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Abstract. A greedy algorithm for the construction of a reduced model with reduction in both

parameter and state is developed for efficient solution of statistical inverse problems governed by

partial differential equations with distributed parameters. Large-scale models are too costly to eval-

uate repeatedly, as is required in the statistical setting. Furthermore, these models often have high

dimensional parametric input spaces, which compounds the difficulty of effectively exploring the

uncertainty space. We simultaneously address both challenges by constructing a projection-based

reduced model that accepts low-dimensional parameter inputs and whose model evaluations are in-

expensive. The associated parameter and state bases are obtained through a greedy procedure that

targets the governing equations, model outputs, and prior information. The methodology and results

are presented for groundwater inverse problems in one and two dimensions.

1. Introduction. Statistical inverse problems governed by partial differential

equations (PDEs) with spatially-distributed parameters pose a significant computa-

tional challenge for existing methods. While the cost of repeated PDE solution can

be addressed by traditional model reduction techniques, the difficulty in sampling in

high-dimensional parameter spaces remains. We present a model reduction algorithm

that seeks low-dimensional representations of parameters and states while maintaining

fidelity in outputs of interest. The resulting reduced model accelerates model evalua-

tions and facilitates efficient sampling in the reduced parameter space. The result is

a tractable procedure for the solution of statistical inverse problems involving PDEs

with high-dimensional parametric input spaces.

Given a parameterized mathematical model of a certain phenomenon, the forward

problem is to compute output quantities of interest for specified parameter inputs. In

many cases, the parameters are uncertain, but they can be inferred from observations

by solving an inverse problem. Inference is often performed by solving an optimization

problem to minimize the disparity between model-predicted outputs and observations.

Many inverse problems of this form are ill-posed in the sense that there may be many

values of the parameters whose model-predicted outputs reproduce the observations.

The set of parameters consistent with the observations may be larger still if we also

admit noise in the sensor instruments. In the deterministic setting, a regularization

term is often included in the objective function to make the problem well-posed. The

form of the regularization is chosen to express preference for desired characteristics of

the solution (e.g., smoothness).
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While the regularized deterministic formulation leads to a single point estimate

in parameter space, a statistical approach quantifies the relative likelihood of the

observation-consistent parameters. The result is a probability density function over

the parameters termed the posterior distribution [6, 25, 35]. Under assumptions on

the probability distribution of sensor noise, the relative likelihood of observation-

consistent parameters can be ascertained by Bayesian inference. In this setting we

can also express a preference for solutions with certain characteristics in the prior.

The prior distribution expresses the relative likelihood of parameters independently of

the observations. In this way we may include in the formulation any problem-specific

knowledge outside of the mathematical model of the phenomena of interest.

In decision-making scenarios we require the evaluation of weighted integrals of the

posterior over parameter space, e.g. mean and variance. For applications of interest

where we may have millions of parameters, the associated integral computations can-

not be performed analytically, nor can they be estimated by numerical quadrature.

Instead, we compute approximations to the moments by generating samples from the

posterior distribution and calculating the discrete analogs. Samples may be generated

from an implicitly-defined posterior by Markov chain Monte Carlo (MCMC) methods

[2, 7, 10, 11, 17, 18, 19, 29, 30] whereby a Markov chain is established whose stationary

distribution is the posterior.

The Metropolis-Hastings algorithm [11] is an MCMC method. At each step, a

new sample is generated by proposing a candidate and then accepting or rejecting

based on the associated Hastings ratio. Computation of the Hastings ratio requires

one posterior evaluation, which, for applications of interest, corresponds to the nu-

merical solution of a PDE. Repeated solution of a PDE is a prohibitively expensive

task even for some simple model problems. In addition to the computational cost of

the sampling process, an efficient sampler is difficult to design for high-dimensional

parameter spaces. Applications of interest are parameterized by distributed field

quantities, and when discretized, have dimensionality in the millions or more, putting

them far beyond the reach of current MCMC methods..

In the present paper, we address challenges of sampling a high-dimensional param-

eter space and the cost of PDE solutions at each posterior evaluation by projection-

based model reduction. We develop a reduced model with low-dimensional parametric

input space and low-dimensional state space but whose outputs are accurate over the

parameter range of interest. The reduction in state (and to a lesser degree, the param-

eter) accelerates PDE solutions, and therefore posterior evaluations; and reduction in

parameter permits sampling in a much lower-dimensional space where traditional,

non-adaptive Metropolis-Hastings samplers are effective and require little hand tun-

ing.

Model reduction is the process by which one derives a low-dimensional, computa-

tionally inexpensive model that accurately predicts outputs of a high-fidelity, compu-
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tationally costly model. Traditionally, the model is a map from an input space to a

set of outputs through state space. Projection-based methods like moment-matching

[12, 13], proper orthogonal decomposition (POD) [22, 34], and reduced basis methods

[32] establish a low-dimensional subspace of the state space to which the reduced state

is restricted.

Although model reduction is typically applied to state alone, we propose to reduce

the parameter space as well. The extension of the projection-based model reduction to

the parameter space enables the efficient solution of problems requiring the exploration

of a high-dimensional parameter space, e.g. in design optimization, distributed control

problems, and statistical inverse problems. For the statistical inverse problem, we

propose a reduced MCMC algorithm that samples in the reduced parameter space

with a Metropolis-Hastings sampler and whose posterior evaluations are computed

via the reduced model. As a result, we make tractable a class of statistical inverse

problems where the forward model is a PDE with distributed parameters.

This paper is organized as follows. In Section 2 we describe in detail the statistical

inverse problem, emphasizing the probabilistic characterization of parameter space.

Bayesian inference is introduced and the inverse problem is formulated. We highlight

the challenges of exploring the posterior using MCMC in the distributed-parameter

PDE setting. Projection-based model reduction in parameter and state is presented

in Section 3 in anticipation of our reduced MCMC algorithm, which is described and

analyzed in Section 4. In Section 5 we demonstrate reduced MCMC on 1-D and 2-

D synthetic groundwater inverse problems. Finally, we make concluding remarks in

Section 6.

