

referred to as zerod objects. zerod objects include background grid nodes, spline knots, and

spline-face intersections. The illustration in Figure 4-3 provides examples of zerod objects

and highlights the higher-dimension geometry objects that will be constructed. Table 4.1

provides the relevant information that is stored for each zerod type to completely define the

different types. A small number of degenerate zerod objects shown in Figure 4-4 are also

handled. Logic is built into the intersection algorithm to take care of the degenerate cases.

zeroda

zerod b

zerod

oned1

twod

spline geometry

Figure 4-3: Illustration distinguishing different zerod , oned , and twod ob-
jects within a cut grid.

From the set of zerod objects, a set of oned objects is built. oned objects uniquely link a

pair of zerod points. For instance, in Figure 4-3, oned1 is the one dimensional link between

the zeroda and zerod b objects. Based on topology, different oned objects are referred to by

applying different names. An “embedded face” refers to the portion of a spline within a

background element. The “embedded face” runs along the spline geometry between spline

knots and/or spline-face intersections. The faces of background domain that intersect the
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zerod object Stored information

Grid node • Parent background grid node

Spline knot • Parent spline knot

Spline-face intersection

• Face index of background face

• Spline index of background spline segment

• sint, spline parameter of the intersection

• xface, coordinate of the intersection on the face

Table 4.1: Table listing the information that is stored to define the different
zerod objects.

(a) Spline knot intersecting
background grid face

(b) Background grid node
intersecting spline segment

Figure 4-4: Degenerate intersection cases.

spline are referred to as “cut faces.” Figure 4-5 illustrates the different oned objects and

Table 4.2 lists the information that is stored to define the oned objects.

As discussed in Section 4.1, the direction of increasing spline arc-length parameter de-

termines the valid computational domain. This information is used at each spline-face in-

tersection to determine whether the “cut faces” connected to the intersection are in the

computational domain. If a “cut face” is not in the computational domain, it is treated as

null-oned . The null-oned information is propagated throughout the null regions, to the right

of increasing spline arc-length parameter, by traversing along non-cut background mesh faces

or “whole faces.”

After all null-oned objects are removed from consideration, the intersection algorithm

moves through each background element turning them into twod objects. If the background

element is uncut and has three non-null oneds it is marked as a whole twod object. Con-
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Embedded
face

Cut face

Spline-face
intersection

Spline geometry
Null face

Whole face

Figure 4-5: Illustration of oned objects at the leading edge of an airfoil.

oned object Stored information

Embedded face

• Parent spline segment index

• Index of zerod endpoints, iz0 and iz1 (s(iz0) < s(iz1))

• Background element index

Cut face
• Parent background face index

• Index of zerod endpoints, iz0 and iz1

Whole face
• Parent background face index

• Index of zerod endpoints, iz0 and iz1

Null face Nothing, this face is not relevant for the computational domain

Table 4.2: Table listing the relevant information that is stored to define the
different oned objects.

versely, if the background element is comprised entirely of null oned objects it is skipped

completely. For all of the remaining background elements which have “cut faces,” the first

step is to collect all oneds associated with each background element.

Once all relevant oned objects have been associated with a given background element, the

next step is determining the precise topology of the element in the computational domain.

The generation of loops connecting oned objects isolates the valid portion of each background

element. Each loop encloses separate regions of the original background element and typically

contains no loops within it. The only possibility for a loop to be entirely contained within

another is if the entire geometry is contained inside a single background element. In this case,
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a reality check is performed to ensure valid cutting. Each loop that is formed is considered

a twod object, a valid region of background elements inside the computational domain. The

loop generation algorithm follows:

Loop Generation

1. From OneD, the list of valid oned objects associated with a background element, select

an “embedded face,” ie0

2. Begin a loop with izstart = OneD[ie0].iz0, the initial zerod on the “embedded face,”

ie0, such that traversing around the loop keeps the interior on the left

3. Set iecur = ie0 and izcur = OneD[ie0].iz1

4. Do while (izcur! = izstart)

(a) Add ie to the Loop and mark it as used in OneD

(b) Find the unused faces in OneD with

(OneD[iet].iz0 == izcur) or (OneD[iet].iz1 == izcur)

• Set ie = iet

• Set izcur to OneD[iet].iz1

• Set ie = iet

• Set izcur to OneD[iet].iz0

5. If all oned objects in OneD are marked as used, loop generation is complete. Otherwise,

a new unused “embedded face,” ie0, is selected and the process returns to step 2.

The loop generation need not be unique as it is dependent on the selection of ie0. How-

ever, the manner in which the loops are generated ensures precise knowledge of the cut

element topology. A single background element can be cut multiple times leading to two or

more twod objects. Figure 4-6 provides an example of a background element being cut into

two twod objects, each defined by separate loops of oned objects. The separate cut regions

of a multiply-cut element are treated as individual cut cells with their own basis to represent

the flow solution and their own integration rules for residual evaluation. Within a cut-cell

mesh there is no limit on the number of faces a twod object can have. For instance, the

background element enclosing the trailing edge in Figure 4-6 has six faces; two “embedded

faces,” two “cut faces,” and two “whole faces.” One additional property provided by the

loop generation algorithm is the cut-element interior is always to the left as one traverses
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along the Loop. The direction of the Loop is shown in Figure 4-6 for the element intersecting

the trailing edge of an airfoil.

1

2

Figure 4-6: Illustration of typical cut elements at an airfoil trailing edge.
The left background element straddling the airfoil is treated as
two cut elements with each cut element defined by separate loops
of oned objects. The arbitrarily cut element at the trailing edge
is a single cut element with four neighbors. The direction of the
Loop is shown for the element at the trailing edge.

The entire cutting and topology building algorithm can be summarized as follows:

1. Build a set of zerod objects, including background grid nodes, spline knots, and spline-

face intersections

2. Build a set of oned objects, where each oned objects links a pair of zerod points (iz0

and iz1)

3. Based on the direction of validity for each spline-face intersection, identify null-oned

objects and propagate that information throughout the non-computational domain

4. For each background element

(a) Collect all non-null-oned objects associated with the background element

(b) Form loops from the list of oned objects

(c) Each loop becomes a twod object or element in the computational domain

Figure 4-7 displays an example of a cut-cell mesh around a NACA0012 where the back-

ground elements completely contained by the geometry have been removed. For background
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elements that are cut by the spline geometry, the entire element is shown though the solution

is only valid within the region of the element inside the computational domain.

(a) Airfoil (b) Zoom of leading edge

Figure 4-7: Example of a cut-cell mesh for a NACA0012 airfoil. The spline
geometry is shown in red.

4.3 Integration for Arbitrary Element Shape

A technique to integrate over arbitrary shapes is required to include cut cells in a DG

discretization. One approach for generating integration rules is to subdivide each cut element

into a set of possibly-curved sub-triangles. Though this approach would provide an optimal

set of quadrature rules for integration in each sub-triangle, it returns to the original problem

of meshing with curved boundaries. For that reason a more general approach was developed

by Fidkowski [43] for cut elements.

The method presented by Fidkowski was based on using “speckled” sampling points

in the cut element and then applying the divergence theorem to compute quadrature-like

integration weights such that
∫
κ f(x)dκ ≈

∑Nquad
q=1 wqf(xq). Further details can be found

in [43–45, 88].

The general method developed for generating quadrature-like integration rules proves

to be sufficient for two-dimensional cut-cell cases, but a very large number of quadrature

points are necessary for higher-order approximations. For example, for p = 5 cases more

than 484 points are needed for element area integration, assuming a required quadrature

order of 2p+ 1 [43]. An example set of points is shown in Figure 4-8. Since the quadrature
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Figure 4-8: An example of the “speckled” 2D integration points for a cut-cell
mesh. In order to support p = 5 solutions, upwards of 484 points
are suggested to adequately cover the interior of the element.

rules (points and weights) are stored for each cut element and the solution must be sampled

at each point during residual evaluation, there is a significant added computational cost and

memory requirement.

Originally, the “speckling” was performed by, first, randomly selecting a point along the

surface of the element boundary, then inwardly projecting rays (randomly at ±15◦ off the

inward normal) from that point and randomly selecting a point along the ray between where

it enters and exits the element. A large number of sampling points guaranteed coverage of

the entire region of an arbitrarily cut element.

A two-dimensional model problem is explored in order to quantify the solution depen-

dence on the randomness in the quadrature rules. The two-dimensional scalar convection-

diffusion problem is

∇ · (~V u)− 1

Pe
∇2u = S, (4.1)

with a vortex flow velocity field, Vθ = 1
r and Vr = 0, and the exact solution is

ue = 1− exp

−(r −R)√
θr
Pe

 .

A relatively low Peclet number, Pe = 100, is used to limit the necessary anisotropy of the

meshes. For all cases, an aspect ratio of 10 is used. Figure 4-9 shows a model of the domain.
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Sbf

Figure 4-9: An example domain used with the
two-dimensional scalar convection-diffusion
model problem. For viewing, the cell aspect
ratio is set to 1.

Figure 4-10: Example of a
boundary-curved domain. The
boundary-conforming domain is
globally linear with a single
curved boundary on the geom-
etry surface.

In order to measure solution accuracy, the heat flux distribution error, defined as

HFDE =

√∫
Sbf

(
ν
∂uh
∂n
− ν ∂ue

∂n

)2

dS, (4.2)

is used, where Sbf is the inner radial surface of Ω labeled in Figure 4-9. The heat flux

distribution error is sensitive to oscillations in the local heat flux, ν ∂u∂n , along Sbf which

is important for the assessment of solution quality on the boundary where the impact of

cut cells is largest. Global error measures, like L2 or broken H1 error, were found to be

insensitive to solution fluctuations on Sbf . The heat flux distribution error is not a norm,

but it provides more information about the solution quality than looking at the error in the

heat flux,
∫
Sbf

ν ∂u∂ndS. Figure 4-11 shows the true heat flux distribution for the convection

diffusion model problem.

A cut-boundary-curved mesh shown in Figure 4-10 explores the solution dependence

on the randomness in the quadrature rules. The cut-boundary-curved mesh is the result

of mapping a linear mesh from (r, θ) space to (x, y) space and then intersecting a curved

embedded surface. The embedded surface passes exactly through the boundary nodes of the

linear mesh so the result is a mesh with curved faces on the embedded boundary and linear

faces elsewhere. The selection of this grid topology allows the integration procedure to be

isolated from the influence of small volume ratios which will be discussed in Chapter 5.

Figure 4-12 shows the convergence history of the heat flux distribution error. At each
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Figure 4-11: Plot of the heat flux distribution along the inner radial bound-
ary of the computational domain.

solution order and grid refinement level, 100 different sets of randomly “speckled” points are

utilized for integration rules. For each polynomial order, the convergence of the minimum and

maximum heat flux distribution errors are plotted against grid refinement. The minimum

and maximum heat flux distribution errors for p = 1 through p = 4 lay on top of each

other showing no noticeable variation in the convergence of the heat flux distribution error

as the integration rules change with different sets of 484 random “speckled” points in each

cut element. However, when using p = 5 polynomials to represent the solution, the heat flux

distribution error depends on the set of random points.

Figure 4-13 and Table 4.3 show the variation of the heat flux distribution error at p = 5

for each of the four grid refinement levels. Figure 4-13 shows the impact of randomness is

strongest for the coarse grid. On the coarsest grid, with p = 5, the heat flux distribution

error ranges from 6.7× 10−2 to 5.2× 10−5, a factor of over 800. The impact of randomness

is less apparent for the refined meshes. For the finer meshes, the difference between the

minimum and maximum heat flux distribution error is only a factor of 10. The differing error

levels imply that an unacceptable level of randomness exists with in the random “speckling”

process.
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Figure 4-12: Convergence history of the minimum and maximum heat flux
distribution error at solution orders 1 though 5, where 100
different sets of “speckled” points are used for integration rules
at the four grid refinement levels.
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led” points at p = 5 for each grid refinement level.
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h0
h = 1 h0

h = 2 h0
h = 4 h0

h = 8

Max over random sets 7.447× 10−3 6.529× 10−5 3.387× 10−6 1.309× 10−7

Min over random sets 7.282× 10−6 9.063× 10−7 5.740× 10−8 2.444× 10−9

Table 4.3: Table comparing heat flux distribution errors calculated using
sets of 484 randomly “speckled” points. All results are for p = 5.

w

Figure 4-14: Triangles and quadrilaterals are recognizable canonical element shapes and
improve the quality of the integration rules. The example elements are the canonical version
of the cut elements shown in Figure 4-8 with their canonical quadrature points.

4.4 Canonical Shape Recognition

Recognizing canonical element shapes (i.e. triangles and quadrilaterals) increases the quality

of the integration rules. Figure 4-14 provides an example of typical cut elements that are

recognized as canonical shapes. In two dimensions, most cut elements have three or four

sides. The primary exception is the element at a trailing edge with two embedded surface

faces cutting into it, as shown in Figure 4-6. Three- and four-sided cut shapes can be

mapped to triangles and quadrilaterals respectively, to utilize standard integration rules in

the reference space of the canonical element with provable accuracy in the reference space.

Cut elements become canonical elements via the higher-order geometry information from

the faces of arbitrarily cut triangles or quadrilaterals. A Lagrange basis from fifth order

polynomials (q = 5) represents the curved-canonical elements. Since the Lagrange basis can

span multiple spline segments there is a loss of precision in the geometry definition, but as

in higher-order boundary-conforming meshes, the error in the geometry is assumed to be

less than the error induced by discretizing the flow equations.

To determine the location of the interior Lagrange nodes, a single-element linear elasticity
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problem is solved using a Poisson ratio of 1. In the elasticity problem the location of the

boundary nodes specifies Dirichlet boundary conditions. The conversion of a three-sided cut

element to a curved triangle is shown in Figure 4-15. The canonical-triangle recognition

algorithm is:

1. Identify a cut element with 3 faces, Figure 4-15 (a)

2. Create a linear canonical element by connecting the three zerod objects, Figure 4-15

(b)

3. Add equally spaced higher-order Lagrange nodes along the spline arc and cut faces,

Figure 4-15 (c)

4. Use a single element linear elasticity problem with Dirichlet boundary conditions to

solve for interior higher-order node locations, Figure 4-15 (d)

5. Check over element limit points to ensure positive Jacobians throughout

(a) Cut element with
three faces

(b) Linear canonical
element

(c) Boundary node
locations

(d) Canonical curved
triangle

Figure 4-15: Conversion of a three-sided cut element to a higher-order
canonical triangle. A q = 5 Lagrange basis is used for the
illustration.

Step 5 in the conversion to canonical shapes algorithm is to check for positive Jacobians

in the mapping from reference space to physical space for the canonical triangle. To check

the mapping, the Jacobian is evaluated on the quadrature points used for area and face

integration. If the Jacobian at any limit point is negative, the canonical conversion process

is abandoned and the element is treated as arbitrarily cut. The recognition of canonical

quadrilaterals follows the same procedure.
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h0
h = 1 h0

h = 2 h0
h = 4 h0

h = 8

Nquad points 1521 519 545 555

Max over random sets 7.447× 10−3 6.529× 10−5 3.387× 10−6 1.309× 10−7

Min over random sets 7.282× 10−6 9.063× 10−7 5.740× 10−8 2.444× 10−9

Distributed points 7.391× 10−6 1.003× 10−6 6.596× 10−8 2.653× 10−9

Canonical-cut grid 8.025× 10−6 9.205× 10−7 5.755× 10−8 2.810× 10−9

Table 4.4: Table comparing heat flux distribution errors calculated using
sets of randomly “speckled” points, distributed sampling points,
and a canonical-cut grid. The Nquad for the “speckled” points
is taken from the distributed sampling points to allow for the
comparison between the methods. The results are for p = 5.

Comparing Figures 4-8 and 4-14 visually shows the difference between the cut elements

and the canonical elements. The figures exhibit the required number of quadrature points

for integration of eleventh order polynomials between standard cut elements (Nquad = 484)

and cut elements which have been converted to canonical elements (Nquad = 33 to 49).

Table 4.4 compares the integration rules generated from canonical elements to the rules

generated from randomly “speckled” sampling points. The heat flux distribution error for

the canonical integration rules is close to the minimum heat flux distribution error over the

100 different sets of randomly “speckled” points.

Converting most cut elements to canonical elements leads to the possibility of using more

“speckling” points, or a more costly algorithm, for generating integration rules for those el-

ements that cannot be converted. Therefore, with fewer arbitrarily cut elements more time

and memory can be spent on each one. In this work the decision was made to increase

the number of sampling points to improve the integration rules and reduce the variability.

However, an issue arises when more sampling points are used. More sampling points in-

creases the probability of points being located close enough that the conditioning of the QR

factorization used to solve for the sampling weights becomes worse. In order to alleviate

the potentially poor conditioning of the QR factorization, distributed sampling points are

used within the arbitrarily cut elements. The distributed points are generated from a tensor

product of Clenshaw-Curtis hierarchal points in the bounding box of the cut elements. The

process begins with a set of at least 484 distributed points. A check of each point determines
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if it is valid (inside the cut element) or invalid. After the inside/outside check if there are

less than 484 points, the Clenshaw-Curtis points are refined and inside/outside checks are

performed on the new points. The number of distributed points is 484 ≤ Nquad < 1936.

