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In this paper, a cut-cell method is considered in which (1) the background mesh is
composed of simplices allowing arbitrary anisotropy and (2) a higher-order discontinuous
Galerkin (DG) discretization is applied. This paper quantifies the impact of three limita-
tions of this simplex cut-cell technique, specifically: the presence of small volume ratios
(i.e. cut elements with volume that is arbitrarily small compared to the volume of its neigh-
boring elements); the application of integration rules designed for arbitrarily cut elements;
and, the use of a Cartesian solution space. Solutions to these issues are presented and the
paper concludes by demonstrating the two-dimensional cut-cell method with simulations
of high Reynolds number RANS flow over a complex geometry.

I. Introduction

Computational Fluid Dynamics (CFD) has become an essential tool for modeling and design in many
communities including the aerospace industry. Unfortunately, CFD is still hindered by an inability to
robustly generate flow solutions on complex geometries without human involvement. An approach that
can potentially reduce this human involvement is output-based mesh adaptation which generates a series
of meshes in an automated manner with the objective of minimizing the error of an engineering output.1,2

Engineering applications of output-based adaptation include outputs of lift and drag for two-dimensional and
three-dimensional flows,3–5 sonic problems,6,7 and forces on re-entry vehicles.8 There are two requirements
for performing output-based adaptation. The first is the solution of an adjoint problem, where the adjoint
relates the error in an output of interest to the local residual. The adjoint problem requires the solution of
a linearized system of equations that is the same size as the discretized system for the flow equations. The
second requirement for automated output-based adaptation is robust mesh generation.

Cart3D, a three-dimensional Cartesian solver for the Euler equations,9 is a prime example of the benefits
of robust mesh generation to a flow solver. Cart3D is based on embedding boundaries into Cartesian quadri-
lateral background meshes and has been proven capable of handling very complex geometries like in the space
shuttle debris calculations performed by Murman et al.10 Work by Nemec8,11,12 has added adjoint-based er-
ror estimate and adaptive refinement. However, a Cartesian quadrilateral mesh approach limits the directions
of anisotropy that are achievable, making the discretization of arbitrarily-oriented shock waves, boundary
layers, or wakes highly inefficient. The simplex cut-cell method, presented by Fidkowski and Darmofal,13–15

presents an autonomous route for generating computational meshes with high anisotropy. Combining the
simplex cut-cell method with a higher-order discretization, like the discontinuous Galerkin (DG) method16–21

used in this work, provides the necessary tools to solve visocus flows over complex geometries.
Fidkowski demonstrated the ability of the simplex cut-cell method to solve Euler and Navier-Stokes flows

in two dimensions and Euler flows in three dimensions. The method was also used22 to model a rotor in
hover. This paper quantifies the impact of three limitations of this simplex cut-cell technique, specifically:
the presence of small volume ratios (i.e. cut elements with volume that is arbitrarily small compared to the
volume of its neighboring elements); the application of integration rules designed for arbitrarily cut elements;
and, the use of a Cartesian solution space on each element. Solutions to these issues are presented and the
paper concludes by demonstrating the two-dimensional cut-cell method with simulations of high Reynolds
number RANS flow over a complex geometry.
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II. Small Volume Ratios

In the cut-cell method small volume ratios occur when an arbitrarily small cut element is next to a
neighbor of normal size as shown in Figure 1. Small volume ratios have two detrimental results. First, small
volume ratios result in oscillations of boundary distributions along a cut boundary, as shown in Figure 2.
The oscillations due to small volume ratios are not necessarily diminished with mesh refinement. The second
impact of small volume ratios is poor conditioning of the linear system in the Newton solver.

A

B

Figure 1. Example of a small volume ratio.
Typically small volume ratios occur when
a grid node is kept just inside the compu-
tational domain by the cut-cell intersection
problem.
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Figure 2. Plot of the heat flux distribu-
tion along the surface for a two-dimensional
convection-diffusion problem. The distribu-
tion illustrates the jumps in the heat flux
distribution along the surface which result
from elements with small volume ratios.

To study the impacts of elements with small volume ratios, a one-dimensional reaction-diffusion problem
is introduced. Specifically the problem is

u − ν∇2u = f(x), (1)

where ν > 0 and the exact solution, ue(x) = sin(2πx)− x + 1, is not in the polynomial solution space of the
DG discretization. The volume ratio is defined as

VRi =
lengthi

max
j=neighbor

(

lengthj

)

and the model domain has uniformly sized elements with one small element on the left boundary as shown
in Figure 3. Thus, the critical volume ratio for the model problem is

VR1 =
length1

length2

.
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Figure 3. Diagram of domain for the 1D model problem. The domain has uniformly
spaced elements with a single small element on the left domain boundary.