2. Statistical inverse problem. Let P and Y be parameter and output spaces,

respectively, and consider the forward model M : P → Y. For the true parameter

p ∈ P , the model predicts output y ∈ Y and we make noisy observations yd ∈ Y. The

inverse problem consists of utilizing the noisy observations to infer the parameter. In

the deterministic setting, this process involves regularization and optimization, and

it results in a single-point estimate of the parameter with no measure of uncertainty.

On the other hand, the Bayesian formulation of the statistical inverse problem yields

a conditional probability density πp(p|yd) over parameter space from which one can

compute an estimate and credibility interval.

2.1. Bayesian formulation. The statistical inverse problem is conveniently for-

mulated as one of inference by exploiting Bayes’s rule. Define IR+
0 as the set of

non-negative reals. Let γp(p) : P → IR+
0 be the prior probability density over the

parameter space. The prior expresses one’s knowledge of the probabilistic distribu-

tion of parameters before observations are made. Let L(yd,p) : Y ×P → IR+
0 be the

likelihood function. The likelihood embeds the map from parameter input to noisy

observations by way of the forward model M and a suitable error model. Provided
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the output space is bounded, we write the posterior

πp(p |yd) ∝ L(yd,p)γp(p), (2.1)

which expresses our updated knowledge of the probabilistically observation-consistent

parameters.

The prior γp(p) is selected by incorporating problem-specific information. Akin

to regularization of deterministic inverse problems, the prior can be used to represent

a preference for certain types of parameters. Let N (µ,G) be the multivariate normal

distribution with mean µ and covariance matrix G. In the present work, we employ

a Gaussian process prior with a Gaussian kernel to preferentially treat smooth pa-

rameter fields, i.e. γp(p) ∼ N (0,S) where the ijth element of the covariance matrix

is given by

Sij = a exp

{

−‖~xi − ~xj‖
2
2

2b2

}

+ cδij , (2.2)

a formulation that expresses correlation between the discretized parameter at ~xi and

~xj according to their Euclidian separation distance. Here, δij is the Kronecker delta

and a, b, and c are positive scalar parameters of the kernel. If discontinuities are to

be admitted, an outlier process (e.g., Gamma or inverse Gamma distribution) should

be chosen instead. In problems for which no expertise can be drawn on, a uniform

prior is usually employed [15], although a maximum entropy principle may be more

consistent [24].

The likelihood function establishes the relationship between observations yd and

model-predicted output y(p). It is convenient, and often representative of the physi-

cal process, to consider an additive error model yd = y(p) + e, where e is the output

error usually associated with sensor measurements. Furthermore, we often assume

the errors are unbiased, uncorrelated, and normally distributed with variance σ2, i.e.

e ∼ N (0, σ2I). In this work we do not consider the uncertainty associated with our

model’s potentially inadequate representation of the physical system. These assump-

tions result in the likelihood function

L(yd,p) = exp

{

−‖yd − y(p)‖2
2

2σ2

}

. (2.3)

For these particular choices of the prior and likelihood, we obtain the posterior

πp(p |yd) ∝ exp

{

−‖yd − y(p)‖2
2

2σ2
−

1

2
‖p‖2

S−1

}

(2.4)

where ‖p‖2
S−1 = −2 log γp(p). Note that under the aforementioned assumptions, the

solution to the statistical inverse problem, i.e. the posterior πp(p |yd), is known up to
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a normalizing constant. If the parameter space is very low-dimensional, approxima-

tions to moments of the posterior could be computed by quadrature. For distributed

parameters, this is not feasible; instead, samples must be generated from the posterior

indirectly by MCMC, and moments must be estimated by their discrete analogs.

2.2. Markov chain Monte Carlo. Markov chain Monte Carlo (MCMC) was

first introduced by Metropolis et al. [30] and was later generalized by Hastings [19].

A Markov chain with the posterior as its stationary distribution is constructed via

a random walk. A transition from one state to the next in the chain is achieved by

generating a candidate from the proposal distribution. The proposal is accepted with

certain probability, and rejected otherwise. In the Metropolis-Hastings algorithm, the

proposal distribution is subject to very mild restrictions — any proposal distribution

yielding an ergodic Markov chain is acceptable and automatically has the target as

its stationary distribution when the acceptance ratio is defined appropriately. This

generalization opened the door to adaptive algorithms.

Adaptive methods include those that use the chain to modify the proposal distri-

bution [17, 18] and adaptive direction samplers [7, 11] that maintain multiple points

in parameter space. While adaptive methods speed convergence by more efficiently

sampling the parameter space, other methods accelerate the posterior evaluations re-

quired to compute the Hastings ratio at each step. Arridge et al. recently proposed

mesh-coarsening for solving the linear inverse problem [2]. They utilize the Bayesian

formulation to quantify the statistics of the error associated with discretization. Poly-

nomial chaos expansions (PCEs) have also been used in this context [29]. The as-

sociated stochastic spectral methods are used to obtain a surrogate for the posterior

which can be evaluated by computing the terms in a series. The number of terms in

this series, however, scales exponentially with the number of parameters; therefore,

stochastic spectral methods have only been proven for inverse problems with a hand-

ful of parameters [4]. Efendiev et al. introduced a preconditioned MCMC in which

coarse grid solutions of the underlying PDE were used in a two-stage process to guide

sampling to reduce the number of full-scale computations [10]. Their procedure relies

on a Karhunen-Loève expansion in parameter space to reduce dimensionality.

We are not aware of instances of MCMC algorithms scaling to even thousands

of parameter dimensions for general posteriors. Many problems of interest are three-

dimensional and require multi-scale resolution; therefore, the discretized parameter

input space will typically have dimension in the millions. In high-dimensional pa-

rameter spaces, sufficient exploration and maintaining a minimum acceptance rate

have proven challenging for even the most adaptive MCMC schemes. On the other

hand, samplers can be efficiently-tuned in low-dimensional parameter spaces. We will

exploit the structure of our problem to systematically identify a parametric subspace

on which to run the MCMC process.



6

The two computational challenges — sampling in high-dimensional parameter

space and costly forward model evaluations — are addressed simultaneously by pa-

rameter and state model reduction, as we now describe.