The last row in Table 4.4 shows the heat flux distribution errors computed using dis-

tributed points. The heat flux distribution error using distributed points compares well to

the minimum error from the sets of randomly “speckled” points (based on the same Nquad)

and the integration rules based on canonical shape recognition. However, generating a set

of distributed points is more costly than the “speckling” approach of Fidkowski because the

distributed points need additional inside-outside checks and still requires storage of the inte-

gration rules. In practice, the added expense is worthwhile as the reliability of the solution

procedure increases.

It must be noted that the recognition of canonical shapes will be more difficult in three

dimensions. In three dimensions, the canonical options will not simply be tetrahedra and

quadrilaterals, requiring the addition of transitional elements such as pyramids and prisms.

In principle, a similar canonical conversion process will work. First, cut-tetrahedra faces

can be identified as triangles or quadrilaterals. The resulting interior volumes can be rec-

ognized as a canonical object formed by a set of base volume elements. The proposed

three-dimensional canonical conversion process requires meshing standard objects in linear

reference space. For instance, a tetrahedron with a node cut off could be recognized as a

triangular prism.

4.5 Solution Basis Space

A typical higher-order boundary-conforming mesh is given by Th, which is a subdivision of

the domain, Ω, into a set of elements each represented as κ, i.e. Ω̄ = ∪κ̄. The shape of each

element, κ, is defined by a coordinate transformation from the reference element, K̂ref, to

the physical space, through gκ ∈ [P q(K̂ref)]
d, where P q denotes the space of polynomials of

order q and d is the physical dimension.

In finite element methods the solution within each element is defined using basis func-

tions. The basis functions are obtained by mapping some function defined on the solution

reference element, K̄refs, to the physical element. In this work, the solution is represented
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with polynomials of order p in the solution reference element, P p(K̄refs). For parametric

bases, the mapping of the approximation function from the reference space to the physi-

cal space is the same as the coordinate mapping, gκ, as shown by Figure 4-16(a). The gκ

mapping of the solution reference space to the physical space results in a function space of

vh ∈ VpPar(κ) where

VpPar(κ) = {v ∈ L2(κ) | v ◦ gκ ∈ P p(K̄refs)}.

The basis functions are not polynomial in physical space, but allow for easy implementation

of strongly enforced Dirichlet conditions on the boundary of the computational domain.

ξ
1

ξ
2

ζ
1

ζ
2

x
1

x
2

Geometry
reference space

K̂ref(ξ)

Solution ref-
erence space

K̄refs(ζ)

Physical space

VpPar(κ) = {v ∈ L2(κ) | v ◦ gκ ∈ P p(K̄refs)}

gκ : ξref → xglob gκ : ζrefs → xglob

(a) Parametric element mapping where the solution
mapping is the same as the coordinate mapping
gκ
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ξ
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ζ
1

ζ
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x
1

x
2

Geometry
reference space

K̂ref(ξ)

Solution ref-
erence space

K̄refs(ζ)

Physical space

VpCart(κ) = {P p(κ)}

gκ : ξref → xglob fκ : ζrefs → xglob

(b) Cartesian element mapping where the solution
mapping, fκ, is different from the coordinate
mapping, gκ

Figure 4-16: Maps for element and solution representation.

When using a DG finite element discretization and weakly enforced boundary conditions,

another possibility for the solution space exits. The solution space can be formed on linear

shadow elements creating a Cartesian basis. The shadow elements are obtained by truncating
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the q > 1 portion of gκ resulting in the mapping fκ, an affine mapping from the solution

reference space to linear shadow element. The Cartesian basis functions support polynomials

in physical space such that vh ∈ VpCart(κ) where

VpCart(κ) = {P p(κ)},

and can also be expressed as polynomials in the reference element, K̄refs:

VpCart(κ) = {v ∈ L2(κ) | v ◦ fκ ∈ P p(Extκ(K̄refs))},

where Extκ(K̄refs) is the extension of K̄refs. The extension on K̄refs is necessary because the

physical element can extend outside the linear shadow element or truncate it. When points

are located in κ, but outside the shadow element, and are mapped to the reference element,

they lie outside of K̄refs but within Extκ(K̄refs). By definition, the extension of K̄refs is

Extκ(K̄refs) = {ζ ∈ Rd | ζ = f−1
κ (gκ(ξ)), ξ ∈ K̂ref}.

Figure 4-16(b) shows the gκ mapping of the coordinates and the fκ mapping of the linear

shadow element from the reference elements, K̂ref and K̄refs.

In the context of the cut-cell method, Cartesian functions provide an avenue to represent

solutions on arbitrarily cut elements. On the arbitrarily cut elements a polynomial mapping

from the reference space (simplex or quadrilateral) to the physical space is not guaranteed

to exist and a parametric basis cannot be used. In place of the parametric mapping each

cut element is associated with a linear shadow element and a Cartesian basis represents the

solution. The two-dimensional scalar convection-diffusion problem, Equation (4.1), is used

to examine the effect on solution accuracy of a Cartesian basis compared to a parametric

basis.

Two different mesh families measure the difference between the Cartesian and parametric

bases. The first mesh family, shown in Figure 4-17(a), is formed by globally mapping a q = 5

mesh in (r, θ) to (x, y), resulting in a mesh where all elements are curved. The second mesh

family, shown in Figure 4-17(b), is generated to simulate cut elements. To do this a linear

mesh is mapped from (r, θ) to (x, y), then only the inner radial boundary face is curved.

66



(a) Globally-curved mesh (b) Boundary-curved mesh

Figure 4-17: Two mesh families used to examine the effect of a Cartesian
basis compared to a parametric basis on solution accuracy. For
viewing the aspect ratio is set to 1.

Thus, the second mesh family can be thought of as a linear background mesh with the curved

surface “cut” out of it. The second mesh family is the boundary-conforming equivalent to

the mesh used to evaluate integration rules in Sections 4.3 and 4.4.

Figure 4-18 shows the heat flux distribution error convergence comparison between para-

metric and Cartesian bases on both globally-curved meshes and boundary-curved meshes.

Considering first the globally-curved mesh, the Cartesian basis results in slightly higher heat

flux distribution errors and worse convergence rates in the asymptotic range, but the heat

flux distribution errors on the initial grid for the Cartesian basis are actually lower. Both

bases result in the same answer and are interchangeable for the globally-curved mesh without

an effect on accuracy. Figure 4-18(c,d) shows the convergence of the heat flux distribution

error on the boundary-curved mesh. For the boundary-curved mesh, the Cartesian basis,

Figure 4-18(d), performs significantly better than the parametric functions, Figure 4-18(c)

in terms of convergence rate and absolute error level. The parametric functions with the

boundary-curved mesh, Figure 4-18(c), result in both poor accuracy and low convergence

rates. This implies, for cut elements recognized as canonical shapes, that Cartesian bases

should be used for solution representation.

In Figure 4-18, an important comparison between a boundary-conforming method and

a cut-cell method can be made between the globally-curved case with parametric functions,

Figure 4-18(a), and the boundary-curved case with Cartesian functions, Figure 4-18(d).

The boundary-curved Cartesian functions result in marginally inferior convergence rates

compared with the globally-curved parametric basis. However, the difference in convergence
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Figure 4-18: Comparison of the convergence in the heat flux distribution
errors for cases with parametric and Cartesian approximation
functions on globally curved higher-order meshes and globally
linear meshes with a single curved boundary. The plots indi-
cate, although there is a small deterioration in the error and
rates with the Cartesian functions, the Cartesian functions still
perform well at higher order, even in boundary-curved meshes.
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rates does not lead to a significant discrepancy in accuracy between the globally-curved case

with parametric functions and the boundary-curved case with Cartesian functions. The

similarity in the accuracy of the two approximation functions signifies quantifiable evidence

that high quality solutions can be generated with Cartesian approximation functions for the

cut-cell method.

For application to arbitrarily cut elements, three options can determine appropriate linear

shadow elements for use with the Cartesian basis functions. The three options in descending

order of preference are:

1. The q = 1 portion of gκ from canonical shape recognition – used for all canonical

elements

2. The parent linear background element – preferred when the arbitrarily cut element

area accounts for more than 50% of the background element area

3. The half of a bounding box (oriented for tightest fit) that contains more of the cut

element – used when the first two options are unavailable

Figure 4-19 gives examples of each of the shadow element options when cutting elements

around the trailing edge. Three cut elements are shown along with the shadow element

options which can represent the solution in each cut element. Little to no variation in

the heat flux distribution error or L2 error norm is observed when comparing the different

shadow element options. The hierarchy of shadow element options is set up in an effort to

provide the best overlap between the shadow element and the cut element.
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C

Element A

Option 1? Option 3

Element B

Option 1? Option 2 Option 3

Element C

Option 2? Option 3

Figure 4-19: Illustration of linear shadow element options from typical cut
elements at an airfoil’s trailing edge. The ? indicates the pre-
ferred option given the element type.
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Chapter 5

Small Volume Ratios

In the cut-cell method, small volume ratios occur when an arbitrarily small cut element

is next to a much larger neighbor as shown in Figure 5-1. Small volume ratios have two

detrimental effects. First, small volume ratios result in poor output evaluation of derivative

quantities along a cut boundary and the quality of estimation does not improve with mesh

refinement. Second, small volume ratios cause the linear system to be ill conditioned.

A

B

spline
geometry

computational
domain

Figure 5-1: Example of a small volume ratio. Usually, small volume ratios
occur when a grid node is just inside the computational domain.

A one-dimensional reaction-diffusion problem demonstrates the impact of small volume

ratios. The problem is governed by

u− ν ∂
2u

∂x2
= f(x) in Ω = (0, 1), (5.1)

u = g on ∂Ω,
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where ν > 0, f(x) is specified such that the exact solution is u(x) = sin(2πx)−x+1, shown in

Figure 5-3(a), and g provides the boundary conditions. A DG finite element method is used,

where the viscous flux is computed using the second method of Bassi and Rebay [16]. The

domain, Ω, represented discretely by Th, is split into a set of elements, κ, where Ω̄ = ∪κ̄ and

the faces are represented by Γ. A function space of piece-wise, discontinuous polynomials of

degree p is defined as

Vh,p ≡
{
v ∈ L2(Ω) | v|κ ∈ P p(κ), ∀κ ∈ Th

}
,

where P p(κ) denotes the space of degree p polynomials on element κ. The variational

problem is to find uh,p ∈ Vh,p such that

ah,p(uh,p, vh,p) = 〈f, vh,p〉 , ∀vh,p ∈ Vh,p, (5.2)

where f ∈ V ′h,p and 〈·, ·〉 denotes the duality pairing. The bilinear form is given by

ah,p(wh,p, vh,p) =
∑
κ∈Th

∫
κ
ν∇vh,p · ∇wh,p + wh,pvh,p

−
∑
Γ∈Th

∫
Γ
{∇vh,p} · Jwh,pK + Jvh,pK · {∇wh,p}

−
∑
Γ∈Th

∫
Γ

Jvh,pK · rΓ
h,p(Jwh,pK), (5.3)

where the lifting operator, rΓ
h,p ∈ [Vh,p]

d, is defined as

∑
κ∈Th

∫
κ
τ · rΓ

h,p(Jwh,pK) = −
∫

Γ
{τ} · Jwh,pK , ∀τ ∈ [Vh,p]

d .

In this model problem, the forcing term is given by

〈f, vh,p〉 =
∑
κ∈Th

∫
κ
fvh,p.

The volume ratio is defined as

VRi =
hi

max
j∈neighbori (hj)

,
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hi is the length of element i, and j ∈ neighbori is defined as all elements j sharing a common

face with element i. The model domain has uniformly sized elements with one small element

on the left boundary as shown in Figure 5-2. Thus, the critical volume ratio for the model

problem is

VR ≡ VR1 =
h1

h2
.

e1 e2 e3 Ne

hVR h h h

Figure 5-2: Diagram of mesh when grid has uniform h except for the first
element where h1 = hVR.

Figure 5-3(a) shows the exact solution and the finite element solution with VR = 1 and

VR = 10−8. Small volume ratios have a negligible impact on the solution. However, in

looking at the derivative of the solution in Figure 5-3(b), the effect of the small volume

ratio on the solution is noticeable at the left boundary, where an oscillation is present for a

solution with VR = 10−8. Since the impact of the element with the small volume ratio is

difficult to observe in physical space, the derivative of the solution is plotted for a VR = 10−8

in the reference space of the leftmost element in Figure 5-4. In the element reference space

the oscillation in the derivative is clear.

The L2 error of the solution, ‖uh,p − u ‖L2(Ω), is unaffected by small volume ratios.

Figure 5-5 shows the L2 error convergence at different critical volume ratios and polynomial

solution orders with only small changes evident due to volume ratio. The solution error can

also be measured in a broken H1 norm defined by

‖ v ‖2H1(Ω,Th) ≡
∑
κ∈Th

∫
κ

(
v2 + v2

x

)
.

In this norm, as shown in Figure 5-6, the error is also unaffected by small volume ratios.

Though the global error measures appear independent of small volume ratios, derivative

outputs at the boundary are dependent upon them. Using a dual consistent discretization
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Figure 5-3: Plot of solution and its derivative for the one-dimensional model
problem. The exact solution is plotted along with computed
solutions for Nelement = 16, p = 3 and V R = 1 and V R = 10−8.
The inset figures show the solution at the left boundary.
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Figure 5-4: Derivative of the solution for the one-dimensional model prob-
lem plotted in the reference space of the leftmost element in the
domain with a V R = 10−8, Nelement = 16, p = 3.
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Figure 5-5: The convergence of the L2 solution error with varying critical
volume ratio. Due to the tiny size of the element with the critical
volume ratio, the small volume ratio has no impact on the L2

error.
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Figure 5-6: The convergence of the broken H1 solution error with varying
critical volume ratio. The critical volume ratio has no impact
on the H1 error.
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of Equation (5.1), superconvergence at a rate of h2p is expected for the output, J(u) =

ν dudx
∣∣
x=0

[53, 60, 99]. The expected rate of convergence comes from

J(u)− Jh,p(uh,p) ≤ C‖u− uh,p ‖E‖ψ − ψh,p ‖E

≤ O(hp)O(hp)

where the energy norm is given by ‖ v ‖2E = ah,p(v, v), and ψ is the solution to the dual

problem. Figure 5-7 shows that even at volume ratios of O(10−4), the error in the boundary

output, J(u) = ν dudx
∣∣
x=0

, is significant and cannot be neglected. The small volume ratios

eliminate all the benefits of the higher-order DG discretization. In this case ν dudx
∣∣
x=0

is

computed dual consistently using the lifted numerical flux as

Jh,p(uh,p) = ν
(
∇uh,p + rΓ

h,p(Juh,pK)
)
.

Figure 5-6 shows that ‖u−uh,p ‖E converges at the expected rate of hp. The impact of small

volume ratios is therefore on ‖ψ−ψh,p ‖E which leads to a loss of superconvergence in J(u).
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Figure 5-7: The convergence of the error in the output J(u) = ν dudx
∣∣
x=0

for a
range of volume ratios for the one-dimensional model problem,
Equation (5.1).

A second impact of small volume ratios is their effect on the conditioning of the linear

system. The consequence of small volume ratios is seen in the condition number of the

stiffness matrix for the one-dimensional model problem, Equation (5.2). Figure 5-8 shows

the variation in the condition number of the stiffness matrix versus h (the element size of

all but the left most element in the one-dimensional model domain). As expected for a
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Figure 5-8: Plot showing the variation of the condition number versus element size and
volume ratio for the one-dimensional model problem.

diffusion problem, the condition number scales as O(h−2) for a fixed volume ratio. The

volume ratio also has a significant impact on the condition number of the stiffness matrix,

scaling it by O(VR−1). The poor conditioning of the linear system can affect the entire

solution procedure for a non-linear solver and potentially lead to unreliable convergence.

Though the results presented above are for a DG discretization, it is important to note

that the impact of small volume ratios is not due to the discretization choice. The next sec-

tion demonstrates that the same consequences of small volume ratios for the one-dimensional

reaction-diffusion problem can arise using a continuous Galerkin discretization. Therefore,

choosing a DG discretization is not the cause of the issues presented above.

5.1 Boundary Derivative Outputs with Small Volume Ratios

With careful attention to output evaluation, it is possible to relieve the impact of small

volume ratios on the output even with derivative based outputs. Switching to a continuous

Galerkin discretization with strong boundary conditions, the standard weak formulation of

the one-dimensional reaction-diffusion problem, Equation (5.1), is: find u ∈ UCGq such that

aCG(u, v) = 〈f, v〉 , ∀v ∈ V CG
0 , (5.4)
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where

aCG(w, v) =

∫
Ω
ν∇w · ∇v + wv.

The function spaces are defined as

V CG
0 = H1

0 (Ω), and UCGq = q +H1
0 (Ω) =

{
v ∈ H1(Ω) | γ0,∂Ω(v) = g

}
,

where γ0,∂Ω | H1(Ω) → H
1
2 (∂Ω) is the classical trace operator and q ∈ H1(Ω) is selected

such that γ0,∂Ω(q) = g.

The finite-dimensional solution is represented using a set of Lagrange basis functions,

{φi} and basis coefficients, ui, such that uh,p =
∑N

i=1 φiui ∈ UCGh,p,q where

V CG
h,p,0 = {v ∈ V CG

0 | v|κ ∈ P p(κ), ∀κ ∈ Th},

UCGh,p,q = q + V CG
h,p,0.