Volume Ratio 1 1 × 10−3 1 × 10−6 1 × 10−9 1 × 10−12

Residual Decrease Factor 4 × 1014 1 × 1011 3 × 108 2 × 105 2 × 102

Table 1. Relative “convergence” of the residual for the one-dimensional reaction diffu-
sion problem over varying volume ratios, using a direct solver. Demonstrates
the poor convergence of the linear problem as the volume ratios get small.

Table 1 illustrates the poor convergence of the residual in the linear problem solved with a direct solver
as the volume ratio gets smaller. With a volume ratio on the O

(

10−10
)

, the residual only decreases by
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O
(

10−2
)

. The impact of the small volume ratio can affect the entire solution procedure for a non-linear
solver. The solver struggles to effectively update the solution in the small element and drive the residual to
zero. The impact of the small volume ratios can be further illustrated by looking at the condition number of
the stiffness matrix for the one-dimensional model problem. Figure 4(a) shows the variation in the condition
number of the stiffness matrix versus h (the element size of all but the left most element in the model
domain). As it should for a diffusion problem the condition number scales with O

(

h−2
)

for a fixed volume
ratio. However, the volume ratio has a significant impact on the condition number of the stiffness matrix.
Figure 4(b) shows that the condition number also scales with O

(

V R−1
)

.
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(a) Condition number versus Element
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Figure 4. Plot showing the variation of the condition number versus element size and
volume ratio.

Small volume ratios adversely affect the condition number of the linear system resulting from the DG
discretization and stalls convergence of a non-linear system of equations in many cases. The L2 error,
‖u − uh ‖L2 , of the solution is largely unaffected. Figure 5 shows the L2 error convergence at different
critical volume ratios and polynomial solution orders with only small changes evident due to volume ratio.
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Figure 5. Plots showing the convergence of the L2 solution error with varying critical
volume ratio. Due to the tiny size of the element with the critical volume
ratio it has no impact on the L2 error.

Although the L2 error is unaffected, the derivative at the boundary has strong dependence on the volume
ratio. Figure 6 shows that even at volume ratios of O

(

10−4
)

, where the volume ratio had a much smaller

impact on the condition number of the linear system, the error in the boundary output, du
dx

∣

∣

x=0
, is signif-

icant and cannot be neglected. The small volume ratios eliminate all the benefits of the higher-order DG
discretization.

A few ideas were considered to handle the small volume ratio case. A possibility is to nudge all the
problem nodes, grid nodes located in the computational domain but close to the embedded surface, outside
of the computational domain or onto the embedded surface. By nudging the problem nodes, the typical grid
typology which results in small volume ratios would be eliminated. The method of grid node nudging has
been used in two dimensions with some success, but as the geometry becomes more complex and the cut-cell
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Figure 6. Plots showing the convergence, or lack there of, of the error in the output
du
dx

˛

˛

x=0
for a range of volume ratios. The error in boundary quantity output

immediatly feels the impact of small volume ratios.

method is extended to three dimensions the direction in which to nudge the nodes becomes a more difficult
problem. In order to maintain an algorithm which is extendable to three dimensions, small volume ratios
are eliminated by merging, following the work of.23,24

Essentially, because the elements with small volume ratios are so small in comparison to the neighbors,
solution quality is not affected if the small elements are just merged into their neighbor sharing the largest
common face. The common face between the large and small neighbor is eliminated and the integration
rules for the small element and its other non-common faces are just added to the larger neighbor. The basis
used to represent the polynomial solution remains the basis originating from the larger element.

Once merging is used, the linear system no longer suffers from the volume ratio penalty to its condition
number and the boundary outputs recover their optimal convergence properties. Figure 7 shows the con-
vergence of the error in du

dx

∣

∣

x=0
at the extremes of the critical volume ratio. Figure 7 clearly shows that,

whether the volume ratio is 1 or 10−10, merging allows for optimal convergence of the boundary output.
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Figure 7. Plots showing the improvement in the convergence of the boundary output,
du
dx

˛

˛

x=0
, when merging is used in the 1D model problem.