3. Parameter and state model reduction. In this section, we classify the

large-scale models of interest and present an algorithm to construct a parameter-

and state-reduced model that maintains fidelity in observable outputs. The steady

parameterized PDEs of interest are discretized and result in a system of algebraic

equations we refer to as the full model. The full model depends on a high-dimensional

parametric input; see Section 3.1. In Section 3.2 we propose a reduced model that

takes parameter inputs in a low-dimensional subspace of the full parameter space, and

whose state must reside in a low-dimensional subspace of the full state space. While

a state basis is necessary for projection in the traditional model reduction framework,

here we require also a basis for the parameter. In Section 3.3 we present an algorithm

for the simultaneous construction of these bases.

3.1. Full model. Although we think of our forward model as a map from pa-

rameter space to output space, typical formulations yield models with state space U .

Thus, the forward model may be written more completely M : P → U → Y. We

focus here on models that are linear in the state variables. The output space Y can

be any linear functional of the state; in some cases, we formulate the model such that

the outputs are a subset of the states.

Our interest is in steady linear PDEs discretized in space, e.g. by finite elements,

resulting in a system of algebraic equations of the form

A(p)u = f , y = Cu (3.1)

where A(p) ∈ IRN×N is the forward operator depending on the parameter p ∈ IRNp ,

u ∈ IRN is the state, f ∈ IRN is the source, C ∈ IRNo×N is the observation operator,

and y ∈ IRNo is the vector of observable outputs.

In this case, the number of states scales with the number of grid points; therefore,

three-dimensional problems typically have N > 106 discrete states. Furthermore, we

have particular interest in distributed parameters, which also reside on the grid, i.e.

Np > 106 discrete parameters as well. Although Equations (3.1) are linear in state,

it should be noted that the map from parameter to state can be highly nonlinear

as the state depends on the parameter through the inverse of the forward operator.

While the parameter and state are high-dimensional, the outputs are typically few in

number, e.g. No <102.

For models of this type, projection-based model reduction is well-established for

the acceleration of forward model evaluations by reduction in state. Others have

applied model reduction to the posterior evaluation process in the Bayesian inference
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of a heat source in radiation [37], an application to real-time Bayesian parameter

estimation [31], and in optical diffusion tomography [2]. In addition to reduction

in state, reducing in the parameter space is essential for efficient exploration of the

parameter space in many settings including design optimization, distributed control,

and statistical inverse problems.

Next, we define the form of the reduced model and then present an algorithm for

its construction.

3.2. Reduced model. Consider the full model (3.1). We propose the construc-

tion of a reduced model Mr : Pr → Ur → Y whose outputs are accurate but parameter

and state reside in low-dimensional subspaces Pr ⊂ P and Ur ⊂ U , respectively. We

assume that the parameter p and state u can be adequately approximated in the span

of parameter and state bases, P ∈ IRNp×np and V ∈ IRN×n, respectively. We obtain

by Galerkin projection a reduced model of the form

Ar(pr)ur = fr, yr = Crur (3.2)

where

Ar(pr) = VTA(Ppr)V, fr = VT f , Cr = CV

where Ar ∈ IRn×n is the reduced forward operator depending on the reduced pa-

rameter pr ∈ IRnp , ur ∈ IRn is the reduced state, fr ∈ IRn is the projected source,

Cr ∈ IRNo×n is the reduced model observation operator, and yr ∈ IRNo are the

reduced model outputs. The reduction in parameter space is enforced directly by

assuming p = Ppr.

In traditional state reduction, a key challenge is identification of a low-dimensional

subspace Ur such that full and reduced model outputs are consistent. In a typical

forward problem setting, reduced model accuracy may be desired for a finite set of

parameters. In that case, one should sample those parameters, compute the corre-

sponding states, and utilize the span of the resulting sets to form the basis. For

inverse problems in particular, the parameters over which we desire reduced model

accuracy are unknown — it is precisely these parameters that we wish to infer. In the

absence of additional information, black box methods such as random sampling, Latin

hypercube sampling, and centroidal Voronoi tesselations have been used to sample the

parameter space and derive the state basis. If the parameter space has more than a

handful of dimensions, however, [5] demonstrates greater efficiency over the black box

samplers using a greedy approach [16, 36].

For the parameter- and state-reduced model (3.2), we must also build a basis for

the parameter separately from the basis constructed for the state. We use the simplest

approach, but perhaps also the most reasonable one; we derive the parameter basis
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from the set of parameters sampled to construct the state basis. Therefore, for the

parameter basis vectors, we are guaranteed that the reduced model (3.2) will be as

accurate as a reduced model without parameter reduction. This extension comes at

a cost of only the orthogonalization process for the parameter basis. If the parameter

vector is not associated with the discretization of a field quantity and an uncertainty

estimate for a particular element is required, then the reduction may have to be

orchestrated to maintain the structure of the problem. In some cases, reduction of

that parameter may not be advisable. This treatment is problem dependent and is not

addressed in the current paper. Here we are interested in global uncertainty estimates

of a scalar parameter field that has been represented by a vector of modal coefficients

in a linear nodal basis.

We have described the form of the reduced model, but we have not yet discussed

how to obtain the parameter samples which will define the reduced bases. In the next

section, we describe a goal-oriented, model-constrained greedy approach to sampling

the parameter space to build the reduced model.

3.3. Greedy sampling. A sequence of reduced models of increasing fidelity re-

sults from iteratively building up the parameter and state bases. At each step, we

find the field in parameter space that maximizes the error between full and current re-

duced model outputs, subject to regularization by the prior. Although this approach is

heuristic, it accounts for the underlying mathematical model and observable outputs.

Furthermore, it is tractable even for models (3.1) with high-dimensional parameter

and state spaces.

At each iteration of the greedy algorithm, we must evaluate the full and reduced

models for members of the high-dimensional parameter space. Given that our pa-

rameter and state reduced model (3.2) accepts only reduced parameters as inputs, we

need an additional map from high-fidelity parameters to their reduced counterparts.