The discrete problem is: find uh,p ∈ UCGh,p,q such that

aCGh (uh,p, vh,p) = 〈f, vh,p〉 , ∀vh,p ∈ V CG
h,p,0. (5.5)

To achieve superconvergence, E ∼ h2p, of the error for the output J(u) = ν dudx
∣∣
x=0

using

the continuous Galerkin method, one cannot directly evaluate the derivative:

Jh,p(uh,p) = ν
duh,p
dx

∣∣∣∣
x=0

= ν

N∑
i=1

dφi
dx

∣∣∣∣
x=0

ui. (5.6)

Two arguments exists for why Equation (5.6) does not provide superconvergence of the

output error. First, the output functional is unbounded so there is a loss of regularity in the

dual solution. Additionally, the continuous dual problem for J(u) = ν dudx
∣∣
x=0

is

ψ − ν ∂
2ψ

∂x2
= 0 in Ω = (0, 1),

ψ(0) = 1/ν, ψ(1) = 0. (5.7)

Following the definition of Lu [82], a finite element formulation, Equation (5.5), together
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with the discrete functional, Equation (5.6), is dual-consistent if ψ, the solution to the dual

PDE, Equation (5.7), satisfies the discrete adjoint residual

aCGh,p (vh,p, ψ) = Jh,p(vh,p), ∀vh,p ∈ UCGh,p,q.

When Equation (5.6) is used to evaluate the output, the discretization is dual-inconsistent.

The continuous dual solution does not satisfy the dual of the discrete problem, since ψh,p ∈

V CG
h,p,0 and ψ(0) is non-zero, ψ /∈ V CG

0 . Due to the lack of dual consistency, the expected

order of convergence for Jh,p(uh,p)−J(u) is only p. Following the work of Giles and Süli [53],

the output J(u) = ν dudx |x=0 can be computed dual consistently as
∫
∂Ω σ(u) · n̂%ds, where

σ(u) = ν∇u and % ∈ H1(Ω) is a weighting function with %(0) = 1 and %(1) = 0. This is

computed as

J(u) =

∫
∂Ω
σ · n̂%ds =

∫
Ω
∇ · [σ%]

= −
∫

Ω
%f +

∫
Ω
∇ · [σ%] +

∫
Ω
% f︸︷︷︸
u−∇·σ

= −
∫

Ω
%f +

∫
Ω
∇ · [σ%]−

∫
Ω
%∇ · σ +

∫
Ω
%u

= −
∫

Ω
%f +

∫
Ω
σ · ∇%+

∫
Ω
%u

= −(f, %) + aCG(u, %), (5.8)

where (·, ·) is the L2 inner product such that (·, ·) : L2 × L2 → R.

Naively, in the presence of small volume ratios, the weighting function in Equation (5.8)

can be set to the Lagrange basis corresponding to the left boundary, φ1. Figures 5-9 (a)-(c)

show the convergence in output error when Jh,p(uh,p) is computed as aCGh,p (uh,p, φ1)− (f, φ1).

Figure 5-9 (a) demonstrate the ability for superconvergence when Jh,p(uh,p) = aCGh,p (uh,p, %)−

(f, %), but Figures 5-9 (b)-(c) show the impact of small volume ratios is seen in the derivative

based output.

In order to improve the convergence of the adjoint, the weighting function should not

be a function of VR. Figures 5-9 (d)-(f) show the result of evaluating Jh,p(uh,p) using

% = 1 − x. The careful selection of % to be independent of VR allows the entire impact of

a small volume ratio on the derivate boundary output to be removed. The selection of the
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Figure 5-9: The convergence of the error in the output J(u) = ν dudx
∣∣
x=0

for a
range of volume ratios for the one-dimensional model problem,
Equation (5.1). The selection of % for evaluating Jh,p(uh,p) =
aCGh,p (uh,p, %)− (f, %) is critical for limiting the influence of small
volume ratios. When % = φ1, the impact of small volume ratios
is large. If % is not a function of VR, like 1−x, there is no impact
of small volume ratios. These results are from a continuous
Galerkin discretization with strong boundary conditions.
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weight function allows for evaluation of boundary derivative outputs that are important for

aerodynamic flows, like heat flux and skin friction. In higher-spatial dimensions and complex

geometries, % could be specified using the distance function which must be computed for the

SA equation. Though the removal of the impact of small volume ratios is demonstrated

using a continuous Galerkin discretization, the implementation of Equation (5.8) with a

weight function independent of volume ratio removes the impact of small volume ratios with

a discontinuous Galerkin discretization as well. However, it is still necessary to understand

the connection between small volume ratios and the conditioning of the stiffness matrix.

5.2 Analysis of the Conditioning of a One Dimensional Prob-

lem with Small Volume Ratios

The analysis presented in this section is an extension of the work of Kirby [71], who explored

the idea of connecting functional analysis techniques, common in finite element analysis, with

numerical linear algebra. The goal is to understand the impact of small volume ratios on

the conditioning of the finite element stiffness matrix of elliptic problems using the bridge

between functional analysis and numerical linear algebra.

5.2.1 Definitions

Before beginning, some definitions are required. A real Hilbert space, V , equipped with an

inner product (·, ·)V and an associated norm ‖ · ‖V , is the starting point. The topological

dual to V is V ′ with 〈·, ·〉 denoting the duality pairing. Given any f ∈ V ′, the dual norm is

‖ f ‖V ′ ≡ supv∈V
|〈f,v〉|
‖ v ‖V .

Given two Hilbert spaces, V1 and V2, the Banach or complete space of bounded linear

maps exists between V1 and V2, denoted as L(V1, V2). For the linear map T : V1 → V2, the

norm associated with the Banach space is ‖T ‖L(V1,V2) ≡ supv∈V1
‖Tv ‖V2
‖ v ‖V1

.

The one-dimensional reaction-diffusion problem, Equation (5.4), can be restated as the

following: find u ∈ V such that

a(u, v) = 〈f, v〉 , ∀v ∈ V, (5.9)
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where f ∈ V ′. To simplify the notation, V is used to denote the Hilbert space, H1(Ω).

By definition, a bilinear form a(·, ·) : V ×V → R is continuous if there exists 0 ≤ C <∞

with

C = sup
w,v∈V

|a(w, v)|
‖w ‖V ‖ v ‖V

or |a(w, v)| ≤ C‖w ‖V ‖ v ‖V , ∀w, v ∈ V. (5.10)

a(·, ·) is said to be coercive if there exists 0 < α <∞ with

α = inf
w∈V

a(w,w)

‖w ‖2V
or a(w,w) ≥ α‖w ‖2V , ∀w ∈ V. (5.11)

5.2.2 Bilinear form to linear operator

Given a continuous linear operator A : V → V ′, two constants associated with the operator

are defined as

CA ≡ ‖A‖L(V,V ′) = sup
w∈V

‖Aw ‖V ′
‖w ‖V

and αA ≡ inf
w∈V

〈Aw,w〉
‖w ‖2V

.

An equivalence exists between continuous bilinear forms on V ×V and continuous linear

operators from V → V ′. If a(·, ·) : V × V → R is a continuous bilinear form, there exists

A : V → V ′ such that

〈Aw, v〉 = a(w, v) ∀w, v ∈ V.

The equivalence implies that A must be continuous if a(·, ·) is continuous and that CA equals

C from

CA ≡ sup
w∈V

‖Aw ‖V ′
‖w ‖V

= sup
w∈V

[
1

‖w ‖V
sup
v∈V

| 〈Aw, v〉 |
‖ v ‖V

]
= sup

w∈V
sup
v∈V

|a(w, v)|
‖w ‖V ‖ v ‖V

= C. (5.12)

As well, the operator constant αA is equal to the coercivity constant of the bilinear form,
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a(·, ·), from

αA ≡ inf
w∈V

〈Aw,w〉
‖w ‖2V

= inf
w∈V

a(w,w)

‖w ‖2V
= α. (5.13)

5.2.3 Restriction to finite element space

The linear operator for finite element approximations is obtained by restricting the operator

A : V → V ′ to some finite-dimensional subspace Vh. The finite element operator, Ah : Vh →

V ′h, satisfies the property

〈Awh, vh〉 = 〈Ahwh, vh〉 , ∀wh, vh ∈ Vh.

The restriction is denoted as Ah = A|Vh for convenience from here on. For this analysis,

piecewise polynomial functions are considered for Vh corresponding to a conforming Galerkin

discretization. The basis for Vh is given by {φi}ni=1, where n = dim(Vh). wh ∈ Vh can be

expressed as wh =
∑n

i=1 wiφi, and the 2-norm is given as ‖w ‖2 =
√∑n

i=1 w2
i . In an attempt

to maintain consistent notation throughout this work, Roman type distinguishes the vector

of coefficients w ∈ Rn from the italicised wh ∈ Vh. Matrices and vectors are also in Roman

type, while members of Hilbert spaces and operators on Hilbert spaces are italicised.

The discrete problem is to find uh ∈ Vh such that

〈Auh, vh〉 = a(uh, vh) = 〈f, vh〉 , ∀vh ∈ Vh. (5.14)

u ∈ Rn satisfies the linear algebra equation

Aijuj = fi, 1 ≤ i ≤ n, (5.15)

where the stiffness matrix, Aij , equals a(φj , φi) and forcing term, fi, equals 〈f, φi〉.

The discrete operator corresponding to a conforming finite element method has now

been defined as a restriction of the continuous operator, A. The restriction of A to Vh ⊂ V

leads to the discrete operator Ah. Ah inherits the properties of the underlying PDE in

infinite-dimensional Hilbert space. In other words, when the continuous coercive operator
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A : V → V ′ is restricted to a subspace Vh ⊂ V , a continuous coercive operator from Vh → V ′h

is obtained such that

Ch ≡ sup
wh,vh∈Vh

〈Ahwh, vh〉
‖wh ‖Vh‖ vh ‖Vh

= sup
wh,vh∈Vh

〈Awh, vh〉
‖wh ‖Vh‖ vh ‖Vh

≤ sup
w,v∈V

〈Aw, v〉
‖w ‖V ‖ v ‖V

= C (5.16)

αh ≡ inf
wh∈Vh

〈Ahwh, wh〉
‖wh ‖2Vh

= inf
uh∈Vh

〈Awh, wh〉
‖wh ‖2Vh

≥ inf
w∈V

〈Aw,w〉
‖w ‖2V

= α. (5.17)

From Equations (5.16) and (5.17), continuity and coercivity constants for the finite-

dimensional operators are bound by properties of the original continuous infinite-dimensional

operator, A. It is noted that the continuity and coercivity constants for the discrete operator,

Ah, are bound independent of the particular subspace, Vh, selected to represent the solution

approximation, uh. Thus, the continuity and coercivity constants are bound independent of

polynomial order and mesh spacing.

For clarity, this analysis is limited to conforming methods so that bounds on the con-

tinuity and coercivity constants remain mesh independent. Not all finite element methods

result from the restriction of the weak operator to the discrete space. While the definitions

of Ch and αh remain unchanged for non-conforming methods where Vh 6⊂ V or problems

with mesh dependent operators, Ah 6= A|Vh , the finite-dimensional continuity and coercivity

constants are no longer simply bound by their infinite-dimensional counterparts, C and α.

5.2.4 Condition number for operators between Hilbert spaces

Given that an operator between Hilbert spaces, A ∈ L(V, V ′), has a bounded inverse, the

condition number of A is defined as

κ(A) ≡ ‖A‖L(V,V ′)‖A−1 ‖L(V ′,V ). (5.18)
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‖A‖L(V,V ′) is equal to C from Equation (5.12). ‖A−1 ‖L(V ′,V ) can be expressed as

‖A−1 ‖L(V ′,V ) ≡ sup
f∈V ′

‖A−1f ‖V
‖ f ‖V ′

= sup
f∈V ′

sup
v∈V

(A−1f, v)V
‖ f ‖V ′‖ v ‖V

= sup
f∈V ′

sup
v∈V

(u(f), v)V
‖ f ‖V ′‖ v ‖V

, (5.19)

where A−1f is equivalent to u parameterized by f , such that A−1f = u(f). By the Schwarz

inequality this is bounded as,

‖A−1 ‖L(V ′,V ) ≤ sup
f∈V ′

sup
v∈V

‖u(f) ‖V ‖ v ‖V
‖ f ‖V ′‖ v ‖V

= sup
f∈V ′

‖u(f) ‖V
‖ f ‖V ′

. (5.20)

From the Lax-Milgram continuous dependence result ‖u(f) ‖V ≤ 1
α‖ f ‖V ′∀f ∈ V

′ (see for

example [23] Section 2.7.7), so the norm of the inverse operator becomes

‖A−1 ‖L(V ′,V ) ≤ sup
f∈V ′

1

α

‖ f ‖V ′
‖ f ‖V ′

=
1

α
. (5.21)

The condition number of the continuous operator is given as

κ(A) ≡ ‖A‖L(V,V ′)‖A−1 ‖L(V ′,V ) ≤
C

α
.

Restricting the Hilbert space to Vh ⊂ V , and once again letting Ah be A restricted to

Vh, the condition number of Ah ∈ L(Vh, V
′
h) is bounded by

κ(Ah) ≡ ‖Ah ‖L(Vh,V
′
h)‖A−1

h ‖L(V ′h,Vh) ≤
Ch
αh
≤ C

α
(5.22)

from Equation (5.16) and (5.17). Note that the result of Equation (5.22) only strictly applies

in the case of conforming finite element methods where Vh ⊂ V and methods without mesh

dependent operators where Ah = A|Vh .
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5.2.5 Linear algebraic representation

A connection must be made when moving from the theory of finite element spaces to the

practicality of linear algebra. The connection will tie members of finite element spaces to

corresponding linear algebraic objects. The first link is the mapping Ih : Rn → Vh defined

by

Ihw =

n∑
i=1

wiφi = wh. (5.23)

Ih acts as an interpretation operator, taking a vector of basis coefficients and returning a

function used to represent a finite element solution. Ih, is invertible and I−1
h reformulates a

function in Vh as a vector of coefficients.

Additionally, vectors can be interpreted as linear functionals by a second mapping I ′h :

Rn → V ′h, where

〈
I ′hf, vh

〉
≡

n∑
i=1

fi
(
I−1
h vh

)
i

= fT
(
I−1
h vh

)
. (5.24)

Through I ′h, the vector f is treated as a linear functional on Vh by computing its dot product

with the vector of coefficients of the input function, vh.

The mapping, I ′h, can be associated with an adjoint mapping as

〈gh, vh〉 =
〈
I ′hg, vh

〉
≡
〈
g, (I ′h)∗vh

〉
, (5.25)

where (I ′h)∗ : Vh → Rn is the adjoint operator of I ′h. By inspection, (I ′h)∗ is equivalent to

I−1
h : Vh → Rn. So, the adjoint of I ′h is I−1

h (or (I ′h)∗ = I−1
h ). Similarly,

(
(I ′h)−1gh

)T
v =

〈
gh,
(
(I ′h)−1

)∗
v
〉

= 〈gh, Ihv〉 , (5.26)

so the adjoint of (I ′h)−1 is Ih (or
(

(I ′h)−1
)∗

= Ih).

5.2.6 Relate stiffness matrix to Hilbert space setting

With the use of the interpretation operators, Ih and I ′h, a strong connection exists between

a variational problem in Hilbert space and the stiffness matrix resulting from discretization
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of the bilinear statement. Given any wh ∈ Vh with wh =
∑n

i=1 wiφi where w = (Ih)−1wh,

then Ahwh ∈ V ′h satisfies

Ahwh = I ′h(Aw).

This is demonstrated by letting vh =
∑n

i=1 viφi ∈ Vh, then

〈Ahwh(w), vh(v)〉 = a(wh(w), vh(v)) = a

 n∑
i=1

wiφi,
n∑
j=1

vjφj


=

n∑
i,j=1

wivja(φi, φj) =
n∑

i,j=1

wivjAji

= (Aw)Tv ∀w, v ∈ Rn. (5.27)

Replacing the functional f with Aw in Equation (5.24) leads to

〈
I ′h(Aw), vh

〉
= (Aw)T (I−1

h vh) = (Aw)Tv. (5.28)

Combining Equations (5.27) and (5.28) gives

Ahwh(w) = I ′h(Aw), ∀w ∈ Rn. (5.29)

The relationship between the stiffness matrix, A, and the continuous operator, Ah on

Vh, can be written as

Ah(Ihw) = I ′h(Aw)

(I ′h)−1AhIhw = Aw, ∀w ∈ Rn. (5.30)

It follows that

(I ′h)−1AhIh = A. (5.31)

Equation (5.31) is identical to I ′hA = AhIh, which conveys the equivalence of the action

of the interpretation operator, Ih, and the Hilbert space operator, Ah, to the action of the
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linear system matrix, A, and the functional interpretation operator, I ′h. The equivalence of

these actions is graphically shown in Figure 5-10.

Rn Vh

V ′hRn

Ih

I ′h

A Ah

Figure 5-10: Diagram relating the equivalence of the actions of the the inter-
pretation operator, Ih, and the Hilbert space operator, Ah, to
the action of the matrix, A, and the functional interpretation
operator, I ′h, on Euclidean space, Rn. (Taken from [71])

5.2.7 Matrix condition number – quasi-uniform mesh

The condition number of the stiffness matrix is dependent on the properties of the mesh

used to define the finite-dimensional solution. Before analyzing the condition number of the

linear system corresponding to the one-dimensional domain with a small volume ratio shown

in Figure 5-2, the condition number for quasi-uniform meshes is first presented. Following

the definition of Schwab [114], a family of meshes, {T j}, is quasi-uniform, if there exists

positive constants a1, a2 independent of j such that

0 < a1 ≤
max1≤i≤Ne(T j) h

T j
i

min1≤i≤Ne(T j) h
T j
i

≤ a2 <∞.