Merging is also tested on a two-dimensional convection-diffusion problem of the form

~V · ∇u − 1

Pe
∇2u = S, (2)

with a vortex flow velocity field, Vθ = 1
r

and the exact solution, ue = 1 − exp

(

−(r−R)√
cθr
P e

)

. A relatively low

Peclet number flow, Pe = 100, is used to limit the necessary anisotropy of the meshes to an aspect ratio
of 10. Figure 8 shows a model of the domain. To measure solution error the heat flux distribution error,

defined as
√

∫

Sbf

(

ν ∂u
∂n

− ν ∂ue

∂n

)2
dS, is used. The heat flux distribution error is sensitive to oscillations in

the heat flux distribution which is important for the assessment of solution quality in the presence of small
volume ratios.
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Figure 8. An example domain used with the two-dimensional scalar convection-
diffusion model problem. For viewing the aspect ratio has been set to 1.
Also included are images of the globally curved mesh (b) and the boundary
curved mesh (c).

To set up cut-cell meshes with small volume ratios the structured background mesh, shown in Figure 8,
is stretched radially inward by 99.9% of the radial element spacing leaving the outer boundary location
unchanged. The radial stretching leaves a grid node barely inside the computational domain. When the
background mesh is cut volume ratios on the order of 10−6 are created. For two-dimensional grids merging
continues one internal face at a time until the global minimum volume ratio is above a set tolerance. The
volume ratio tolerance used in this work is 10−2.
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Figure 9. Convergence of the heat flux distribution error for cut-cell meshes. The
errors in boundary-conforming cut cases are compared to the errors is cut
meshes with small volume ratios that have either been merged out or remain.

Figure 9 shows the convergence history of the heat flux distribution error for three different cut-cell grids.
The first will be referred to as a boundary-conforming cut grid as it is a globally linear background mesh
with a higher-order embedded surface that exactly intersects the background grid nodes on the boundary.
The resulting cut elements have two linear faces and one curved face. The other two grids studied are the
merged and non-merged version of the V R = 10−6 cut grids. The merged and non-merged results have
very different convergence trends. The cut grids with small volume ratios and no merging have a large
heat flux distribution penalty added to them, but the rate at which they converge is still close to optimal.
When merging, the initial heat flux distribution error is approximately the same for the merged mesh and
the boundary-conforming cut mesh, but the rates for the merged mesh are not optimal. Currently, there is
not a satisfactory explanation for why the merged mesh has such low convergence rates, but what is clear
is that the merged mesh has lower heat flux distribution errors and higher accuracy than the non-merged
mesh. The importance of merging becomes even clearer in Figure 10, where the heat flux distribution itself
is plotted over the range of grid refinements (across) and solution orders (down). As the mesh is refined and
the solution order is increased, even without merging, the heat flux distribution improves. In fact, highly
resolved meshes with higher-order solutions (bottom right in Figure 10) do not show oscillatory behavior.
However, in the under-resolved meshes there is a huge penalty in the heat flux distribution when merging
is not used. In the context of an adaptive method a larger loss of accuracy in under-resolved meshes is
particularly troublesome.

Along with boundary distribution data, the other critical reason for merging is the condition number
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Figure 10. Boundary distributions of heat flux for the two-dimensional convection-
diffusion problem using the merged and non-merged cut grids. The bound-
ary distributions highlight the importance of merging particularly in cases
with under-resolved meshes.
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of the linear system when small volume ratios exist. Table 2 lists the GMRES iteration count and drop
in the residual after one linear solver for the merged and non-merged cut meshes. The linear system is
solved using left preconditioned ILU(0).25 In the linear system solve the preconditioned residual always
drops by at least 1014 in the number of GMRES iterations listed. The residual drop is included in Table 2
to illustrate the difference between the preconditioned residual and the residual itself. For the non-merged
high-order solution cases, Table 2(a), the drop in the residual has little correspondence with the drop in the
preconditioned residual due to the large condition number of the linear system. The result is that even for the
linear convection-diffusion problem multiple linear solves are needed to converge the residual in non-merged
meshes. When merging is used, Table 2(b), the drop in the residual is almost constant across the range of
mesh refinements and solution orders.