Let Ω be the computational domain. Since the parameter in this case is a distributed

quantity, we choose a discretized L2(Ω) projection such that

PTMPpr = PTMp (3.3)

where M is the mass matrix arising from the finite element discretization. With the

addition of this constraint and the specification of a regularization parameter β, the

kth greedy optimization problem

pk = arg max
p∈Pk

J =
1

2
‖y(p) − yr(pr)‖

2
2 −

1

2
β‖p‖2

S−1 (3.4)

subject to (3.1), (3.2), and (3.3) is completely defined. The objective function J :

Pk → IR is a weighted sum of two terms. The first term measures the disparity

between observable outputs of the full and current reduced model. The second term
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penalizes parameters of low probability in a manner consistent with the prior belief

in the statistical inverse problem.

We search for the parameter field in a restricted set Pk ⊂ P which may change

from greedy cycle to greedy cycle. This restriction allows enforcement of additional

constraints on the parameter. For example, take Pk = P⊥ to be the orthogonal

complement of the current parameter basis. Then, in the limit yr(pr) → y(p), the

misfit term goes to zero and we sample the eigenvectors of the prior covariance in

P⊥. Those eigenvectors are precisely the Karhunen-Loève modes typically used in

practice when parameter reduction is performed in the statistical sampling setting.

Please refer to Section 4.2 for further discussion.

Optimization problem (3.4) is a non-convex PDE-constrained nonlinear optimiza-

tion problem over a high-dimensional parameter space. Since the constraints are lin-

ear, however, we may rewrite (3.4) as an unconstrained problem where we find the

pk that maximizes

J =
1

2
‖CA−1(p)f − CV(VT A(P(PT MP)−1PTMp)V)−1VT f‖2

2 −
1

2
β‖p‖2

S−1 .

(3.5)

We solve (3.5) with a trust-region Newton method where we provide analtyical gra-

dients and a subroutine for the Hessian-vector product. At each outer loop iteration,

the Newton direction is computed using conjugate gradients (CG) [20, 23]. The ob-

jective function is nonconvex, and we are not guaranteed to find the global optimum

at each iteration. Grid continuation methods are the usual combatant for this is-

sue in high-dimensional PDE-constrained optimization problems [3]. By solving the

optimization problem on a sequence of refined meshes, it is often the case that we

gradually approach the basin of attraction of the global optimum. The solution of

(3.4) is a significant challenge; however, the similarity between (3.4) and a determin-

istic inverse problem formulation can be exploited. We have a plethora of knowledge

and methodology from optimization problems of similar form, see e.g. [1, 20, 23] and

the references therein. Further, as shown in [5], the computational cost of solving (3.4)

via these methods has an attractive scalability with the dimension of the parameter

space.

To summarize, we present the model reduction procedure in Algorithm 3.1. We

typically terminate the greedy sampling process once a reduction of several orders of

magnitude is achieved in the objective function.

Algorithm 3.1.

Greedy Parameter and State Model Reduction

1. Initialize parameter basis to a single constant field P = pc, solve (3.1) and

initialize state basis to V = u(pc); set k = 2.

2. Solve the greedy optimization problem (3.4) subject to (3.1), (3.2), and (3.3)

for an appropriate regularization parameter β to find pk and compute the
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corresponding forward solution u(pk) using (3.1).

3. Update the reduced model. Incorporate pk and u(pk) into the parameter and

state bases, respectively, by Gram-Schmidt orthogonalization.

4. If converged, stop. Otherwise, increment k and loop to 2.

In the next section, we describe how a reduced model derived using Algorithm 3.1

can be exploited in a reduced MCMC approach to the statistical inverse problem.

4. Reduced Markov chain Monte Carlo. Motivated by the need for un-

certainty quantification in inverse problem solutions, the difficulty of sampling in

high-dimensional parameter spaces, and the excessive computational cost of forward

model solutions, we propose a reduced MCMC; see Algorithm 4.1. Sampling takes

place in the reduced parameter space and posterior evaluations are performed by the

reduced model. The forthcoming analysis assumes that the forward operator is linear

in the parameter, a property of our target groundwater problem. In that case, online

reduced MCMC computations scale with the reduced dimensions n and np instead of

N and Np. The model underlying the reduced MCMC is derived using Algorithm 3.1.

4.1. Algorithm. Once the reduced model is constructed in the offline phase, it

can be employed at little cost in the online phase, i.e. when we use MCMC to generate

samples from the posterior. Reduced MCMC yields samples in the reduced parameter

space and utilizes a random walk based on the Metropolis-Hastings sampler. Each

posterior evaluation required to compute the Hastings ratio is computed using the

reduced model exclusively. The cost of an MCMC sample scales with the reduced

dimensions n and np, as opposed to the high-fidelity dimensions N and Np. The cost

is independent of N because the Galerkin matrix has dimension n-by-n. The cost is

independent of Np because the forward operator’s dependence on the parameter is

linear; therefore, we can pre-compute the dependence on each parameter basis vector

and sum the contributions for a given reduced parameter pr. This is a particular

example of the more general offline/online decomposition procedure of reduced basis

methods [36].

We summarize the reduced MCMC algorithm for a desired number of samples

Ns. Consider a point in the chain pr. The proposal distribution ξ(qr|pr), which may

be a multivariate normal with mean pr and projected prior covariance Sr = PT SP,

is sampled to generate a candidate qr. In the low-dimensional parameter space,

it is not difficult to find a proposal distribution that yields an optimal acceptance

rate. We suspect that a multivariate normal proposal distribution with independent

components can also be utilized successfully in the reduced MCMC.

Algorithm 4.1.

Reduced Markov Chain Monte Carlo

1. Given a full model (3.1), construct a reduced model (3.2) using Algorithm 3.1.

2. Initialize the Markov chain at p0
r; set i = 1.
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3. Generate a candidate from the proposal distribution ξ(pr|pi−1
r ). We recom-

mend ξ ∼ N (pi−1
r ,Sr) where Sr = PT SP is the projection of the prior

covariance onto the reduced parameter space.

4. Compute the acceptance ratio

α = min

[

1,
π(pr|yd)ξ(p

i−1
r |pr)

π(pi−1
r |yd)ξ(pr |p

i−1
r )

]

(4.1)

by evaluating π(pr|yd) = exp{− 1

2σ2 ‖yd − yr(pr)‖2
2 −

1

2
‖Ppr‖

2
S−1} using the

reduced model (3.2).

5. With probability α, accept the new candidate, i.e. pi
r = pr; otherwise, reject

the candidate and take pi
r = pi−1

r .