From a linear algebra perspective, the condition number of A, relative to the norm

‖ · ‖, is given by κ(A) ≡ ‖A ‖‖A−1 ‖. If the norm is replaced with the standard 2-norm,

(‖ · ‖ = ‖ · ‖2), then κ(A) = σ1
σn

, where σ1 and σn are the maximum and minimum singular

values, respectively.

Relying on the interpretation operators and the continuous operator the definition of the

stiffness matrix given by Equation (5.31) gives an alternative view of the matrix condition

number. As condition numbers satisfy the multiplicative inequality, the stiffness matrix
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condition number is expressed as

κ(A) = κ
(
(I ′h)−1AhIh

)
≤ κ

(
(I ′h)−1

)
κ (Ah)κ (Ih) (5.32)

≤ κ
(
(I ′h)−1

)(C
α

)
κ (Ih) . (5.33)

In order to compute the matrix condition number the condition number of the interpre-

tation operators, Ih and (I ′h)−1, must be bound. The interpretation operators condition

numbers are given by

κ(Ih) ≡ ‖Ih ‖L(Rn,Vh)‖ I−1
h ‖L(Vh,Rn) (5.34)

κ((I ′h)−1) ≡ ‖ (I ′h)−1 ‖L(V ′h,Rn)‖ I ′h ‖L(Rn,V ′h). (5.35)

By relying on two facts, the condition number of the inverse of the functional interpretation

operator, κ((I ′h)−1), is equal to the condition number of the function interpretation operator,

κ(Ih). First, the condition number of the inverse of an operator is equal to the condition

number of the operator itself. This follows from the definition of the condition number, i.e.

κ (Ih) = ‖ Ih ‖L(Rn,Vh)‖ I−1
h ‖L(Vh,Rn) = κ

(
I−1
h

)
. (5.36)

Second, the operator norm of I ′h is equal to the operator norm of its adjoint, (I ′h)∗ [10], such

that

‖ I ′h ‖L(Rn,V ′h) = ‖
(
I ′h
)∗ ‖L(Vh,Rn). (5.37)

Thus, the conditioning of the functional interpretation operator, I ′h, is equivalent to the con-

ditioning of the adjoint operator of the functional interpretation operator, (I ′h)∗, introduced

in Equation (5.25), or

κ
(
I ′h
)

= κ
((
I ′h
)∗)

. (5.38)
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Since (I ′h)∗ = I−1
h , and κ

(
I−1
h

)
= κ (Ih), then

κ
(
I ′h
)

= κ (Ih) . (5.39)

To compute the matrix condition number all that is left is to find the condition number of

the interpretation operators, Ih. Since Ihw represents the polynomial functions in Vh that

are stored as the vector of coefficients w for bases with compact support, an equivalence

between ‖ Ihw ‖L2 and ‖w ‖2 exists [35]. The scaling relationship is expressed as

c1h
1
2 ‖w ‖2 ≤ ‖Ihw ‖L2 ≤ c2h

1
2 ‖w ‖2, ∀w ∈ Rn (5.40)

where the constants c1 and c2 are independent of element size and w.

Up to this point the definitions and inequalities in Section 5.2 have been for generic

PDEs involving the Hilbert space V , but going forward the bound on κ (Ih) will be for the

reaction-diffusion problem presented in Equation (5.9) where V is H1. The operator norm

of Ih is

‖ Ih ‖L(Rn,Vh) = sup
w∈Rn

‖ Ihw ‖Vh
‖w ‖2

= sup
w∈Rn

‖ Ihw ‖H1

‖w ‖2
. (5.41)

where Vh ⊂ H1.

Under the quasi-uniform mesh assumption, the inverse inequality, (see for example [23]

section 4.5) can be used to bound the operator norm by

‖ Ih ‖L(Rn,Vh) ≤ max
w∈Rn

Bh−1‖ Ihw ‖L2

‖w ‖2
(by inverse inequality)

≤ max
w∈Rn

Bh−1
(
c2h

1
2 ‖w ‖2

)
‖w ‖2

(by Equation (5.40))

= Bc2h
− 1

2 , (5.42)

where B and c2 are constants independent of element size.
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The operator norm of I−1
h is given

‖ I−1
h ‖L(Vh,Rn) = sup

wh∈Vh

‖ I−1
h wh ‖2
‖wh ‖Vh

= sup
wh∈Vh

‖ I−1
h wh ‖2
‖wh ‖H1

≤ max
wh∈Vh

‖ I−1
h wh ‖2
‖wh ‖L2

(by ‖uh ‖H1 ≥ ‖uh ‖L2)

≤ max
wh∈Vh

‖ I−1
h wh ‖2

c1h
1
2 ‖ I−1

h wh ‖2
(by Equation (5.40))

=
1

c1h
1
2

. (5.43)

Combining Equations (5.42) and (5.43), the interpretation operator condition number is

κ(Ih) ≡ ‖Ih ‖L(Rn,Vh)‖ I−1
h ‖L(Vh,Rn)

≤
(
Bc2h

− 1
2

)( 1

c1h
1
2

)
= B′h−1, (5.44)

where the constant B′ is independent of element size.

Returning to the original problem of the matrix condition number from Equation (5.33),

the matrix condition number can be bound using the interpretation conditioning as

κ(A) ≤ B′h−1C

α
B′h−1

≤ C

α
O(h−2), (5.45)

where C and α are the continuity and coercivity constants of the continuous bilinear form,

respectively, and B′ coming from the bound of the interpretation operators’ condition num-

bers is independent of element size. It is important to recall that the bound given in Equa-

tion (5.45) is dependent on the use of the multiplicative inequality in Equation (5.32) and

the assumption of a quasi-uniform mesh made in Equation (5.42).
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5.2.8 Matrix condition number – mesh with a small volume ratio

In the case of non-quasi-uniform meshes the use of the inverse inequality (in Equation (5.42))

to bound the condition number of the stiffness matrix is too loose. For example, when

an element with an arbitrarily small volume ratio is present the bound on the condition

number based on the multiplicative inequality would be κ(A) = O( 1
VR2h2

). Returning to the

multiplicative inequality, Equation (5.32), the stiffness matrix condition number is expressed

as

κ (A) = κ
(
(I ′h)−1AhIh

)
≤ κ

(
(I ′h)−1

)
κ (Ah)κ (Ih)

≤ κ
(
(I ′h)−1

)(C
α

)
κ (Ih)

= ‖ (I ′h)−1 ‖L(V ′h,Rn)‖ I ′h ‖L(Rn,V ′h)

(
C

α

)
‖ Ih ‖L(Rn,Vh)‖ I−1

h ‖L(Vh,Rn) (5.46)

The four terms of Equation (5.46) remaining to be analyzed depend on the ability to

bound ‖ Ihw ‖H1 above and below by ‖w ‖2 on the one-dimensional domain shown in Fig-

ure 5-2. The bound will be presented for wh ∈ Vh ⊂ H1, which is the space of continuous

piecewise polynomials of order p such that

Vh = {wh ∈ H1(Ω) | wh|ei ∈ P p(ei), ∀ei ∈ Th},

where the domain, Ω, has been split into a set, Th, of Ne elements, ei. wh is represented

using a set basis function and basis coefficients, wi. The basis functions considered here

are Lagrange, {φi}ni=1, but the bound will not be limited to a particular choice of basis

functions. The function wh can be expressed as wh =
∑n

i=1 φiwi = Ihw, where w ∈ Rn,

with n = Nep+ 1.

For each element in Th the H1 semi-norm can be expressed as

|wh|2H1(ei)
=

∫
ei

(
dφj
dx

wj

)2

dx =

∫
ei

dφj
dx

dφk
dx

wjwkdx =
1

hi

∫
Kref

dφj
dξ

dφk
dξ

wjwkdξ

=
1

hi
wT
eiK̂wei ,

where wei is the set of wjs corresponding to element ei and the summation on the repeated
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indices is implied. wei can be expressed with a restriction operator, R : Rn → Rp+1, such

that wei = Riw. The elemental H1 semi-norm can be compactly written as

|wh|2H1(ei)
=

1

hi
wTRTi K̂Riw.

K̂ is the reference element stiffness matrix corresponding to the Laplace operator so it is

positive semi-definite, i.e. weiK̂wei ≥ 0, ∀wei ∈ Rp+1.

The L2 norm of wh is given by

‖wh ‖2L2(ei)
=

∫
ei

(φjwj)
2 dx = hiw

TRTi M̂Riw,

where M̂ is the reference element mass matrix which is positive definite, i.e. weiM̂wei >

0, ∀wei ∈ Rp+1.

Combining the H1 semi-norm and the L2 norm of wh gives the H1 norm as

‖wh ‖2H1(Ω) =
n∑
i=1

1

hi
wTRTi K̂Riw + hiw

TRTi M̂Riw

= wT

[
n∑
i=1

1

hi
RTi K̂Ri + hiR

T
i M̂Ri

]
w

= wT

[
n∑
i=1

RTi

(
1

hi
K̂ + hiM̂

)
Ri

]
w

= wTBw,

where B is an assembled stiffness matrix. B is the result of discretizing the one-dimensional

problem

d2u

dx2
+ u = f, in Ω. (5.47)

Equation (5.47) can be written in weak form as: find u ∈ H1 such that

aRD(u, v) = (f, v), ∀v ∈ H1.

The bound on ‖wh ‖H1(Ω) in terms of ‖w ‖2 can be expressed in terms of the eigenvalues
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of B or equivalently the singular values of B since it is symmetric positive definite as

λmin(B)‖w ‖22 ≤ ‖wh ‖2H1(Ω) ≤ λmax(B)‖w ‖22.

In order to compute a bound on the minimum singular value of B the work of Fried [48]

is followed. The minimum singular value of B is given by

σmin(B) =
1

σmax(B−1)
=

1

‖B−1 ‖2
≥ 1

‖B−1 ‖∞
.

So, if it is possible to bound ‖B−1 ‖∞, a bound is provided for σmin(B). Since B is a positive

definite and symmetric matrix of rank n, the ∞-norm of B−1 can be bounded as

‖B−1 ‖∞ < nmax
i

(
B−1

)
ii
, i = 1, 2, . . . , n. (5.48)

The proof of Equation (5.48) follows from the facts that since B−1 is positive definite and

symmetric
(
B−1

)
ii
> 0, and that for any i and j,

(
B−1

)
ii

+
(
B−1

)
jj
> |
(
B−1

)
ij
|.

The bound on maxi
(
B−1

)
ii

will rely on the continuous properties of the exact solu-

tion to Equation(5.47) which is bounded by its Green’s function, G(x, x). The bound on

maxi
(
B−1

)
ii

is given as

max
i

(
B−1

)
ii
≤ Γ i = 1, 2, . . . , n, (5.49)

where Γ = max[G(x, x)]. The proof of Equation (5.49) comes via the coercivity of the

bilinear form aRD(u − uh, u − uh) ≥ 0 and Galerkin orthogonality, aRD(u − uh, uh) = 0,

where remaining consistent with notation, the finite element solution is denoted as uh and

the exact solution is given as u. Using coercivity and orthogonality gives

aRD(u− uh, u− uh) ≥ 0

aRD(u− uh, u) ≥ 0

(f, u− uh) ≥ 0

(f, u) ≥ (f, uh). (5.50)
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Now, if f is chosen to be a point forcing term, then Equation (5.50) gives that u ≥ uh.

In other words, at the point of application of the force, u is never less than the finite element

solution uh. The response at the nodal points of the finite element solution due to a point

force at node i is just the ith column in B−1 corresponding to the point force. In particular,

if the point force occurs at node i the finite element response at i is
(
B−1

)
ii

. Since the

exact solution at a point x is given by G(x, x), and u ≥ uh, then G(x, x) ≥
(
B−1

)
ii

and

Equation (5.49) is proved.

Combining Equations (5.48) and (5.49), the minimum singular value of B can be bound

as

σmin(B) ≥ 1

‖B−1 ‖∞
≥ 1

nΓ
.

n is related to the number of elements in the domain as n = Nep+ 1 and for the grid shown

in Figure 5-2 Ne = 1
h + 1 − VR, so n = p

(
1
h + 1−VR

)
+ 1. In the limit of small volume

ratios, n goes to p
h + p + 1. The bound on the stiffness matrix singular minimum value in

the limit of small volume ratio becomes

λmin(B) = σmin(B) ≥ 1

Γ
( p
h + p− 1

) ≥ DLh,

where DL is a constant independent of mesh size.

Next, the Global Eigenvalue Theorem [47] is employed to bound the maximum eigenvalue

of B. If wei corresponds to the portion of w associated with the ith element, then

wTw ≤
Ne∑
i

wT
eiwei ≤ nemaxwTw, (5.51)

where nemax corresponds to the maximum number of elements meeting at a node. The proof

of Equation (5.51) comes form considering w of length n and the number of elements that

meet at a node as nei, then the same w2
i will appear nei times as

Ne∑
i

wT
eiwei =

n∑
i=1

w2
i nei,
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which gives the limit

Ne∑
i

wT
eiwei ≤ wTw nemax.

For the one-dimensional problem considered here, nemax = 2.

Now, letting the maximum eigenvalue of B be denoted as λB
max and the maximum eigen-

value of the element stiffness matrix be denoted as λ
Bei
max, then

λB
max ≤ nemax max

i

(
λ

Bei
max

)
, (5.52)

for i ranging from 1 to Ne. Equation (5.52) can be shown by considering that for each

element

wT
eiB

eiwei ≤ λ
Bei
maxwT

eiwei , i = 1, 2, . . . , Ne (5.53)

Then, if w is assumed to be the normalized eigenvector corresponding to λB
max such that

λB
max = wTBw =

Ne∑
i=1

wT
eiB

eiwei , (5.54)

combining Equations (5.51), (5.53), and (5.54) gives

λB
max =

Ne∑
i=1

wT
eiB

eiwei ≤
Ne∑
i=1

λ
Bei
maxwT

eiwei ≤ max
i=j,...,Ne

λ
Bej
max

Ne∑
i=1

wT
eiwei

≤ nemax max
j=1,...,Ne

λ
Bej
max.

For a small volume ratio maxi=1,...,Ne λ
Bei
max will be dominated by the 1

hVR term from

Be1 = hVRM̂ + 1
hVRK̂ such that

λB
max ≤ DH

hVR
,

where DH is a constant independent of mesh size.
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So, a bound of ‖wh ‖H1(Ω) from above and below can now be expressed as

λmin(B)‖w ‖22 ≤ ‖wh ‖2H1(Ω) ≤ λmax(B)‖w ‖22

DLh‖w ‖22 ≤ ‖wh ‖2H1(Ω) ≤
DH

hVR
‖w ‖22, (5.55)

where DL and DH are independent of element size but dependent on the polynomial order

and basis functions selected to represent wh.

Returning to the four components of Equation (5.46) remaining to be bound, by defini-

tion, ‖ Ih ‖L(Rn,Vh) is given by

‖ Ih ‖L(Rn,Vh) ≡ sup
w∈Rn

‖ Ihw ‖Vh
‖w ‖2

= sup
w∈Rn

‖ Ihw ‖H1

‖w ‖2
. (5.56)

Combining Equations (5.55) and (5.56) provides a bound on ‖ Ih ‖L(Rn,Vh):

‖ Ih ‖L(Rn,Vh) ≤ max
w∈Rn

√
DH
hVR‖w ‖2
‖w ‖2

=

√
DH

hVR
. (5.57)

Furthermore, since ‖ (I ′h)−1 ‖L(V ′h,Rn) = ‖
(
(I ′h)−1

)∗ ‖L(Rn,Vh) and
(
(I ′h)−1

)∗
= Ih, then

the norm of the inverse of the functional interpretation operator is bounded as

‖ (I ′h)−1 ‖L(V ′h,Rn) ≤
√

DH

hVR
. (5.58)

‖ I−1
h ‖L(Vh,Rn) is defined as

‖ I−1
h ‖L(Vh,Rn) = sup

wh∈Vh

‖ I−1
h wh ‖2
‖wh ‖Vh

(5.59)
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Substituting wh = Ihv into Equation (5.59) gives

‖ I−1
h ‖L(Vh,Rn) = sup

v∈Rn

‖ v ‖2
‖ Ihv ‖Vh

=

(
inf

v∈Rn
‖ Ihv ‖Vh
‖ v ‖2

)−1

=

(
inf

v∈Rn
‖ Ihv ‖H1

‖ v ‖2

)−1

(5.60)

Once again, Equation (5.55) can be used to bound ‖ vh ‖H1 from below with
√
DLh‖ v ‖2.