(a) No Merging

h0

h
= 1 h0

h
= 2 h0

h
= 4 h0

h
= 8

p = 1 46 (8 × 1014) 136 (1 × 1015) 449 (1 × 1015) 766 (1 × 1015)

p = 2 42 (2 × 1014) 112 (1 × 1014) 485 (1 × 1014) 786 (1 × 1014)

p = 3 49 (2 × 1012) 156 (1 × 1011) 456 (7 × 1011) 862 (1 × 1012)

p = 4 45 (6 × 109) 146 (2 × 109) 590 (2 × 109) 855 (3 × 109)

p = 5 49 (3 × 107) 181 (9 × 106) 481 (7 × 106) 833 (5 × 106)

(b) With Merging

h0

h
= 1 h0

h
= 2 h0

h
= 4 h0

h
= 8

p = 1 49 (9 × 1014) 138 (7 × 1014) 447 (5 × 1014) 853 (4 × 1014)

p = 2 43 (3 × 1014) 113 (8 × 1014) 441 (5 × 1014) 792 (3 × 1014)

p = 3 52 (1 × 1015) 153 (6 × 1014) 464 (4 × 1014) 793 (2 × 1014)

p = 4 46 (6 × 1014) 149 (5 × 1014) 467 (4 × 1014) 842 (2 × 1014)

p = 5 51 (8 × 1013) 199 (1 × 1014) 578 (2 × 1014) 868 (2 × 1014)

Table 2. The GMRES iteration counts and the drop in the residual of the linear system
solve for the merged and non-merged meshes that originally had small volume
ratios. The GMRES iteration count is the total number of inner GMRES
iterations used with GMRES restart after 50 inner iterations.

III. Integration Rules for Arbitrary Element Shapes

Discontinuous Galerkin finite element discretizations do not require specific element shapes. Only a basis
to represent the solution and a set of integration rules within each element are necessary. To include cut cells
in a DG discretization a technique to integrate over arbitrary shapes is needed. One possible approach for
generating integration rules is to subdivide each cut element into a set of possibly-curved triangles. Though
this approach would provide an optimal set of quadrature rules for integration in each element, it cycles
back to the original problem of meshing with curved boundaries. For that reason, a more general approach
is selected for cut cells.

The method used for integrating over cut elements is to “speckle” sampling points in the cut element
and then apply the divergence theorem to compute the integration weights associated with each point such

that
∫

Ω
f(x)dΩ ≈ ∑Nquad

q=1 wqf(xq). Further details can be found in.13–15,22

The general method used for generating quadrature-like sums for integration rules has proven to be
sufficient for 2D cut-cell cases, but a very large number of quadrature points, upwards of 400 for element
area integration, are necessary for p = 5 cases. An example set of points is shown in Figure 11(a). Since
the quadrature points are stored and the solution must be sampled at each one during integration, there is
a significant added computational cost.

Currently the “speckling” is performed by first randomly selecting a point along the surface of the element
boundary, inwardly projecting rays (randomly ±15◦ off inward normal) from that point, and then randomly
selecting a point along the ray between where it enters the domain and where it exits the domain. The reason
for such a large number of sampling points is to guarantee coverage of the entire region of an arbitrarily cut
element.
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(a) Standard Cut Elements (b) Canonical Cut Elements

Figure 11. (a) An example of the “speckled” 2D integration points for
a cut-cell mesh. In order to support p = 5 solutions upwards of 400
points are necessary to adequately cover the interior of the element.
(b) Example of the same cut elements converted to canonical elements.

Figure 12. Example of a boundary-
curved domain. The boundary-
conforming domain is globally lin-
ear with a single curved boundary
on the geometry surface.

To explore the solution dependence on the randomness in the quadrature rules, the boundary-curved
mesh, Figure 12, is used. The selection of this particular grid topology allows the integration procedure to be
isolated. Figure 13 shows the convergence history of the heat flux distribution error, where at each solution
order and grid refinement level, 100 different sets of randomly “speckled” points are used for integration
rules. For each polynomial order the convergence of the minimum and maximum heat flux distribution
errors are plotted versus grid refinement. For solution orders p = 1 through p = 4 there is no variation
in the convergence of the heat flux distribution error as the integration rules change with different sets of
400 random “speckled” points in each cut element. However, when using p = 5 polynomials to represent
the solution, the heat flux distribution appears to be very dependent on the random sets of points. On the
coarsest grid with p = 5 the heat flux distribution error ranges from 6.7 × 10−2 to 5.2 × 10−5.
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Figure 13. Convergence history of the minimum and maximum heat flux distribution
error at solution orders 1 though 5, where a 100 different sets of “speck-
led” points are used for integration rules at the four grid refinement levels.
Indicates that for solution orders 1 through 4 there is no variation in con-
vergence as the “speckled” points randomly change. However at p = 5 the
convergence history has a wide range in the error.