6. If i < Ns, loop to 3; otherwise, stop.

In the next section, we analyze the effect of utilizing a parameter- and state-

reduced model in MCMC.

4.2. Analysis. Although rigorous error bounds exist for projection-based re-

duced models in very specific settings (see, e.g. [16, 21, 31, 36]), such results do not

exist in general. In light of this, error analysis and convergence results are not avail-

able in the statistical setting. On the other hand, we are in a position to provide a

detailed complexity analysis.

Our analysis breaks down into offline and online components. In the offline stage,

we build the reduced model by Algorithm 3.1. To obtain an additional pair of pa-

rameter and state vectors, we must solve the greedy optimization problem (3.4). We

utilize a reduced-space matrix-free inexact Newton-CG algorithm. The gradient g

is computed via adjoint computations which are linear in the number of parameters

Np. Never is the Hessian H constructed and stored; instead, we only require the

action of the Hessian on a vector to compute the Newton direction p̂ as the solution

to Hp̂ = −g. This matrix-vector product requires a sequence of forward and adjoint

solves. We assume that both the number of linear and number of nonlinear itera-

tions are independent of the problem size due to the special structure in the problem

[1, 20, 23]. The full-order MCMC does not have an offline stage.

In the online stage of the full-order implementation, we cannot use traditional

Metropolis-Hastings samplers. Instead, we use delayed rejection adaptive Metropolis

(DRAM) where a limited-history sample covariance is used in the proposal distri-

bution [17]. Since the sample covariance is dense, the dominant cost is shared by

updating the factorization and evaluating the proposal probability, both of which

cost O(N2
p ). In the online stage of the reduced MCMC, we are able to utilize the

traditional Metropolis-Hastings sampler whose dominant cost O(npn
2) is given by

the posterior evaluation when we must solve for the outputs of the reduced model.

In both the full-order and reduced implementations we assume that the number of
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samples required to achieve the desired level of accuracy scales with the square of the

number of parameters [33].

Table 4.1

Complexity analysis for solution to the statistical inverse problem by MCMC sampling at full
and with reduced MCMC. Here, Np and N are the dimensions of the full parameter and state,
respectively; np and n are the parameter and state dimensions for the corresponding reduced model.
We assume that no greedy samples are redundant such that we require n greedy cycles to build
a reduced model of size n. On average, we take m nonlinear iterations to converge the greedy
optimization problem during each greedy cycle. All linear systems are solved by iterative Krylov
methods and take advantage of structure in the spectrum of the matrix operator through appropriate
preconditioning such that the number of iterations is independent of the dimension of the system.

Operation Full Reduced
Offline greedy cycles n

nonlinear iters m

gradient O(Npnpn
2)

linear iters O(Npnp + Nn)
forward solve O(Np + N)

Subtotal O(mNpnpn
3)

Online MCMC samples O(N2
p ) O(n2

p)
proposal O(N2

p ) O(n2
p)

prop. eval. O(N2
p ) O(n2

p)
post. eval. O(Np + N) O(npn

2)
Subtotal O(N4

p ) O(n3
pn

2)

Total O(N4
p ) O(mNpnpn

3 + n3
pn

2)

A complexity analysis comparing full and reduced MCMC instantiations is pro-

vided in Table 4.1. Asymptotic cost is presented for the offline and online portions.

It is our assumption that we may construct a reduced model with np ≪ Np and

n≪N that maintains the integrity of the parameter-output map of the original model.

Therefore, the dominant costs are given by Np and N for each approach. While the

cost of the full-order implementation scales like N4
p , the reduced MCMC scales only

linearly with Np. Furthermore, the online portion of the reduced MCMC is indepen-

dent of the original parameter and state space dimensions. If one has run reduced

MCMC for Ns samples and then decides to collect more samples, the cost of obtaining

higher accuracy in the statistical results will not depend on the full dimensionality of

the problem. Indeed, this is the advantage of the offline/online decomposition.

The reduced MCMC sacrifices accuracy by requiring samples to reside within a

low-dimensional subspace and approximating the output by reduction in state; the

full case, on the other hand, is completely intractable for large Np and N . We now

turn to some discussion regarding the treatment of uncertainty by the reduced MCMC

approach.

Our formulation of the greedy sampling problem represents an attempt to reduce

the maximum error in the outputs between full and reduced models while avoiding

unnecessary sampling of parameters excluded by the prior information. This goal-
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oriented approach produces a reduced model that accurately matches the outputs

of the full model over a subset of the parameters with appreciable prior probability.

The greedy objective function (3.4) is knowledgeable about the prior of the statistical

inverse problem in the following manner. If there is a set of parameters that produce

the same output error, the one that will be sampled will be the one with largest prior

probability.

In Section 3.3 we discussed how the regularized greedy formulation (3.4) can be

chosen so that in the limit yr(pr) → y(p), the optimization results in sampling the

Karhunen-Loève modes. However, we comment here that sampling past this limit

may be inefficient. Samples not driven by the misfit in our representation of the

physics amount to parameters for which the data is uninformative in the statistical

inverse setting. The additional directions, i.e., those arising as eigenvectors of the

prior covariance, can be sampled more efficiently using, e.g., Rao-Blackwellization

[14, 27], to quantify the uncertainty in those directions.

Although it is not clear how the reduced model treats uncertainty in the nonlinear

setting, in the linear case, a reduced model constructed by Algorithm 3.1 will be a basis

for the parameters about which we are most certain. In this way, the reduced model is

foremost established to approximate the full model in parameter-output map. As the

dimension of the reduced model grows, its approximation of the likelihood becomes

more accurate, and the reduced-fidelity posterior approaches the full posterior. It

is a significant challenge to obtain a reduced model that both matches full model

output while also spanning the parameters that contribute most significantly to the

uncertainty in the posterior. This topic is the subject of ongoing research.

In the next section, we present numerical results from inverse problems in one

and two spatial dimensions.

5. Results. The governing equations are those of steady flow in porous media.

We specify the problem description in Section 5.1. In Section 5.2, a parameter-

and state-reduced model is constructed by means of the greedy sampling procedure

outlined in Section 3.3. The reduced MCMC results are compared with inversions

based on the full model in Section 5.3. The largest mesh contains 501 degrees of

freedom. We select a modest size in order to make the full inversion tractable, so that

we may compare results with the reduced MCMC algorithm.