The bound on ‖ vh ‖H1 allows for ‖ I−1
h ‖L(Vh,Rn) to be expressed as

‖ I−1
h ‖L(Vh,Rn) ≤

(
min
w∈Rn

√
DLh‖ v ‖2
‖ v ‖2

)−1

=

√
1

DLh
. (5.61)

Likewise, ‖ I ′h ‖L(Rn,V ′h) is defined as

‖ I ′h ‖L(Rn,V ′h) = sup
g∈Rn

‖ I ′hg ‖V ′h
‖ g ‖2

. (5.62)

Again, substituting g = (I ′h)−1 g into Equation (5.62) gives

‖ I ′h ‖L(Rn,V ′h) = sup
g∈V ′h

‖ g ‖V ′h
‖
(
I ′h
)−1

g ‖2

=

(
inf
g∈V ′h

‖ (I ′h)−1 g ‖2
‖ g ‖V ′h

)−1

, (5.63)

where ‖ g ‖V ′h ≡ supvh∈Vh
〈g,vh〉
‖ vh ‖Vh

=
(

infvh∈Vh
‖ vh ‖Vh
〈g,vh〉

)−1
. Plugging in the definition of ‖ g ‖V ′h

into Equation (5.63) gives

‖ I ′h ‖L(Rn,V ′h) =

(
inf
g∈V ′h

[
‖ (I ′h)−1g ‖2 inf

vh∈Vh

‖ vh ‖Vh
〈g, vh〉

])−1

. (5.64)
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Using the interpretation operators allows vh to be expressed as Ihv, which leads to

‖ I ′h ‖L(Rn,V ′h) =

(
inf
g∈V ′h

[
‖ (I ′h)−1g ‖2 inf

v∈Rn
‖ Ihv ‖Vh
〈g, Ihv〉

])−1

. (5.65)

The adjoint of the functional interpretation operator, 〈g, Ihv〉 = (I∗hg)T v =
(
(I ′h)−1g

)T
v

can be used to simplify the expression for ‖ I ′h ‖L(Rn,V ′h) as

‖ I ′h ‖L(Rn,V ′h) =

(
inf
g∈V ′h

[
‖ (I ′h)−1g ‖2 inf

v∈Rn
‖ Ihv ‖Vh(

(I ′h)−1g
)T

v

])
−1

≤

(
inf
g∈V ′h

[
‖ (I ′h)−1g ‖2 inf

v∈Rn
‖ Ihv ‖Vh

‖ (I ′h)−1g ‖2‖ v ‖2

])−1

=

(
inf

v∈Rn
‖ Ihv ‖Vh
‖ v ‖2

)−1

= ‖ I−1
h ‖L(Vh,Rn)

≤
√

1

DLh
. (5.66)

Using the individual bounds on the four unknowns in Equation (5.46) (given in (5.57),

(5.58), (5.61), (5.66)), the condition number of the stiffness matrix can be bound as

κ(A) ≤ C

α

1

h2VR

DH

DL
. (5.67)

This condition number bound only differs to the one presented for the quasi-uniform case,

Equation (5.45), by the additional O(VR−1) term. The bound presented in Equation (5.67)

matches the numerical results motivating this work in Figure 5-8.

5.2.9 Implications of κ(A) = C
α
O(h−2)O(VR−1)

Important conclusions can be drawn about the stiffness matrix condition number’s depen-

dence on small volume ratios. The first is that the volume ratio impact on the condition

number is not due to any impact of the small volume ratio on the variational statement. As-

suming a conforming finite element approximation, the conditioning of the continuous linear

operator, Ah, is bound independently of the interpolation space used to represent functions

in the Hilbert spaces. It is the interpretation operators used to connect linear algebraic ob-

jects to members of the finite element spaces that are impacted by small volume ratios. To
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remove the impact of small volume ratios on the condition number of A, the discretization

space must be modified so that the elements with small volume ratios are explicitly removed.

Removal of the elements with small volume ratios removes the impact of small volume ratios

on the interpretation operators, Ih and I ′h.

It may be possible for isolated test problems to correctly modify the bilinear form such

that it has the inverse dependence on small volume ratios, as seen by the interpretation

operators. For example, in a one-dimensional reaction-diffusion problem using a continuous

Galerkin discretization, it is possible to introduce a jump penalty weighted by VR that

correctly cancels out the VR impact on the interpretation operator. However, in more

complex problems (in particular in higher dimensions) if the jump penalty did not lead to

a clean cancellation it could make the conditioning problem worse. dimension the use of a

jump penalty is significantly more complicated.

5.3 Modified Discretization Space

A few options are considered to modify the discretization space and remove the impact of

small volume ratios on the interpretation operators. One possibility is to nudge all the

problem nodes (grid nodes located in the computational domain, but close to the embedded

surface) outside of the computational domain or onto the embedded surface. By nudging the

problem nodes the typical grid typology, which results in small volume ratios, is eliminated.

For example, Figure 5-11 illustrates how nudging node 1 outside of the computational domain

removes element A and the small volume ratio associated with the element.

The method of grid-node nudging has been used successfully in two dimensions [43].

However, as the geometry becomes more complex and the cut-cell method is extended to

three dimensions, deciding on the nudging direction becomes a difficult problem. In order

to maintain an algorithm which is extendable to three dimensions, small volume ratios are

eliminated by merging, following the work of [28, 49].

Essentially, because the elements with small volume ratios are so small in comparison

to their neighbors, solution quality is not affected if the small elements are conglomerated

into their neighbor sharing the largest common face. The common face between the large

and small neighbor is eliminated and the integration rules for the small element and its
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A

B

1

(a) Original mesh with small volume ratio in
element A

B

1

(b) Resulting mesh from nudging node 1 out
of computational domain

Figure 5-11: The effect of nudging node 1 to eliminate the small volume
ratio associated with element A.

other non-common faces are added to the larger neighbor. The basis used to represent the

polynomial solution remains the basis originating from the larger element. An illustration

of merging is shown in Figure 5-12, where A is merged into element B resulting in a slightly

large element, C. For the results presented in Chapter 7 all elements with volume ratios

less than VRcrit = 10−5 are merged. When the merging technique is implemented, element

merging continues one internal face at a time until the global minimum volume ratio is above

a set tolerance.

5.4 Model Problem Results

Returning to the one-dimensional reaction-diffusion problem of Equation (5.1), the elements

with small volume ratios are removed using the merging technique illustrated in Figure 5-

13. Once the mesh is merged the derivative boundary output, du
dx

∣∣
x=0

, recovers its optimal

convergence properties even when Jh(uh) = aCGh (uh, φ1) − (f, φ1). Figure 5-14 shows that,

regardless of the volume ratio (1 or 10−10), merging allows for optimal convergence of the

boundary output.

Merging is also tested on the two-dimensional convection-diffusion problem presented in

Section 4.5 Equation (4.1). To set up cut-cell meshes with small volume ratios, the outer

boundary location of the structured background mesh (Figure 4-9(a)), remains fixed, while
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A

B

(a) Original mesh with small volume ratio in
element A

C

(b) Element C resulting from merging A into
B

Figure 5-12: Illustration of the effect of merging element A into element B.
The resulting element, C, maintains the solution basis of ele-
ment B and the quadrature points are taken from both element
A and B.

e1 e2 e3 Ne

em e3 Ne

Figure 5-13: Original and merged domains for the one-dimensional model
problem. e1 and e2 are merged to form em.

the remaining nodes shift radially inwards. The nodes on the inner boundary shift such that

volume ratios O(10−6) are present after cutting. The volume ratio tolerance used in this

test is 10−2.

Figure 5-15 shows the convergence history of the heat flux distribution error for three

different cut-cell grids. The first is referred to as a boundary-conforming cut grid as it

is a globally linear background mesh with a higher-order embedded surface that exactly

intersects the background grid nodes on the boundary. The resulting cut elements have two

linear faces and one curved face. The other two grids are the merged and non-merged version

of the VR = O(10−6) cut grids. For the derivative based output of interest, a convergence

rate of p is expected based on the H1 error convergence. The boundary-conforming cut grid

almost achieves the expected rate of convergence, while the merged and non-merged results
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Figure 5-14: The convergence of the error in the output du
dx

∣∣
x=0

, with

Jh(uh) = aCGh (uh, φ1)− (f, φ1) for a range of volume ratios for
the one-dimensional model problem, Equation (5.1). Merging
removes the impact of the small volume ratio in the domain.
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(b) VRcrit = 10−6 Non-Merged
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(c) VRcrit = 10−6 Merged

Figure 5-15: Convergence of the heat flux distribution error for cut-cell
meshes on the two-dimensional model problem. The errors
in boundary-conforming cut cases are compared to the errors
in cut meshes with small volume ratios that have either been
merged out or remain.
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have different convergence trends. The heat flux distribution error for the grids with small

volume ratios (i.e. without merging) converges at suboptimal rates and a large error penalty

has been added. With merging, the heat flux distribution error is approximately the same

as the boundary-conforming cut mesh. The improved heat flux distribution error illustrates

the importance of merging in the presence of small volume ratios.

The importance of merging becomes more evident in Figure 5-16, where the heat flux

distribution is plotted over the range of grid refinements and solution orders. As the mesh

is refined and the solution order is increased, regardless of merging, the heat flux distribu-

tion improves. In fact, highly resolved meshes with higher-order solutions (bottom right

in Figure 5-16) do not show oscillatory behavior. In the under-resolved meshes without

merging there is a large penalty in the heat flux distribution. In the context of an adaptive

method, a larger loss of accuracy in under-resolved meshes is troublesome as it decreases the

effectiveness of the error estimate.
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Figure 5-16: Boundary distributions of heat flux for the two-dimensional
convection-diffusion problem using merged and non-merged cut
grids.
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Chapter 6

Output-Based Error Estimation

and Adaptation

This chapter details the dual-weighted residual (DWR) method of Becker and Rannacher [20]

and describes how output-based adaptation is applied to the cut-cell mesh generation tech-

nique.

6.1 Output-Based Error Estimation

The error estimation strategy employed in this work is based on the dual-weighted resid-

ual method (DWR) of Becker and Rannacher [20]. Extensive previous research has been

done by Barth and Larson [13], Giles and Süli [53], Hartmann and Houston [59], Lu [82],

Venditti [123], and Fidkowski [43]. The error estimation analysis presented here is closely

related to the work of Yano [130].

Considering a semi-linear form with a solution, uh,p ∈ Vh,p, such that

Rh,p(uh,p,vh,p) = 0, ∀vh,p ∈ Vh,p, (6.1)

where Vh,p is an appropriate finite dimensional functional space such as Vph defined in Sec-

tion 2.3. If consistency is assumed, the exact solution, u ∈ V , satisfies the discrete approx-

imation, Rh,p(u,vh,p), ∀vh,p ∈ Vh,p. For a general output of interest, J(·), the adjoint or
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dual problem is: find ψ ∈ V such that

Rh,p[uuh,p](v,ψ) = J ′[uuh,p](v), ∀v ∈ Vh,p + V.

The R′h,p[·] and J ′[·] are mean-value linearizations given by

R′h,p[uuh,p](v,w) =

∫ 1

0
R′h,p [θu + (1− θ)uh,p] (v,w)dθ,

J ′[uuh,p](v) =

∫ 1

0
J ′ [θu + (1− θ)uh,p] (v)dθ,

where the primed-bracket notation denotes the Frechét derivative and v,w ∈ Vh,p+V . Then,

taking v = uh,p − u,

R′h,p[uuh,p](uh,p − u,w) = Rh,p(uh,p,w)−���
���:

0
Rh,p(u,w)

J ′[uuh,p](uh,p − u) = J(uh,p)− J(u).

The output error can be expressed as

E = J(uh,p)− J(u) = J ′[uuh,p](uh,p − u)

= R′h,p[uuh,p](uh,p − u,ψ)

= Rh,p(uh,p,ψ). (6.2)

If the exact adjoint solution is known, the error can be computed exactly by evaluating the

primal residual. By defining the adjoint residual,

Rψh,p[uuh,p](v,w) ≡ R′h,p[uuh,p](v,w)− J ′[uuh,p](v), ∀v,w ∈ Vh,p + V,

and the discrete adjoint, ψh,p ∈ Vh,p such that

Rψh,p[uuh,p](vh,p,ψh,p) = 0, ∀vh,p ∈ Vh,p.

The output error can also be expressed in terms of the dual residual weighted by the exact
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primal solution:

E = J(uh,p)− J(u) = J ′[uuh,p](uh,p − u)

= R′h,p[uuh,p](uh,p − u,ψh,p)−R
ψ
h,p[uuh,p](uh,p − u,ψh,p)

=
���

���
��:0

Rh,p(uh,p,ψh,p)−���
���

�:0
Rh,p(u,ψh,p)−R

ψ
h,p[uuh,p](uh,p − u,ψh,p)

= −
���

���
���

���:0

Rψh,p[uuh,p](uh,p,ψh,p) +Rψh,p[uuh,p](u,ψh,p)

= Rψh,p[uuh,p](u,ψh,p). (6.3)

Since u and ψ are not known, two approximations are used to enable the use of output-

based error estimates. The first approximation replaces the exact mean value linearizations

with linearizations about uh,p. ψh,p ∈ Vh,p is set to the solution of

Rψh,p[uh,p](vh,p,ψh,p) = 0, ∀vh,p ∈ Vh,p, (6.4)

where Rψh,p[uh,p](vh,p,wh,p) is the adjoint residual based only on linearizations about uh:

Rψh,p[uh,p](vh,p,wh,p) = R′h,p[uh,p](vh,p,wh,p)− J ′[uh,p](vh,p), vh,p,wh,p ∈ Vh,p.

The second approximation replaces the exact errors, uh−u and ψh−ψ, with uh,p− ũh,p′

and ψh,p − ψ̃h,p′ , where ũh,p′ and ψ̃h,p′ are considered truth surrogate solutions. The truth

surrogate solutions are sought from the p + 1 order piecewise-polynomial space. ũh,p′ is

obtained by solving Equation (6.1) approximately on Vh,p+1, using 10 time steps of pseudo

time continuation. Each time step, described in Section 3.1, requires a single Newton step to

approximate the solution update. A simpler block smoothing scheme [98] is found to result

in an unreliable error estimation for problems with shocks and separation. As the objective

is to enable robust and automated adaptation, the additional cost of Newton steps is deemed

justifiable. The dual surrogate solution, ψ̃h,p′ ∈ Vh,p′ , is obtained by solving

Rψh,p′ [ũh,p′ ](vh,p′ ,ψh,p′) = 0, ∀vh,p′ ∈ Vh,p′ ,

exactly.
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The error expressions in Equations (6.2) and (6.3) can be approximated as:

E = J(u)− J(uh,p) ≈ Rh,p(uh,p, ψ̃h,p′) (6.5)

≈ Rψh,p[ũh,p′ ](ũh,p′ ,ψh,p). (6.6)

Using the two error estimates, a local error indicator can be constructed on each element

by averaging Equation (6.5) and (6.6). For each element κ, the error is

ηκ ≡
1

2

[∣∣∣Rh,p(uh,p, ψ̃h,p′ |κ)
∣∣∣+
∣∣∣Rψh,p[ũh,p′ ](ũh,p′ |κ,ψh,p)∣∣∣] , (6.7)

where the notation, |κ, indicates restriction to the element κ, and the absolute values are

included to provide a conservative error estimate. The global error is approximated as

E ≈
∑
κ

ηκ.

The error estimate is not a bound, but an indicator of global output error.

6.2 Adaptation Strategy

Mesh adaptation is used to autonomously modify the discretization space to generate solu-

tions that have a decreased output error. The objective of the mesh adaptation strategy is

to generate a mesh that realizes the lowest output error for a given cost. The output error

is estimated using the DWR framework discussed in Section 6.1 and degrees of freedom are

used as a cost metric. Adaptation can be expressed as a discrete optimization problem:

Th,Opt. = arg min
Th
ED (Th) s.t. CD(Th) = DOFtarget.

ED(Th) is the discrete output error function and CD(Th) is the discrete cost function. The

nodal connectivity within each instance of Th makes the discrete optimization problem in-

tractable. In order to relax the discrete optimization problem the approximability of Th
can be encoded in a Riemannian metric field, M = {M(x)}x∈Ω [22]. A mesh metric-field
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duality exists such that

M = ImpliedMetric(Th)

Th = MeshGeneration (M) .

Figure 6-1 provides an example of the mesh metric-field duality. For each element in Th an

implied metric can be defined as

Mκ,imp = ImpliedMetric(κ), ∀κ ∈ Th.
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Figure 6-1: Mesh metric-field duality.

Multiple discrete meshes conform to a given metric field, but the approximability of each

mesh is assumed to result in the same output error. The introduction of the metric field

allows the discrete optimization problem to be recast:

MOpt. = arg min
M
E (M) s.t. C(M) = DOFtarget.

The objective of each adaptation step is to move toward MOpt., where MOpt. is the metric

field that equidistributes the elemental error indicator, ηκ, at a fixed degree of freedom.

Each adaptation step follows the flow chart shown in Figure 6-2 and evolves remeshing of

the simplex mesh using BAMG [64], which generates linear anisotropic metric conforming

meshes.

Stepping toward MOpt. at a fixed degree of freedom allows the adapation strategy to
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generate what will be termed a DOF-“optimal” mesh, which in this work is defined to have

equidistributed elemental errors. DOF-“optimal” meshes are demonstrated in Section 6.2.7.

Optimal mesh configurations for a higher-order discretization require significant grading of

the mesh toward singularities[131]. The adaptation strategy, with the degree of freedom

control, produces this grading through a series of adaptation steps.

Inputs:
• Primal ũh,p′

• Th, Mimp

• Error indicator, ηκ

Fixed-fraction
size selection

(6.2.1)

Element anisotropy
(6.2.2)

Limit requested
element metrics

(6.2.3)

Metric request
on null elements

(6.2.6)

Generate contin-
uous metric field

(6.2.4)

Control DOF
(6.2.5)

Output:
Cut-cell mesh

from Mreq

Figure 6-2: Flow chart detailing a single adaptation step.

For cut-cell meshes the output-based adaptation is performed on the background mesh

described in Section 4.1. Though the elementwise error indicator and solution is only defined

inside the computational domain, the optimal metric field must be based on the background

mesh. Otherwise, after the first cut mesh, the adaptation would be restricted back to

boundary confoming mesh generation and the flexibility of cut-cell meshing would be lost.