Though the existence of a single cut mesh in a hundred with an order of magnitude worse heat flux
distribution error is unsatisfactory, knowing the frequency of occurrence of the “bad” solutions is important.
Figure 14 and Table 3 show the variation of the heat flux distribution error at p = 5 for each of the four
grid refinement levels. Figure 14 shows that the impact of randomness is strongest for the coarse grid. The
coarse grid has one solution with a heat flux distribution error over eight hundred times higher than the
minimum heat flux distribution error over the 100 sets of points examined. The impact of randomness is
less apparent for the refined meshes. For the finer meshes the range of heat flux distribution error is only
O (10). However, the differing error levels imply that a poor set of random numbers occurs too frequently
and a new quadrature, or “speckling,” method is necessary to improve robustness.
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Figure 14. Range of heat flux distribution error over a 100 sets of “speckled” points
at p = 5 for each grid refinement level.

In order to increase the quality of the integration rules, canonical element shapes, Figure 11(b), can be
recognized. In 2D, for example, essentially all cut elements have three or four sides. The primary exception
to this is the element at a trailing edge which has two embedded surface faces cutting into it. However, three
and four sided cut shapes can be mapped to triangles and quadrilaterals, respectively, to provide optimal
integration rules in the reference space of the canonical element. It must be noted that the recognition
of canonical shapes will be more difficult in three dimensions. In three dimensions the canonical options
will not be simply tetrahedral and quadrilaterals. However, a similar canonical conversion process can be
used. First cut-tetrahedral faces can be identified as triangles or quadrilaterals, then the resulting interior
volumes can be recognized as a canonical object which is formed by a set of tetrahedrons. The proposed
three-dimensional canonical conversion process simply requires meshing standard objects, like a tetrahedron
with a node cut off, in linear reference space.

h0

h
= 1 h0

h
= 2 h0

h
= 4 h0

h
= 8

Min HFDE over random sets 6.66716 × 10−6 9.16533 × 10−7 5.74882 × 10−8 2.45837 × 10−9

Max HFDE over random sets 4.59215 × 10−3 4.11643 × 10−6 3.03729 × 10−7 8.83649 × 10−9

Median HFDE over random sets 4.81227 × 10−4 1.13621 × 10−6 7.69974 × 10−8 3.00955 × 10−9

HFDE for canonical-cut grid 8.02504 × 10−6 9.20516 × 10−7 5.75533 × 10−8 2.81036 × 10−9

Table 3. Table comparing the minimum, maximum and median heat flux distribution
errors over the 100 sets of randomly “speckled” sampling points to the heat
flux distribution error from the same cut mesh with quadrature rules gener-
ated from canonical elements.

Cut elements are converted to canonical elements by using the higher-order geometry information from
the faces of arbitrarily cut triangles or quadrilaterals to set the node locations on the element boundaries.
Interior node locations are determined using a single element linear elasticity analogy using the location of
the boundary nodes as Dirichlet conditions. A q = 5 order Lagrange basis is used in this work to represent
the geometry. Figure 11 visually shows the difference between the cut elements and the canonical elements.
The figure also shows the required number of quad points for comparable accuracy between standard cut
elements (Nquad = 400) and cut elements which have been converted to canonical elements (Nquad = 40−64).
Along with a reduction in the number of quadrature points, the canonical element’s quadrature also comes
with provable accuracy. Table 3 compares the integration rules generated from canonical elements to the
rules generated from randomly “speckled” sampling points. The heat flux distribution error for the canonical
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integration rules is close to the minimum heat flux distribution error over the 100 different sets of randomly
“speckled” points.

Converting most cut elements to canonical elements also implies that for the remaining cut elements more
“speckling” points or a more costly algorithm to for generating integration rules can be used. An increase
in the number of sampling points tends to improve the integration rules and reduce variability. However,
further improving the “speckling” method remains an area of continuing research.

IV. Solution Space
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Figure 15. Comparison of the convergence in the heat flux distribution errors for cases
with parametric and Cartesian approximation functions on globally curved
higher-order meshes and globally linear meshes with a single curved bound-
ary. The plots indicate that although there is a small deterioration in the
error and rates with the Cartesian functions, the Cartesian functions still
performs well at higher order even in linear meshes with a single higher-
order surface.