It should be noted immediately that the full MCMC results presented in this

section represent the first author’s greatest effort to develop an efficient sampler in

the high-dimensional parameter space with the use of DRAM. In order to obtain a

non-zero acceptance rate, the MCMC chain has to be started near the actual solution,

and the candidates must remain nearby. This process may produce results which are

misleading in accuracy: The full posteriors are not well explored; in fact, the samples

in the chain remain very close to the maximum a posteriori estimate. The result is
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an underprediction of the true variance. The algorithm DRAM should not be blamed

for this inadequacy; sampling in such a high-dimensional parameter space is an open

problem in this area — precisely the motivation for our reduced MCMC methodology.

5.1. Problem description. The governing equations are those of steady flow

in porous media. Let u(~x) be the pressure head, K(~x) be the hydraulic conductivity,

and f(~x) a recharge term. Given a field K, the pressure head u is given by

−~∇ · (K~∇u) = f, in Ω,

K ~∇u · ~n = 0, on ΓN,

u = 0, on ΓD,

where Ω is the computational domain with boundary ∂Ω = ΓD∪ΓN and ΓD∩ΓN = ∅,

ΓD and ΓN are Dirichlet and Neumann boundaries, respectively, and ~n is the outward-

pointing unit normal. For well-posedness of the forward problem, we require K > 0 in

Ω; thus it is convenient to work with log K as the parameter. Our forward model also

includes a set of outputs yi = u(~xi), i = 1, 2, . . . , No corresponding to the pressure

head at a set of sparsely distributed sensors. When discretized, e.g. by finite elements,

the forward model can be expressed in the form (3.1) where u and p are the discretized

forms of u and log K, respectively.

We present results for test problems in one and two spatial dimensions. In one

dimension, Ω = (0, 1], ΓD = {x|x = 0}, and ΓN = {x|x = 1}. The sensors are

distributed evenly throughout the domain. The source term is a superposition of

three exponentials

f(x) =

3
∑

i=1

αi exp

{

−
(x − µi)

2

β2
i

}

where α = (1900, 5100, 2800), µ = (0.3, 0.6, 0.9) and β = (0.01, 0.05, 0.02). In two

dimensions, we have Ω = [0, 1]2, ΓD = {(x, z)|x ∈ {0, 1}}, and ΓN = {(x, z)|z ∈

{0, 1}}. For each of the test problems, we assume that the sensor array and recharge

term f are fixed. In Figure 5.1 we show the sensor array in the domain along with

the recharge term

f(x, z) = 15 exp

{

−
‖(x, z) − (0.5, 0.5)‖2

0.32

}

+ 19 exp

{

−
‖(x, z)− (0.7, 0.3)‖2

0.32

}

for the N = 494 2-D test case. In each case, we specify less than 10% of the nodes as

sensors, and in the 2-D problems, they are chosen to be roughly aligned vertically to

simulate a set of boreholes in the geophysical setting.
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(a) (b)

Fig. 5.1. For the N = 494 test case in 2-D, the (a) sensor array and (b) recharge term f .

5.2. Reduced model performance. We now demonstrate the construction of

the reduced model by the greedy sampling procedure described above. The greedy

sampling problem (3.4) is solved at every iteration of the procedure using a trust-

region, interior-reflective, inexact Newton method [8, 9]. We provide the gradient and

the Hessian-vector product as required by the optimizer with a series of forward and

adjoint solves. The reader is referred to [26] for details. In this case, the Gaussian

process prior adds sufficient regularity to the optimization problem; however, for a

different choice of the prior, one may need to employ grid continuation [3].

For the sake of brevity, we present results from the greedy sampling procedure only

for the 2-D case with N = 494. In Figure 5.2, we plot the parameter and state basis

vectors obtained by Algorithm 3.1. We initialize the procedure by first sampling the

constant parameter p = 1. When we do so, we obtain the first parameter basis vector.

Then, we solve the full model to obtain u(p), which is the first state basis vector. On

each subsequent iteration we follow the same process with p determined by solving

the greedy sampling problem (3.4). The new basis vectors are incorporated into the

basis via Gram-Schmidt orthogonalization. As the iteration proceeds, we observe a

decreasing trend in the objective function, see Figure 5.3. When the objective function

has decreased by three orders of magnitude, we conclude the process.

Although we have included the prior information from the statistical inverse prob-

lem as a regularization penalty, the greedy process is deterministic. We now consider

a statistical measurement of the accuracy of the reduced model. For the 2-D test case

with N = Np = 494, we select one thousand conductivity fields at random from our

Gaussian process prior and compute the predicted outputs using the full model and

the reduced models of dimension five and dimension ten. Each model estimates the

pressure head at the 49 sensors in the domain, see Figure 5.1 (a). Let y, yr5
, and

yr10
be the vectors of outputs for the full model, the reduced model of dimension five,

and the reduced model of dimension ten, respectively. In Table 5.1, we present the
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Table 5.1

Performance statistics for the full model and reduced models of dimension five and dimension
ten for the N = Np = 494, 2-D test case. The ouput vectors y, yr5

, and yr10
correspond to the

full model, the reduced model of dimension five, and the reduced model of dimension ten. For one
thousand random samples from the prior, we present the sample mean and sample variance for the
ℓ2-norm of the outputs and the output errors. As expected, the reduced model with more basis vectors
more accurately replicates the statistics of the full model predicted outputs.E(·) var(·)

‖y‖2 1.5754 0.1906
‖yr5

‖2 1.5756 0.1943
‖yr10

‖2 1.5754 0.1906
‖y − yr5

‖2 2.3986× 10−2 2.2284× 10−4

‖y − yr10
‖2 3.2796× 10−3 3.9419× 10−6

sample mean and sample variance for ‖y‖2, ‖yr5
‖2, ‖yr10

‖2, and the error in outputs

‖y − yr5
‖2 and ‖y − yr10

‖2. In this case, the statistics of the outputs of the reduced

model adequately match those of the full model; however, it is important to note that

there may be parameter values (e.g., values in the tails of the prior distribution) for

which the reduced model is inaccurate. As expected, the larger reduced model is more

accurate — as the number of parameter and state basis vectors increases, the reduced

model tends toward the full model.