6.2.1 Fixed-Fraction Marking

A fixed-fraction marking strategy is used to control the size of each element in the requested

metric field, Mreq. In the fixed-fraction marking strategy, the top fr fraction of the elements

with the largest error are marked for refinement and the bottom fc fraction of the elements

with the smallest error are marked for coarsening. Figure 6-3 illustrates the goal of the fixed-

fraction adaptation to redistribute element areas and equidistribute the error. The initial

mesh in Figure 6-3 (a) has a wide distribution of elemental errors. As the elements with

high error are refined and the elements with low error are coarsened the error distribution

tightens up in Figures 6-3 (b) and (c) and there is a decrease in total error.

112



Element-wise Error

N
u

m
b

er
of

E
le

m
en

ts

Refine
fr · nelem

Coarsen
fc · nelem

(a) Initial mesh error distribution

Element-wise Error

N
u

m
b

er
of

E
le

m
en

ts

Refine
fr · nelem

Coarsen
fc · nelem

(b) Intermediate mesh error
distribution

Element-wise Error

N
u

m
b

er
of

E
le

m
en

ts

(c) Final mesh error distribution

Figure 6-3: Fixed fraction adaptation strategy

The requested element size, Areq, is specified by

Areq = αffAimp,

where Aimp is the current element size based on the implied metric and αff is the refinement

rate which is set based on whether the element is marked for refinement, coarsening, or no

change. The fixed-fraction marking strategy is only used to determine the area of the element

in the requested metric field. Requested element shape is determined by the anisotropy

detection strategy described in Section 6.2.2. For this work, the parameters are set to

fr = fc = 0.2 and αff = 1/4 and 2 for refinement and coarsening respectively.

Some clarifying remarks are in order to distinguish the fixed-fraction marking strategy

from fixed-fraction adaptation based on hierarchical subdivision of elements. With hierar-

chial element subdivisions, fixed-fraction adaptation directly controls the change in degrees

of freedom. The marking strategy employed here is only used to set the relative elemental

areas in the requested metric field. The final requested metric field is scaled so the resulting

mesh has the desired degrees of freedom as will be described in Section 6.2.5. The fixed-

fraction strategy is a means to redistribute element areas in an attempt to equidistribute

local errors. Metric-based adaptation allows for the equidistribution of element errors be-

cause it allows for continuous variation of element areas. Hierarchical subdivision, on the
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other hand, only permits discrete mesh changes and cannot move away from the original

mesh topology.

When the fixed-fraction marking strategy is applied to cut-cell meshes element area

redistribution occurs on the background mesh. The elements with the largest error are

still marked for refinement and the elements with the smallest error are still marked for

coarsening, but the area change request acts on the backgound mesh. Aimp is the area of

the background cut element which is updated based on αff.

6.2.2 Anisotropy Detection

In order to efficiently resolve shocks, boundary layers, and wakes encountered in the aero-

dynamics applications, the element’s orientation and stretching must be aligned to the flow

features. The anisotropy detection used here is based on the work by Venditti and Darmo-

fal [124], which was extended to higher-order methods by Fidkowski and Darmofal [45]. The

framework attempts to minimize the interpolation error of the solution within an element.

The interpolation errors are controlled by the principal directions of the Riemannian metric

tensor. The dominant principal direction is aligned with the direction of the maximum p+1

derivative of the Mach number, M
(p+1)
max . The second principal direction is then selected to

equidistribute the interpolation error in the two principal directions. Assuming the interpo-

lation error in the Mach number converges at the rate of r = p+ 1, the principal lengths, h1

and h2, of the element anisotropy request metric, Mani, satisfy

(
h2(Mani)

h1(Mani)

)r
=
M

(p+1)
max

M
(p+1)
⊥

, (6.8)

where M
(p+1)
⊥ is the derivative of the Mach number in the direction perpendicular to M

(p+1)
max .

Since requested element size is selected by the fixed-fraction marking strategy, the requested

anistropic metric, Mani, is specified to have a determinant of unity. Following [43, 124],

the Mach number is selected as a single scalar quantity to represent the solution behavior.

Typically, the convergence rate, r, is assumed to be p + 1. However, the rate is reduced to

r = 1 when the shock indicator (described in Section 2.4) is on, and the derivative quantities

used in Equation (6.8) are replaced by the first derivatives, M
(1)
max and M

(1)
⊥ . The p + 1

derivative of the Mach number is obtained from the primal truth surrogate solution, ũh,p′ .
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The dependence of the anisotropy request on the truth surrogate solution is another reason

for performing the 10 pseudo-time steps to obtain a robust p+ 1 approximate solution. Due

to the possibility of an arbitrarily small M⊥, the requested element aspect ratio is limited

to 500 to reduce the demands on the mesh generator for improved robustness.

Using the area request Ar and the anisotropy metricMani, the anisotropic element metric

request, Mreq, is constructed as

Mreq = A
−2/d
imp Mani.

Every cut element in the computational domain possess its own requested aniostropy

metric. Aimp is taken from the background element implied metric and Mani comes from

ũh,p′ in the cut element.

6.2.3 Limit Requested Element Metrics

Limits are placed on the allowable change from the implied metric to the requested metric

on each element. The limits on element metric changes are in place to ensure mesh realiz-

ability and to maintain approximability. The assumption is made that if the changes to the

implied metric field are small the mesh generator will be able to realize a mesh conforming

to the requested metric field. A region also exists within which the local error estimates

and anisotropy requests are trusted. The metric change limits maintain the approximabil-

ity within that trust region. Simultaneous matrix reduction [21] interpolates between the

implied metric and the requested metric, Mimp and Mreq respectively, and determines the

metric which conforms to the limits.

Let Mimp be the symmetric positive definite matrix given by the implied metric, Mimp,

and let Mreq be the symmetric positive definite matrix given by the requested metric,Mreq.

An interpolation from Mimp to Mreq is given by

M(t) = E−T

 1/h2
1(t) 0

0 1/h2
2(t)

E−1, 0 ≤ t ≤ 1,

where E = [e1, e2] is the matrix of eigenvectors of M−1
impMreq. In the interpolation M(0) =

Mimp and M(1) = Mreq. Arithmetical progression is selected for element area, A(t) =
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h1(t)h2(t), and the principle stretching direction, h1(t), i.e.,

h1(t) = himp
1 + t(hreq

1 − himp
1 ),

A(t) = Aimp + t(Areq −Aimp).

h2(t) is then given by A(t)/h1(t).

The requested metric after limiting will be given by M(`) where ` is the maximum value

of t such that the principle directions of M(`) stay within the max refinement and coarsening

factors. The principle direction constraints are equivalent to

1

Rlim
≤ hi(t)

himp
i

≤ Clim, for i = 1, 2.

In this work the maximum refinement is Rlim = 4.0 and the maximum coarsening is Clim =

2.0. For the first principle direction, h1, the constraint on `1 is given by

If 1
Rlim
≤ hreq1

himp
1

≤ Clim, `1 = 1,

Else if hreq
1 > Climh

imp
1 , `1 s.t. h1(`1) = Climh

imp
1 ,

Else , `1 s.t. h1(`1) =
1

Rlim
himp

1 ,

and for h2,

If 1
Rlim
≤ Areqh1(0)

A(0)hreq1
≤ Clim, `2 = 1,

Else if Areq

hreq1
> Clim

Aimp

himp
1

, `2 s.t.
A(`2)

h1(`2)
= Clim

Aimp

himp
1

,

Else , `2 s.t.
A(`2)

h1(`2)
=

1

Rlim

Aimp

himp
1

.

The limiting ` is given by min(`1, `2). For each element the limited requested metric is

the tensor corresponding to M(`). Figure 6-4 provides an example of the limited requested

element metric.
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Figure 6-4: An example of a limited metric which corresponds to the maxi-
mum element coarsening.

6.2.4 Generation of Continuous Metric Field

A C0 metric field is constructed from the piecewise constant requested element metrics on

the background mesh. At each background grid node the requested element metrics from

the elements surrounding it are averaged. Barycentric averaging in the length space is used

so that the metric at each node is:

Mnode =

 1

dim(Nnode)

∑
κ∈Nnode

M−
1
2

κ

−2

.

Nnode is the set of all elements surrounding the node. In building Nnode, care is taken for

cut elements. The requested metric for a cut element is not passed to all the background

nodes of the parent background element. As shown in Figure 6-5, the requested metric for

cut element A is passed to nodes 1 and 2 but not node 3.

6.2.5 Metric Request Construction and Explicit Degree of Freedom Con-

trol

The requested Riemannian metric field, Mreq = {Mnode(x)}x∈Ω, is scaled in order to con-

trol the adapted mesh’s degrees of freedom. Following the work on the discrete-continuous

mesh duality proposed by Loseille [80], the degrees of freedom of a mesh conforming to a
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Figure 6-5: Multiply-cut element where the requested metric for element A
is passed to nodes 1 and 2 but not node 3.

Riemannian metric field is approximated by

DOF(Mreq) =

∫
Ω
Cp,κ

√
det(Mreq)dx,

where Cp,κ is a constant depending on the solution order and the element shape. For example,

for a p-th order polynomial simplex element in two dimension, Cp,κ = (2/
√

3)(p+ 1)(p+ 2).

The final degree of freedom controlled metric field is

Mreq,final =

(
DOFtarget

DOF(Mreq)

)2/d

Mreq. (6.9)

In the case of cut-cell mesh adaptation the degree of freedom control is performed on

the background mesh. The only difference in degree of freedom control between cut-cell

and boundary-conforming meshes is that Cp,κ, in the cut cell case, is set to zero for null

background elements.

6.2.6 Building Metric Request for Null Cut Elements

The elements within the computational domain all fall under the control of the fixed-fraction

size selection and the anisotropy shape selection described previously. In a cut-cell mesh the

background grid also contains a set of null elements, those completely outside the computa-
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tional domain. In order to perform metric based adaptation, a metric request must be made

for each null element.

The most straightforward option to generate null element metric requests is to use each

element’s implied metric. However, there are two motivations to consider when generating

improved null element metric requests. First, the cut elements intersecting a viscous solid

wall boundary form a wake-like feature in the background mesh. The wake-like feature is a

result of high mesh grading for boundary layer resolution on the side of the computational

domain. Figure 6-6 provides an example of the wake-like viscous wall feature. The C0

constructed metric field on the background mesh needs to contain the desired anisotropy

request to resolve the wake-like feature of the viscous wall. Since Barycentric averaging is

used to pass the element request to background nodes, the correct anisotropy will exist in the

metric field if the null elements connected to cut elements have a similar anisotropy request.

A second motivation to consider for the null elements metric request stems from the degree

of freedom control. When using the explicit degree of freedom control the possibility exists

that at each adaptation iteration the metric field is scaled to refine every element, i.e. when

DOF (M) < DOFtarget, Mreq,final will result in more elements than Mreq. If DOF (M) is

less than DOFtarget over the course of multiple adaptation iterations, and the implied metric

is used as the requested metric, the entire null region of the background will be filled with

an increasingly large number of elements, slowing down the mesh generation and the cutting

processes.

Background null element layers help define the requested null element metrics. Figure 6-

7 shows an example of the null element layers. The layers are generated through face

connectivity such that each element’s layer index is one plus the minimum of the layer

indices of its face neighbors. In other words, the layer index is defined as the minimum

number of elements that must be visited by passing through faces before reaching a cut

element.

For each null element, the requested metric is taken as a scaled Barycentric average of

the requested metrics of its faces neighbors one layer up. In order to help control the total

number of null background elements, an element area growth rate of GR = 1.1 is applied to

each layer of null background elements. For example, in Figure 6-7, null element C would

have a metric request equal to the metric request for the background element of cut element
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Figure 6-6: Cut elements intersecting a viscous wall form a wake-like feature
in the background mesh.

A. Similarly, E’s metric request would be equal to B’s. For element D the metric request

would be Mreq,D = GRindex

[
1
2

(
M−

1
2

req,C +M−
1
2

req,E

)]−2

, where the index of element D is 1.

computational domain

geometry

A
(cut element)

B
(cut element)

C
(layer 0)

D
(layer 1)

E
(layer 0)

Figure 6-7: Example describing the process of forming requested metrics on
null elements.

6.2.7 DOF-“Optimal” Mesh

The adaptation strategy presented in this section enables the generation of meshes at a fixed

degree of freedom that have equidistributed local element error estimates. These meshes
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(a) initial mesh (b) DOF-“optimal” mesh

Figure 6-8: Example of the initial and DOF-“optimal” meshes for subsonic
RAE2822 RANS-SA flow (M∞ = 0.3, Rec = 6.5 × 106, α =
2.31◦, p = 3, DOF = 40k).

are considered DOF-“optimal.” The degree of freedom control mechanism presented in

Section 6.2.5 is the key feature that allows for the generation of the DOF-“optimal” meshes.

Subsonic RANS-SA flow over a RAE2822 airfoil at M∞ = 0.3, Rec = 6.5 × 106, and

α = 2.31◦ is used to demonstrate the generation of DOF-“optimal” meshes. A set of meshes

based on subsonic Euler flow, with the coarsest initial mesh shown in Figure 6-8(a), are a

set of starting points for the p = 3 turbulent cases. Adaptation is performed at a fixed

degree of freedom of 40k. Figure 6-9 shows the error estimate, the error, the drag, and the

degree of freedom history for the set of meshes considered. After 15 iterations, each cases

stabilizes at 40k degrees of freedom and an error of 0.1 drag counts. The meshes seen after

adaptation iteration 15 are considered DOF-“optimal” with an example shown in Figure 6-

8(b). The error is computed relative to the drag coefficient obtained on an adapted p = 3,

DOF = 160,000 mesh.

The adaptation leads to an error reduction of three orders of magnitude for each initial

mesh with the initial degrees of freedom considered ranging from 3k to 30k. The error re-

duction is achieved through aggressive redistribution of element areas and the use of highly

anisotropic elements in the boundary layers and the wake. After 15 adaptation iterations

the meshes are optimized for the subsonic RANS-SA flow. However, the cd error estimates

continue to fluctuate around one drag count. The constant degree of freedom adaptation

produces a family of DOF-“optimal” meshes. For this example, all the meshes after adap-

tation iteration 15 are considered DOF-“optimal” and the meshes have similar metric fields

but slightly different triangulations. To account for the fluctuation in the error estimate and

the output quantities, all the results in this thesis present DOF-“optimal” errors in terms
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Figure 6-9: The the error estimate, the error, the drag, and the degree of
freedom adaptation history for a set of initial meshes applied
to the subsonic RAE2822 RANS-SA flow (M∞ = 0.3, Rec =
6.5× 106, α = 2.31◦, p = 3, DOF = 40, 000).
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of a family of meshes. All cases are run at least 10 adaptation iterations beyond where the

error estimate stabilizes. The output quantities are presented as the envelope of outputs

from the last five DOF-“optimal” meshes for each degree for freedom. The error estimate

values are obtained by averaging the five error estimates.
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Chapter 7

Results

This chapter quantifies the impact on solution efficiency (defined as accuracy per degree

of freedom) in the transition from boundary-conforming elements to simplex cut cells. In

Section 7.1 a wide range of aerospace problems are solved, including subsonic through su-

personic regimes and complex geometries. In Section 7.2, a parametric study is performed

over angle of attack to construct a lift curve for a high-lift multi-element airfoil and Sec-

tion 7.3 compares the computational cost of boundary-conforming and cut-cell solutions for

this parameter study.

7.1 Comparison of Boundary-Conforming and Cut-Cell So-

lution Efficiency

To demonstrate the difference in solution efficiency between cut-cell and elastically-curved

meshes five flows are considered: NACA0012 subsonic Euler flow, RAE2822 subsonic RANS-

SA flow, RAE2822 transonic RANS-SA flow, NACA0006 supersonic RANS-SA flow, and

MSC8 transonic RANS-SA flow.

7.1.1 NACA0012 Subsonic Euler

The first case that quantifies the difference in solution efficiency between cut-cell and boundary-

conforming meshes is subsonic Euler flow over a NACA0012 airfoil atM∞ = 0.5 and α = 2.0◦.

The flow solution and initial cut-cell mesh is shown in Figure 7-1. Figure 7-2 shows the

convergence in the envelopes of drag coefficients and the error estimate for the family of
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 initial mesh 

 DOF−"optimal" p=1, DOF=20k  DOF−"optimal" p=3, DOF=20k 

Figure 7-1: Mach number distribution, initial mesh, and the DOF-“optimal”
meshes for subsonic NACA0012 Euler flow (M∞ = 0.5, α =
2.0◦). The Mach contour lines are in 0.05 increments.

DOF-“optimal” cut-cell and boundary-conforming meshes. The largest solution efficiency

gap exists for the p = 3, DOF = 2.5k mesh, where the efficiency gap is defined as the dif-

ference between the cut-cell and boundary conforming error estimate at a given degree of

freedom. There are only 250 elements in these meshes with high grading toward the leading

and trailing edge, so the accuracy gap is understandable. The cut-cell meshes achieve the

same rate of convergence, and the gap in solution efficiency is almost non-existent other than

for the p = 3, DOF = 2.5k case.

In terms of the solution accuracy, the p = 2 and p = 3 discretizations are superior to the

p = 1 discretization for high-fidelity simulation requiring the drag error estimate of less than

1 count. Figures 7-2 (a) and (b) show the envelopes of the drag coefficient for the families of

DOF-“optimal” meshes. p = 2 and 3 exhibit quicker convergences to the reference solution

computed using p = 3, DOF = 40k for both the cut-cell and boundary-conforming cases.