5.3. Inverse problem solution. The following is the experimental procedure.

Given a certain discretization of the domain, we construct the prior probability density

γp(p) ∼ N (0, S) using the Gaussian kernel (2.2) for the choices a = 0.1, b = 0.8, and

c = 10−8. We employ greedy parameter and state model reduction as described above

to determine a reduced model. Then, we generate synthetic data.

First, we select a hydraulic conductivity field from the prior at random. We solve

the forward model on the given discretization using Galerkin finite elements with

piecewise linear polynomial interpolation. The output data are generated by selecting

the values of the states at a small subset of the mesh nodes, and then corrupting the

data with noise drawn from a multivariate normal distribution N (0, σ2I). In these

cases, we choose σ = 0.01.

Once the data are generated, we solve the statistical inverse problem in two ways.

Samples are generated from the posterior πp(p|yd) using the full model and adaptive

sampling. The starting location for the chain is given by a weighted combination of

the true hydraulic conductivity and another sample drawn from the prior. Although

this is unfairly biased in the direction of the performance of the full instantiation, it is

necessary for a successful sampling process — without this, sampling with MCMC at

full order is nearly impossible even for modest problem sizes. Our interest is primarily

in evaluating the accuracy of the reduced MCMC results; selecting an appropriate

initial sample is necessary to complete that task. Note that we are able to solve

the full statistical inverse problem in this case due to our choice of problem size.
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Fig. 5.2. Ten orthogonalized parameter and ten orthogonalized state basis vectors derived using
the greedy sampling algorithm (3.4). In the first two columns, the first five pairs; in the last two
columns, the last five pairs. In each pair, the parameter is shown on the left, and the state on the
right.

Fig. 5.3. The greedy objective function value (3.4) versus the greedy cycle index for the 2-D
problem with N = 494 variables. We observe a decreasing trend. The procedure is stopped when the
objective function has decreased by three orders of magnitude, see Algorithm 3.1.

We obtain a benchmark against which we may test the performance of the reduced

MCMC approach.

With reduced MCMC, we do not require that the seed of the chain be near the

true parameter because the burn-in time is minimal in the reduced parameter space

for a well-tuned sampler. We initialize by drawing at random from the projected

prior distribution. The posterior evaluations are given by solutions to the reduced

model (3.2). The proposal distribution is defined on the reduced parameter space;
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Fig. 5.4. Statistical inversions for the 1-D model problem for two mesh discretizations, (left)
N = 51 and (right) N = 501. On the top we present results from the full inversion; the reduced
MCMC results are on the bottom. The solid line is the parameter used to generate the data, the
dash-dot line is the sample mean, and the dashed lines denote the sample mean plus and minus two
pointwise standard deviations.

Table 5.2

Number of full model degrees of freedom, number of outputs, and reduced model degrees of
freedom (– indicates the absence of a reduced model); and offline, online, and total time required
to generate the results for the 1-D test cases on a DELL Latitude D530 with Intel Core 2Duo at 2
GHz. The offline time denotes the CPU time required to solve five iterations of the greedy sampling
problem with Matlab’s fmincon. In the MCMC simulation, the first 10% of the samples were
discarded as burn-in.

N = Np No n = np
Offline
time (s)

Samples
Online
time (s)

Total
time (s)

51 5 – – 500,000 1.05 × 103 1.05 × 103

51 5 5 3.98 × 102 150,000 1.60 × 102 5.58 × 102

501 25 – – 500,000 2.43 × 104 2.43 × 104

501 25 5 7.24 × 103 150,000 2.53 × 102 7.50 × 103

and therefore, all samples in the chain are of reduced dimension. For the test cases

presented herein, we use a multivariate normal distribution whose mean is the previous

sample and whose covariance is the product of a scaling factor and the projected prior

covariance. We tune the scaling factor, with negligible effort, to provide an acceptance

rate between 20% and 30% [6, 33].

We utilize the sample mean and pointwise variance (diagonal of the sample co-

variance) as the metric to assess our inversion. In the following figures, we plot the log

hydraulic conductivity utilized to generate the data, the sample mean, and the sam-

ple mean plus or minus two pointwise standard deviations. In Figure 5.4, we present
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results from the 1-D model problem for two mesh-discretizations, N = Np = 51 and

N = Np = 501.

In each case, the reduced MCMC credible interval envelopes the true parameter.

For the 1-D N = Np = 51 test case, reduced MCMC underestimates, with respect to

the full inversion, the uncertainty in the parameter near the right boundary. In the 1-

D N = Np = 501 case, the reverse is true — reduced MCMC appears to overestimate

the uncertainty. However, it must be noted that the full model solution appears to

predict an unrealistically small credible interval. This may be a result of a combination

of two factors: (1) the starting location’s proximity to the true parameter and (2) the

small length-scale required to achieve acceptances in MCMC for high-dimensional

cases. Together, these factors may have resulted in a short-sighted sampler; that is,

one that does not sufficiently explore the posterior. The increase in uncertainty near

the right boundary, where we apply Neumann conditions, is consistent with results

in [28]. There, Neumann conditions were applied on either end of a 1-D interval and

increases in the standard deviation were observed at both ends.

Table 5.2 shows the computing time for each case. We record the offline, online,

and total time for each run. The offline time corresponds to the computational effort

required for the greedy parameter and state model reduction. The performance benefit

we obtain is due to a dramatic decrease in the online time, which corresponds to the

MCMC sampling procedure. In the full MCMC, we utilize the DRAM algorithm to

achieve a reasonable acceptance rate. For reduced MCMC, we can achieve optimal

acceptance rates [33] using a Metropolis-Hastings sampler. We achieve a factor of

two speedup in the N = 51 test problem and a factor of three in the N = 501

test problem. For these 1-D results and the 2-D results presented in Table 5.3, our

observed computing times are not consistent with the asymptotic analysis in Table 4.1

for two reasons. Firstly, to make feasible comparisons with the full implementation,

the problem dimensions are moderate, and therefore are not in the asymptotic regime.