The subsonic NACA0012 Euler flow indicates that if the trailing edge singularity is handled

correctly, the benefit of high spacial accuracy can be realized for both cut-cell and boundary

conforming meshes. The DOF-“optimal” p = 1 and p = 3 meshes shown in Figure 7-1

illustrate the mesh grading which is required to manage the trailing edge singularity.
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Figure 7-2: Envelopes of drag coefficients and cd error estimates for subsonic
NACA0012 Euler flow (M∞ = 0.5, α = 2.0◦).
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 initial mesh 

 DOF−"optimal" p=1, DOF=40k  DOF−"optimal" p=3, DOF=40k 

Figure 7-3: Mach number distribution, initial mesh, and the DOF-“optimal”
meshes for for subsonic RAE2822 RANS-SA flow (M∞ = 0.3,
Rec = 6.5×106, α = 2.31◦). The Mach contour lines are in 0.05
increments.

7.1.2 RAE2822 Subsonic RANS-SA

The same RANS-SA flow over a RAE2822 airfoil as in Section 6.2.7 is considered to demon-

strate the difference in solution efficiency between cut-cell and boundary-conforming meshes

(M∞ = 0.3, Rec = 6.5 × 106, α = 2.31◦). Figure 7-4(c) shows the convergence in the drag

coefficient error estimate for DOF-“optimal” cut-cell and boundary-conforming meshes. For

this subsonic RANS-SA flow a noticeable loss in solution efficiency exists between boundary-

conforming and cut-cell meshes. The resolution demands for this case are simple, requiring

only the boundary layer (including the boundary layer edge), wake, and stagnation stream-

line to be fully resolved. The inability of the cut-cell method to resolve curved geometries

limits the solution efficiency. However, the cut-cell meshes do achieve the same rate of

convergence as their boundary-conforming companions, and the gap in solution efficiency

decreases as the total number of degrees of freedom increases.

For this case, the benefit of higher-order discretizations is not quite as clear as for the

subsonic Euler flow over a NACA0012 airfoil. The drag coefficient error estimate in Figure 7-

4(c) does show that, for all degrees of freedom considered, the p = 2 and p = 3 solutions

provide a lower error estimate than p = 1, but the largest error estimate shown is 10 drag

counts. The drag coefficient envelopes from the families of DOF-“optimal”meshes, shown
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Figure 7-4: Envelopes of drag coefficients and cd error estimates for subsonic
RAE2822 RANS-SA flow (M∞ = 0.3, Rec = 6.5 × 106, α =
2.31◦).
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 initial mesh 

 DOF−"optimal" p=1, DOF=40k  DOF−"optimal" p=3, DOF=40k 

Figure 7-5: Mach number distribution, initial mesh, and the DOF-“optimal”
meshes for subsonic RAE2822 RANS-SA flow (M∞ = 0.729,
Rec = 6.5 × 106, α = 2.31◦). The Mach contour lines are in
0.025 increments.

in Figures 7-4(a) and (b) point out that, once 40k degrees of freedom are employed, all the

solution orders provide a cd value within 0.1 drag counts of the reference solution taken from

a p = 3, DOF = 160k case. However, the p = 1 results have a band of about 0.1 counts, at

40k and 80k degrees of freedom, while the p = 2 and p = 3 cd bands are much tighter and

decrease with degrees of freedom. For this simple RANS-SA flow the true benefit of the p = 3

discretization is seen after the cd errors are already less than engineering-required accuracy.

However, the higher-order discretizations perform no worse than p = 1 discretization for this

case.

7.1.3 RAE2822 Transonic RANS-SA

Having shown the effectiveness of the cut-cell method for subsonic cases, the solution ef-

ficiency is now quantified in the presence of shocks. The case considered is drag-based
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adaptation for transonic flow over an RAE2822 airfoil at M∞ = 0.729, Rec = 6.5× 106, and

α = 2.31◦.

The Mach number distribution and the drag-adapted meshes obtained using a p = 3

discretization and 40k degrees of freedom are shown in Figure 7-5. The mesh is graded

aggressively toward the airfoil surface, the boundary layer edges, and the shock. The Mach

contour indicates that the combination of anisotropic grid refinement and the shock capturing

algorithm enables sharp resolution of the shock.

Figure 7-6 shows the drag output envelopes and the associated error estimates for the

families of DOF-“optimal” meshes. The error estimates, shown in Figure 7-6(c), show that

for this transonic RANS-SA case the cut-cell method achieves the same level of solution

efficiency as the boundary-conforming method, except for the p = 3 case at low degrees of

freedom which has a small gap. This case requires aggressive mesh grading toward the shock

as well as the boundary layer and wake. The flow has become more complicated with more

features to resolve so the impact of the loss of cut-cell solution efficiency from resolving the

curved geometry is decreased and cut-cell meshes provide nearly the same level of accuracy

as boundary conforming meshes.

With the use of an adaptive strategy that provides arbitrary anisotropy and aggressive

mesh grading toward the shock feature, the p = 2 discretization is more efficient than

the p = 1 discretization at estimated error levels of 10 drag counts. For a higher-fidelity

solution, the p > 1 discretizations are superior. The convergence of the drag envelopes,

shown in Figures 7-6(a) and (b), confirm the enhanced drag convergence of the higher-order

discretizations. Since, the higher-order discretizations provide a more efficient representation

of the smooth boundary layer feature, they can use more degrees of freedom to resolve

the shock. Thus, even though the higher-order method does not improve the efficiency of

resolving the shock, at a fixed degree of freedom count they can be more accurate than p = 1

solutions for transonic problems.

Figure 7-6(c) also exemplifies the limit of applying higher-order discretizations to complex

flow problems with an insufficient number of degrees of freedom. The p = 3 discretization

at 20k degrees of freedom is outperformed by the p = 1 and p = 2 discretizations. 2,000

elements are inadequate to resolve both the boundary layer and the shock, even with p = 3

131



20k 40k 80k 160k

118.6

118.8

119

119.2

119.4

119.6

119.8

120

120.2

120.4

degrees of freedom

c
d
 (

c
o
u
n
ts

)

 

 

+0.1 drag count

p=1 (cc)

p=2 (cc)

p=3 (cc)

(a) cut cell

20k 40k 80k 160k

118.6

118.8

119

119.2

119.4

119.6

119.8

120

120.2

120.4

degrees of freedom

c
d
 (

c
o
u
n
ts

)

 

 

+0.1 drag count

p=1 (bc)

p=2 (bc)

p=3 (bc)

(b) boundary conforming

20k 40k 80k 160k

10
−2

10
0

10
2

degrees of freedom

c
d
 e

rr
o
r 

e
s
ti
m

a
te

 (
c
o
u
n
ts

)

 

 

−1.09

−2.27

−2.98

p=1 (cc)

p=2 (cc)

p=3 (cc)

p=1 (bc)

p=2 (bc)

p=3 (bc)

(c) error estimate

Figure 7-6: Envelopes of drag coefficients and cd error estimates for tran-
sonic RAE2822 RANS-SA flow (M∞ = 0.729, Rec = 6.5 × 106,
α = 2.31◦).
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polynomials. For low- and moderate-fidelity simulations, using a minimum number of degrees

of freedom, the lower-order discretizations are more accurate.

7.1.4 NACA0012 Supersonic RANS-SA

The second shock problem considered is a supersonic flow over a NACA0006 airfoil with

the flow condition M∞ = 2.0, Rec = 106, and α = 2.0◦. Two outputs of interest will be

considered: the drag and the pressure signal 50 chords below the airfoil given by

J(u) =

∫
Γline

(p(u)− p∞)2 ds,

where p∞ is the free stream pressure and Γline runs from (70c,−50c) to (125c,−50c).

The Mach number distribution and the drag based DOF-“optimal” meshes for the p = 1

and p = 3 discretization having 80k degrees of freedom are shown in Figure 7-7. The meshes

show aggressive refinement toward shock and boundary layer singularities. The adjoint Mach

cone emerging from the training edge is particularly visible in the p = 1 mesh. Downstream

of the adjoint Mach cone the mesh resolution decreases, as expected, as discretizations errors

outside of the cone are inconsequential for drag calculations. However, the shock and wake

still appear to be resolved with anisotropic elements which is an artifact of the Mach number

based anisotropy leading to large, but stretched elements.

Again, like the transonic RAE2822 presented in Section 7.1.3, the cut-cell method’s drag

error estimate convergence shown in Figure 7-8(c) achieves the same solution efficiency as

the boundary-conforming meshes. For the sonic boom problem, the resolution of the bow

shock is of utmost importance and there is no difference in shock resolution between the two

mesh generation methods.

The convergence of the drag error estimate for the problem shows that, due to the low

regularity of the dominant flow feature, the benefit of the p = 2 and p = 3 discretizations is

difficult to realize even with the adaptive algorithm. The higher-order discretizations reduce

the number of elements required to resolve the boundary layer sufficiently so that the method

is more efficient than the p = 1 discretization overall. This shock problem also uncovers the

limit of the effectiveness of higher-order discretizations at low degrees of freedoms. At 40k

degrees of freedom the p = 3 discretization is not able to compete with the p = 1 and p = 2
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 DOF−"optimal" p=1, DOF=80k  DOF−"optimal" p=1, DOF=80k (zoom x20) 

 DOF−"optimal" p=3, DOF=80k  DOF−"optimal" p=3, DOF=80k (zoom x20) 

Figure 7-7: The Mach number distribution for the supersonic NACA0006
RANS-SA flow (M∞ = 2.0, Rec = 106, α = 2.0◦) and the DOF-
“optimal” meshes obtained for p = 1 and p = 3 at 80k degrees
of freedom adapting to drag. The Mach contour lines are in 0.1
increments.
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Figure 7-8: Envelopes of drag coefficients and cd error estimates for su-
personic NACA0006 RANS-SA flow (M∞ = 2.0, Rec = 106,
α = 2.0◦).
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discretizations due to the inability to resolve the shock with a sufficient number of elements.

In fact, the increase in element count for the p = 2 discretization at 80k and 160k degrees of

freedom is more effective than the higher-spatial accuracy of the p = 3 discretization at the

same degree of freedom count. The cd values in Figures 7-8(a) and (b) confirm the superior

performance of the adaptive p = 2 discretization, showing faster convergence toward the

stationary value, but also illustrate the struggles of the p = 3 discretization for this flow.

The pressure signal based adaptation for the supersonic NACA0012 flow leads to the

same conclusions on solution efficiency as the drag based adaptation. Figure 7-9 shows the

envelopes of the pressure signal and the error estimate. Again, with the more complicated

flow features away from the boundary, the cut-cell method achieves the same level of so-

lution efficiency as the boundary-conforming meshes. The higher-order discretizations also

outperform the p = 1 discretization in providing high fidelity output evaluation.

Figure 7-10 shows the pressure perturbation, (p(u)− p∞) /p∞, the mass adjoint, and the

p = 1 and p = 3 DOF-“optimal” meshes at 80k degrees of freedom. Anisotropic elements

are used to resolve the boundary layer and propagate the shock signature. The meshes also

demonstrate the behavior of output-based adaptation to focus only on discretization errors

which influence the output of interest. The shock above the airfoil is not resolved nearly as

sharply as the lower shock because, as the adjoint shows, the upper shock has no influence

on the pressure signal. Unfortunately, the meshes also show that anisotropic elements are

generated in the flow direction downstream of the trailing shock. The added anisotropy

downstream of the trailing shock is not appropriate for this flow and these meshes are not

optimal for providing high accuracy pressure signals. The unnecessary anisotropy is due to

artificial variations in flow quantities along the shock [12] which are then convected down-

stream and lead to gradients in the Mach number normal to the convective direction. The

anisotropy detection algorithm, based on the higher-order derivatives of the Mach number,

attempts to capture the artificial streaks. With each adaptation iteration the steaks actually

become worse as the stretched elements do a better job of convecting the artificial variation

downstream. This case highlights the shortcomings of an anisotropy detection algorithm

based only on the derivatives of the Mach number and is a motivation for future work on

anisotropy detection.
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Figure 7-9: Envelopes of pressure signal and error estimates for supersonic
NACA0006 RANS-SA flow (M∞ = 2.0, Rec = 106, α = 2.0◦).
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 DOF−"optimal" p=1, DOF=80k  DOF−"optimal" p=1, DOF=80k (zoom) 

 DOF−"optimal" p=3, DOF=80k  DOF−"optimal" p=3, DOF=80k (zoom) 

Figure 7-10: The pressure perturbation distribution, (p(u)− p∞) /p∞, for
the supersonic NACA0006 RANS-SA flow (M∞ = 2.0, Rec =
2.0× 107, α = 2.5◦) and the DOF-“optimal” meshes obtained
for p = 1 and p = 3 at 80k degrees of freedom adapting to the
pressure signal 50 chords below the airfoil.
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 initial mesh 

 DOF−"optimal" p=1, DOF=80k  DOF−"optimal" p=3, DOF=80k 

Figure 7-11: Mach number distribution, initial mesh, and the DOF-
“optimal” meshes for transonic MSC8 RANS-SA flow (M∞ =
0.775, Rec = 2.0× 107, α = −0.7◦).

7.1.5 Multi-element Supercritical 8 Transonic RANS-SA

The final case which will be used to quantify the difference in solution efficiency between

boundary-conforming and cut-cell meshes is transonic flow over a multi-element supercritical

8 (MSC8) airfoil from Drela[40] with blunted trailing edges. The flow conditions are M∞ =

0.775, Rec = 2.0× 107, and α = −0.7◦. The flow field for the MSC8, shown in Figure 7-11,

is complex with the main body wake passing through the shock rising from the flap. The

case presents a good challenge for the non-linear solution technique presented in Chapter 3.

Figure 7-12 shows the drag output envelopes and the associated error estimates for the
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Figure 7-12: Envelopes of drag coefficients and cd error estimates for tran-
sonic MSC8 RANS-SA flow (M∞ = 0.775, Rec = 2.0 × 107,
α = −0.7◦).
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families of DOF-“optimal” meshes. The error estimates, shown in Figure 7-12(c), show that

for this transonic RANS-SA case the cut-cell method achieves the same level of solution

efficiency as the boundary-conforming method. The MSC8 airfoil again demonstrates the

limit of the p = 3 discretization for low degrees of freedom. The p = 3 discretization is

outperformed in terms of cd error estimate by the p = 1 discretization through 80k degrees

of freedom. In terms of the envelopes of drag coefficient shown in Figure 7-12(a) and (b),

it appears that at 80k degrees of freedom the p = 1 discretization provides a more accurate

solution than the p = 3 discretization.

7.1.6 Summary

The results presented in this section have quantified the loss in solution efficiency in the

conversion to cut-cell meshes from boundary-conforming meshes. Over a range of airfoil

geometries and flow conditions, the cut-cell method compares well to and is competitive

with its boundary-conforming counterpart. For all the cases considered, the cut-cell meshes

achieve the same asymptotic rate of convergence in the output error estimates. For cases

which are dominated by singular perturbations on the geometry, like the subsonic RANS-SA

RAE2822 presented in Section 7.1.2, a loss of solution efficiency does exist for the cut-cell

method. The geometry representation using cut linear background elements limits the cut-

cell method as it is unable to effectively resolve higher-order geometry with a small number

of elements. As the total number of degrees of freedom are increased, the solution efficiency

gap decreases since the local curvature of the airfoils decrease relative to the element spacing

along the tangential direction. The implication of the decrease in the solution efficiency gap is

that for high-fidelity simulations cut-cell meshes are competitive with boundary-conforming

meshes.

As the complexity of the cases considered increase, whether in terms of geometry or flow

features like shocks, there is also a decrease in the difference between cut-cell and boundary-

conforming solution efficiencies. The cut-cell method is equally capable of resolving wakes

and shocks as the boundary-conforming meshes. So, as the relative importance of near

geometry resolution, the cut-cell and boundary-conforming capabilities become more similar.

Though the results presented here have demonstrated that the cut-cell meshes are com-

petitive with boundary-conforming meshes, a few words of caution are needed. These results
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are based on the adaptation strategy presented in Section 6.2 which has a goal of generating

DOF-“optimal” meshes where the local elemental errors are equidistributed. For each case,

equidistributing the error for the lowest degree of freedom family of meshes is most difficult

and is limited by the adaptation and meshing mechanics. For every case, 10 extra adaptation

iterations were used beyond where the error estimate stabilized (discussed in Section 6.2.7) in

an attempt to remove any limitations from the mechanics. However, the possibility remains

that, particularly for the low degree of freedom cases, the boundary-conforming strategy are

more limited than the cut-cell strategy by the meshing mechanics due to the necessity of

conforming to the geometry.

7.2 DOF-Controlled Adaptation for Parameter Sweeps

7.2.1 Fixed Mesh vs. Adaptive Mesh

The explicit degree of freedom control based adaptation is beneficial for performing param-

eter sweeps. The explicit control allows the adaptation to begin from a DOF-“optimized”

mesh, go on to vary a parameter, and then return a new DOF-“optimal” mesh at the same

degree of freedom using a small number of adaptive iterations. The effectiveness of adapta-

tion for parameter sweeps is demonstrated by constructing the lift curve for the McDonnell

Douglas Aerospace (MDA) three-element airfoil (30P-30N) [72]. For the lift curve, the

freestream Mach number and Reynolds number are set to M∞ = 2.0 and Rec = 9×106, and

the angle of attack is varied from 0.0◦ to 24.5◦. p = 2 polynomials at 90k degrees of freedom

are used for each mesh.

In order to show the benefit of adaptation, the lift curve for DOF-“optimal” meshes

is compared to the lift curve based on a fixed mesh. For the comparison, the fixed mesh

is taken as the DOF-“optimal” mesh for α = 8.1◦. Figure 7-13(a) shows the lift curves

obtained using the fixed and adaptive meshes for both the boundary-conforming and the

cut-cell method. The lift curves show that the fixed mesh closely matches the adaptive

result for 0◦ < α < 20◦. However, for α > 20◦, the lift calculation on the fixed mesh

becomes unreliable and the cl is significantly underestimated due to premature separation.

For the parameter sweep performed here, the selection of cut-cell or boundary conforming

meshes has little impact on the lift curves.
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Figure 7-13: The lift curve and the cl error obtained using the fixed mesh
and adaptive meshes for the three-element MDA airfoil.

The separation for α > 20◦ on the fixed mesh presents a good example of the benefit of

using output-based error estimates. Figure 7-13(b) shows that the error indicator correctly

identifies the lack of confidence in the solution for the high angle of attack cases on the

fixed mesh. The cl error estimate for those cases is on the order of 10. The local error

estimate shown in Figure 7-14 indicates that the elements on the upper surface of the slat

dominate the fixed mesh cl error for an angles of attack of 23.28◦. Figure 7-14 also shows

that with adaptive refinement, the cl error estimate is more equidistributed. With adaptive

refinement, the cl error estimates in Figure 7-13(b) remain less than one hundredth of a

percent of cl for the entire range of angles of attack considered. Utilizing the same number

of degrees of freedom, the adaptation strategy is able to efficiently produce higher quality

solutions compared to employing a single fixed mesh.

Figure 7-15 shows the Mach number distribution obtained for α = 23.28◦ flow on the

fixed and adapted meshes. As the error indicator distribution in Figure 7-14 shows, the fixed

mesh lacks resolution on the front side of the leading edge slat. The lack of resolution causes

extra numerical dissipation to induce separation on the upper surface of the slat. For the

fixed mesh the sonic pocket is absent from the slat.

The initial mesh and the adapted meshes are shown in Figure 7-16 for a range of angles

of attack. The resolution distribution within each mesh exhibits the flow features which are

important for the different angles of attack. At low angles of attack, the wake coming off
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(a) fixed mesh

(b) adapted mesh

Figure 7-14: The error indicator distribution, log10(ηκ), for the three-
element MDA airfoil at α = 23.28◦ obtained on the 8.10◦ opti-
mized mesh and the 23.28◦ optimized mesh.

(a) fixed mesh

(b) adapted mesh

Figure 7-15: The Mach number distribution for the three-element MDA air-
foil at α = 23.28◦ obtained on the 8.10◦ optimized mesh and
the 23.28◦ optimized mesh. The Mach contour lines are in 0.05
increments.
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α=0.0

α=8.1

α=16.21

α=23.28

Figure 7-16: The initial and lift-adapted grids for the three-element MDA
airfoil at selected angles of attack.

the bottom edge of the slat must be captured to account for its influence along the main

body and flap. For higher angles of attack, this wake feature no longer exists, but capturing

the acceleration and shock on the upper side of the slat becomes important for accurate lift

evaluation.

7.2.2 Comparison of Boundary-Conforming and Cut-Cell

The MDA three-element airfoil provides a complex geometry which can be used to compare

the solution efficiency of boundary-conforming and cut-cell meshes. For four angles of attack:

α = 8.1◦, 16.21◦, 21.34◦, and 23.28◦, families of DOF-“optimal” meshes are generated for

a square domain with farfield boundary conditions imposed 200 chords from the airfoil.
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Figures 7-17 through 7-20 show the envelopes of drag coefficients and the error estimates for

drag-based adaptation.

For the complex multi-element geometry there is a large benefit of higher-order dis-

cretizations to achieve high-fidelity output evaluations. The ability of the higher-order dis-

cretizations to convect information about the flow from the slat downstream to the flap is

advantageous for accurate output evaluations. For a desired error estimate of one drag count

the p = 2 and p = 3 discretizations are clear winners. Over the range of angles of attack for

the MDA airfoil analyzed here, p = 2 is the best choice as it performs well in the low degree

of freedom range while providing improved asymptotic error estimate behavior.

Once again, the cut-cell method is competitive with the boundary-conforming meshes.

Due to the complex geometry, there are many flow features away from the geometry which

are captured equally well by the cut-cell method. These comparison results are included

for completeness, but lead to no new conclusions about the difference in solution efficiency

between cut-cell and boundary-conforming meshes.

7.3 Comparison of Boundary-Conforming and Cut-Cell So-

lution “Cost”

Generation of the lift curve for the MDA airfoil, discussed in Section 7.2, is used to compare

the solution “cost” differences between boundary-conforming and cut-cell meshes. This lift

curve is computed for M∞ = 2.0, Rec = 9× 106 flow and the angle of attack is varied from

0.0◦ to 24.5◦. p = 2 polynomials at 90k degrees of freedom are used for each mesh. For

the comparison all computations are performed in serial on a Linux machine with an Intel

i7-2600 3.40GHz processor and 12 Gbyte of RAM.

The lift curve is generated by taking the DOF-“optimal” at α = 8.1◦ and 40k degrees

of freedom and adapting at 90k degrees of freedom. The angle of attack is then adjusted

slightly and new DOF-“optimal” meshes are generated iteratively for each angle of attack.

Figure 7-21 shows the cl error estimate convergence with adaptation iterations for each

angle of attack for both cut-cell and boundary-conforming meshes. For the α = 8.1◦ four

adaptation iterations for the boundary-conforming meshes and five adaptation iterations for

cut-cell meshes are necessary to reach the stationary point. For all the other angle of attack
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Figure 7-17: Envelopes of drag coefficients and cd error estimates for α =
8.1◦ MDA RANS-SA flow (M∞ = 0.2, Rec = 9× 106).
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Figure 7-18: Envelopes of drag coefficients and cd error estimates for α =
16.21◦ MDA RANS-SA flow (M∞ = 0.2, Rec = 9× 106).
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Figure 7-19: Envelopes of drag coefficients and cd error estimates for α =
21.34◦ MDA RANS-SA flow (M∞ = 0.2, Rec = 9× 106).
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Figure 7-20: Envelopes of drag coefficients and cd error estimates for α =
23.28◦ MDA RANS-SA flow (M∞ = 0.2, Rec = 9× 106).
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Figure 7-21: cl error estimate convergence with adaptation iteration during
generation of lift curve for MDA RANS-SA flow (M∞ = 0.2,
Rec = 9×106) with boundary-conforming and cut-cell meshes.

variations only two adaptation iterations (or three non-linear solves) are required to reach

the stationary point.

Table 7.1 includes a summary of the solution “cost” measured by the number of adap-

tation iterations, the wall-clock time, the number of non-linear iterations, and the number

of GMRES iterations. In general the cut-cell method is 10% slower than the boundary-

conforming method. For the lift curve, the cut-cell meshes actually require fewer non-linear

iterations than the boundary-conforming meshes. There is no reason to believe that the

non-linear solver performs better on the cut-cell meshes. The small variation in the non-

linear iteration count is likely due to variations in the meshes and the quality of the solution

transfer between the adapted meshes. Though the cut-cell meshes take fewer non-linear

iterations, they require more GMRES iterations to solve the linear systems. The difference

in the GMRES iteration count between the cut-cell and boundary-conforming meshes is ex-

pected. Merging is used to remove all small volume ratios less than 10−5. However, the

cut-cell meshes still contain smaller volume ratios than the boundary-conforming meshes
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(a) Cut cell

α Adapt iter. Time (hr) Non-linear iter. GMRES iter.

α = 0.0 2 8.85 540 20639
α = 4.0 2 7.29 478 15379
α = 8.1 5 6.55 392 20579
α = 12.0 2 8.75 587 14890
α = 16.21 2 8.77 569 15333
α = 18.5 2 6.13 401 11434
α = 20.0 2 5.38 343 10459
α = 21.34 2 6.17 403 14843
α = 22.3 2 6.33 432 13767
α = 23.28 2 5.67 409 13687
α = 24.5 2 8.14 584 14441

Total 25 78.05 5138 165451

(b) Boundary conforming

α Adapt iter. Time (hr) Non-linear iter. GMRES iter.

α = 0.0 2 7.48 550 18065
α = 4.0 2 6.80 484 16155
α = 8.1 4 4.80 290 15393
α = 12.0 2 7.48 581 14688
α = 16.21 2 6.87 540 13473
α = 18.5 2 5.78 433 11882
α = 20.0 2 5.58 416 11913
α = 21.34 2 6.58 469 17372
α = 22.3 2 5.58 416 12423
α = 23.28 2 6.52 492 14784
α = 24.5 2 8.18 691 15602

Total 24 71.65 5362 161750

Table 7.1: Summary of “cost” to generate the lift curve for the MDA airfoil
using boundary-conforming and cut-cell meshes.
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which impacts the condition of the linear system and leads to the increase in the number of

GMRES iterations.

Wall clock time is included as a measure of solution “cost” since it is a very impor-

tant property of a solution procedure, however, the cut-cell solution strategy used here has

not been developed with computational efficiency as a primary objective. In the cut-cell

implementation flexibility was always selected over computational performance. On the

other hand, the boundary-conforming implementation has undergone some optimization to

improve its performance [79].

In terms of system memory usage the existing implementation of the cut-cell method uses

essentially the same amount as the boundary-conforming method. Before the recognition of

canonical elements, the quadrature rules for each cut element was stored. For large cases the

storage of the quadrature rules was a large memory demand, particularly in the extension of

cut cells to three dimensions. With the recognition of canonical shape the cut-cell method

only makes a small perturbation to the memory usage of boundary-conforming meshes due

to the low number of arbitrarily cut element.
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Chapter 8

Conclusions

8.1 Summary and Contributions

This thesis presents a higher-order, adaptive, simplex cut-cell solution strategy for the two-

dimensional RANS-SA equations. The main contributions of this work are an analysis of the

impact of small volume ratios from arbitrarily cut elements on linear system conditioning

and solution quality, a development of a line-search globalization technique based on the

unsteady residual of a pseudo-transient evolution to improve the robustness of non-linear

solvers, a development of an adaptation strategy that is insensitive to solution regularity

and poor error estimates on under-resolved meshes, and a quantification of the impact on

solution efficiency in the transition from boundary-conforming to cut-cell meshes.

The small volume ratio analysis concludes that for elliptic problems the condition number

of the linear system resulting from a continuous Galerkin discretization scales as O( 1
h2VR

).

The additional VR dependence of the condition number is solely caused by the discretiza-

tion space and is independent of the variational statement. The impact of small volume

ratios is illustrated for scalar model problems. The numerical experiments for continuous

and discontinuous Galerkin finite element methods agree with the analysis. The merging

method is introduced in order to remove the impact of small volume ratios by modifying the

discretization space. For the model problem merging eliminates the impact of small volume

ratios on the linear system condition number and the solution quality.

The addition of line-search update limiting to the pseudo-time continuation based non-

linear solver has been enabling for this research. In previous work, Oliver developed an
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unsteady adaptation procedure where the need to converge the steady state solution prior to

adaption was eliminated in order to counter difficulties in solving the RANS-SA equations on

under-resolved meshes [94]. The unsteady adaptation strategy was necessary to improve the

robustness of the solution procedure for a subsonic high-lift three-element airfoil [98]. The

results of this work demonstrate that the improved reliability from line-search update limiting

of the non-linear solver allows for the computation of steady-state solutions to the RANS-SA

equations on under-resolved meshes. For the comparison between boundary-conforming and

cut-cell meshes, over two thousand three-element airfoil cases were successfully converged to

steady state.

An adaptation strategy is presented that iterates toward DOF-“optimal” simplex meshes

where the local elemental error estimates are equidistributed. The adaptation strategy em-

ploys an output-based error estimate and explicit control of degrees of freedom. The strategy

contains no assumed rates of convergence for element sizing and is, therefore, independent

of solution regularity and low quality error estimates from under-resolved meshes during the

early cycles of adaptation. With the adaptation strategy, DOF-“optimal” meshes are gen-

erated that can realize the benefit of higher-order discretizations at low degrees of freedom.

The key features of these meshes are strong grading toward singularities and arbitrarily

oriented anisotropic resolutions for boundary layers, wakes, and shocks.

The solution efficiency of cut-cell meshes is compared to boundary-conforming meshes

over a range of airfoil geometries and RANS-SA flows ranging from subsonic to supersonic

conditions. Cut-cell meshes achieve the same asymptotic rate of convergence in the output

error estimates as boundary-conforming meshes. For a subsonic RAE2822 RANS-SA flow,

which is dominated by singular perturbations on the geometry, a loss of solution efficiency

is present for the cut-cell method. The geometry representation using cut linear background

elements limits the cut-cell method as it is unable to effectively resolve higher-order ge-

ometry with a small number of elements. As the total number of degrees of freedom are

increased, the solution efficiency gap decreases such that for high-fidelity simulations cut-cell

meshes are competitive with boundary-conforming meshes even for simple cases with singu-

lar perturbations on the geometry. For more complex cases, whether in terms of geometry

or flow features like shocks, the cut-cell and boundary-conforming solution efficiencies are

nearly equivalent. The cut-cell method is equally capable of resolving wakes and shocks as
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the boundary-conforming meshes. Based on the two-dimensional results, three-dimensional

cut cells are a realistic mesh generation strategy for high-fidelity simulations since cut-cell

meshes give comparable solution efficiency to boundary conforming meshes for RANS-SA

flows and greatly reduce the burden of mesh generation.

The results illustrate that, with suitable mesh generation, higher-order methods are supe-

rior to lower-order methods for RANS-SA simulations of subsonic, transonic, and supersonic

flows. Additionally, the advantage of a higher-order discretization can be achieved at er-

ror estimate levels as high as 10 drag counts. The combination of higher-order methods, a

robust non-linear solver, an output-based adaptation algorithm, and simplex cut-cell mesh

generation provides a solution strategy that is one step closer to making fully automated

CFD a reality.

8.2 Future Work

Extension of simplex cut-cells to RANS simulations in three dimensions

The two-dimensional RANS-SA cut-cell results in this work motivate the extension of

the cut-cell method to three-dimensional viscous problems. Fidkowski previously applied

simplex cut cells to three-dimensional Euler flows but had concerns that a cut-cell technique

based on linear background meshes would be too inefficient for boundary layer resolution [43].

The two-dimensional evidence provided here shows that linear based cut cells are competitive

with boundary-conforming meshes. The cut-cell method in three dimensions simplifies mesh

generation and allows for fully automated simulations of complex geometries.

Further application of two-dimensional cut cells

In this work, the simplex cut-cell method is applied to external aerodynamic flows.

The cut-cell method for the RANS equations can also be applied to internal flows. One

application of particular interest is a fully-coupled fluid-structures heat transfer problems

where the cut geometry acts as the interface between flow equations on one side and the

heat equation for the structures. Adaptation is performed on the cut-cell background mesh

which doesn’t respect geometry boundaries to capture important features of both systems

of governing equations.
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Automation in adaptation strategy

Currently, adaptation strategy iterates toward DOF-“optimal” meshes which equidis-

tribute elemental error estimates at a fixed degree of freedom. The strategy is geared toward

the specific purpose of generating the best mesh while maintaining a specific degree of free-

dom. The adaptation strategy is well suited for academic exercises such as the comparison

performed between cut-cell and boundary-conforming meshes. However, in its current form,

the adaptation strategy is limited for practical engineering problems to parameters sweeps

at a user-fixed degree of freedom. To make CFD a fully automated tool for engineering,

the necessity exists for the degrees of freedom to be controlled by the adaptation algorithm

instead of by the user. The key feature to increase the autonomy of the adaptation algorithm

is the ability to access the optimality status of the current mesh. Given the optimality sta-

tus and the requested error tolerance the decision can be made to either increase, decrease,

or maintain the degrees of freedom. If the error is above the requested tolerance and the

mesh is optimal then the degrees of freedom should be increased. On the other hand, if the

local elemental error estimates are not equidistributed, the degrees of freedom should remain

constant or decrease to allow for the redistribution of element sizes at a lower cost.

Coupling primal and dual solutions to anisotropy detection

The DOF-“optimal” mesh generated in this work did not necessarily minimize the output

error for a given degree of freedom. Equidistribution of the local errors is a necessary

condition, but not a sufficient condition for true output error minimization. In the existing

adaptation strategy, element size distribution is optimized, but the element shapes may not

be. Element shapes from the anisotropy detection algorithm are based on p+ 1 derivatives

of the Mach number. In cases where the Mach number does not represent all the anisotropic

features in the flow, the element shapes are not optimal. Output errors are bounded by the

error in the primal and dual solutions. So, to generate optimal meshes at a given degree of

freedom, element anisotropy must capture features in both the primal and dual solutions. For

example, with flow over an airfoil and drag as the desired output, the adjoint solution varies

rapidly across the stagnation streamline. Mach number based anisotropy does not capture

this flow feature efficiently. One possible option for coupling anisotropy detection to the

primal and dual solution is to cast the adaptation algorithm in an optimization framework
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and take adaptation steps in the direction of decreasing the output error as described by

Yano and Darmofal [131]
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