Secondly, the overhead offline cost of optimization for the greedy sampling problem

in Matlab does not scale efficiently with problem dimension, as it would, e.g., for a

C implementation. In that case, we expect that the savings will increase dramatically

with the dimension of the problem.

We present similar results for the 2-D model problem. We present timings for two

cases, N = Np = 59 and N = Np = 494, but we show results for the N = Np = 494

case only. The true hydraulic conductivity field is plotted in Figure 5.5. In Figure 5.6,

we plot the lower bound of the credible interval, the mean, and the upper bound of

the credible interval from left to right.

Consider reduced MCMC results for reduced models with parameter and state

dimensions of n = np = 5 and n = np = 10. We plot the L2(Ω) projections of the true

parameter to these reduced parameter spaces in Figure 5.5 (b) and Figure 5.5 (c).

It is clear that the first five basis vectors are insufficient to properly capture the
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(a) (b) (c)

Fig. 5.5. For the 2-D test case N = Np = 494, (a) the parameter field used to generate the
data, and its projection onto the reduced parameter space of dimension (b) np = 5 and (c) np = 10.

true parameter, but with ten basis vectors, we match the true parameter almost

exactly. The corresponding results from reduced MCMC are shown in Figure 5.7 and

Figure 5.8, respectively.

Fig. 5.6. The results of the MCMC solution to the 2-D N = Np = 494 test case. On the left
and right, respectively, we plot the lower and upper bounds of the ±2σ credible interval. The mean
is shown in the center. Actual parameter field shown in Figure 5.5.

Fig. 5.7. The results of the MCMC solution to the 2-D N = Np = 494 test case with reduction
to n = np = 5. On the left and right, respectively, we plot the lower and upper bounds of the ±2σ

credible interval. The mean is shown in the center. Actual parameter field shown in Figure 5.5 (a).
For reference, we show the projected actual parameter field below in Figure 5.5 (b). In comparison
to the full MCMC solution, these results have a relative L2(Ω) error of 35.4%, 35.7%, and 36.9%,
from left to right.

For each set of results, we calculate the relative L2(Ω) error in each of the three

statistics of interest, the mean, and the upper and lower bounds of the credibility
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Fig. 5.8. The results of the MCMC solution to the 2-D N = Np = 494 test case with reduction
to n = np = 10. On the left and right, respectively, we plot the lower and upper bounds of the ±2σ

credible interval. The mean is shown in the center. Actual parameter field shown in Figure 5.5 (a).
For reference, we show the projected actual parameter field below in Figure 5.5 (c). In comparison
to the full MCMC solution, these results have a relative L2(Ω) error of 16.6%, 12.2%, and 16.3%,
from left to right.

interval. The error is calculated with respect to the full MCMC solution. We find

that our reduced model of size n = np = 5 produces relative errors in the range

35%-37%, whereas the higher fidelity reduced model n = np = 10 has relative errors

in the range 12%-17%. We expect that these errors will continue to decrease as the

dimension of the reduced model increases.

From these results, we have demonstrated that as the basis becomes richer, we

are better able to characterize moments of the posterior with reduced MCMC. In this

case, we have reduced the problem from N = 494 to np = 10 parameters and n = 10

states. We expect the number of parameter and state dimensions required to achieve

an adequate solution to scale with the complexity of the physics, but not with the

dimension of the underlying discretization.

In Table 5.3 we present the CPU timings for the runs in 2-D. We achieve about

one order of magnitude speedup in the N = 59 case in total time. In the N = 494 case,

the greedy sampling problem becomes significantly more challenging. A speedup of

almost two orders of magnitude is observed in online time, but only a 35% reduction

in total time.

It is important to note that our method targets moments of the posterior, i.e.,

integrals that may be estimated by their discrete analogs. It is possible to obtain

uncertainty estimates for individual parameters by projecting reduced MCMC samples

back up to the full-dimensional parameter space by premultiplication of the parameter

basis P. However, the estimate of such localized uncertainty may not be predicted

well by our approach, which is designed for inferring global quantities. If such a

localized quantity is required, the reduced model construction should be modified

(see Section 3.2 for related discussion).

6. Conclusion. Bayesian statistical inverse problems are an outstanding chal-

lenge for forward models consisting of PDEs with distributed parameters. While the

complexity of a posterior evaluation can be reduced by a traditional state-reduced
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Table 5.3

Number of full model degrees of freedom, number of outputs, and reduced model degrees of
freedom (– indicates the absence of a reduced model); and offline, online, and total time required to
generate the results for the 2-D model problems on a DELL Latitude D530 with Intel Core 2Duo
at 2 GHz. The offline time denotes the CPU time required to solve n − 1 iterations of the greedy
sampling problem with Matlab’s fmincon. In the MCMC simulation, the first 10% of the samples
were discarded as burn-in.

N = Np No n = np
Offline
time (s)

Samples
Online
time (s)

Total
time (s)

59 5 – – 500,000 1.10 × 103 1.10 × 103

59 5 5 2.04 × 101 150,000 1.57 × 102 1.77 × 102

494 49 – – 500,000 1.67 × 104 1.67 × 104

494 49 5 4.69 × 103 200,000 3.32 × 102 5.02 × 103

494 49 10 1.04 × 104 200,000 4.92 × 102 1.09 × 104

model, efficient sampling in the high-dimensional parameter space remains an issue.

To address these issues, we propose an extension to a parameter- and state-reduced

model which maintains the accuracy of output predictions. In the reduced param-

eter space, traditional, non-adaptive Metropolis-Hastings samplers can be utilized

successfully.

This reduced MCMC approach provides a systematic method for solving statisti-

cal inverse problems involving PDEs with high-dimensional parametric input spaces

— a class of problems for which the full statistical inverse problem is beyond our

current means. In theory, the method scales independently of the fineness of the

PDE discretization, but instead depends only on the complexity of the physics. Our

method can be applied to problems with many more degrees of freedom, but we can-

not compare the results to full calculations because MCMC becomes prohibitively

expensive in that setting.

We have presented promising results for prediction of the mean and credibility

interval for some simple test problems. An important direction for future research is

the establishment of error bounds on the entire posterior probability density function,

which may be required in the decision-making, engineering design, or optimal control

settings.
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