In typical higher-order boundary-conforming meshes the solution approximation space is defined as poly-
nomials on a reference element which is then mapped to the physical element. Mapping the solution approx-
imation functions from reference space to physical space results in a parametric basis. The cut-cell method
examined here depends on intersecting linear background meshes with higher-order embedded surfaces. The
resulting cut elements can be arbitrarily shaped. Hence, a mapping from reference space to physical space
is not guaranteed to exist and a parametric basis cannot be used for cut cells.

When using the DG finite element discretization and weakly enforced boundary conditions, another
possibility besides parametric basis functions exists to approximate the solution. It is possible to associate
a linear shadow element with each arbitrarily cut element and form a Cartesian basis. The Cartesian basis
is generated using an affine mapping for the approximation functions from reference space to the shadow
element. These Cartesian basis functions support solutions which are polynomial in physical space, i.e.
x, y, xy, x2, y2, . . .

This section examines the effect on solution efficiency (defined as accuracy per degree of freedom) of
using a Cartesian basis compared to a parametric basis. To isolate the Cartesian and parametric bases their
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comparison is performed without the inclusion of the cut-cell algorithm by comparing solutions on globally-
curved meshes with linear boundary-curved meshes, Figure 12. Figure 15 shows the heat flux distribution
error convergence comparison between parametric and Cartesian bases on both globally-curved meshes and
boundary-curved meshes. Looking at the globally-curved mesh in isolation first, the Cartesian basis does
result in slightly higher heat flux distribution errors and worse convergence rates in the asymptotic range, but
the heat flux distribution errors on the initial grid for the Cartesian basis is actually better. Both bases result
in essentially the same answer and can be used interchangeably for the globally-curved mesh without a loss
of accuracy. Figure 15(c,d) shows the convergence of the heat flux distribution error on the boundary-curved
mesh. For this mesh the Cartesian basis, Figure 15(d), performs significantly better than the parametric
functions, Figure 15(c). In fact using the parametric functions with the boundary-curved mesh, Figure 15(c),
results in both poor accuracy and low convergence rates. This implies that for cut elements that have been
recognized as canonical shapes Cartesian bases should be used in place of parametric bases.

On Figure 15, an important comparison to make between a boundary-conforming method and a cut-cell
method, is between the globally-curved case with parametric functions, Figure 15(a), and boundary-curved
case with Cartesian functions, Figure 15(d). The boundary-curved Cartesian functions results in marginally
inferior convergence rates compared to the globally-curved parametric basis. However, the difference in
convergence rates does not lead to a significant discrepancy in accuracy between the globally-curved case
with parametric functions and the boundary-curved case with Cartesian functions. The similarity in the
accuracy of the two approximation functions is a significant conclusion for the cut-cell method, as it provides
quantifiable evidence that high quality solutions can be generated with Cartesian approximation functions
on arbitrarily cut elements.

V. Output-Based Adaptation RANS Results

In this section results are presented from simulations of two-dimensional RANS flows using an output-
based error estimation and cut-cell adaptation strategy. Variations of error estimation and adaptation
strategies appear throughout the literature.2,15,26–29 The implementation used here follows exactly the
approach of Fidkowski and Darmofal.5,15 In this work an asymptotically dual-consistent discontinuous
Galerkin discretization of the RANS equations with the Spalart-Allmaras (SA) turbulence model30,31 is
used. Modifications to the original SA model based on the work of Oliver and Darmofal32–34 are followed.

The three cases presented here are RANS simulations of a subsonic RAE2822, a transonic RAE2822, and
a subsonic high-lift McDonnell Douglas Aerospace (MDA) three-element airfoil.

V.A. Subsonic RAE2822

The first case of interest is M∞ = 0.3, Rec = 6.5 × 106, α = 2.31◦, turbulent flow over a RAE2822. The
adaptation process begins with the coarse isotropic mesh shown in Figure 16. Figure 17 shows the adaptation
history of the drag error indicator and the drag value. Once some level of grid refinement is reached, the
benefit of the higher-order method is displayed as the p = 2 and p = 3 solutions reach lower error values at
the same number of degrees of freedom compared to the p = 1 solution. Also included in Figure 17 is the
adaptation history for p = 1 and p = 2 boundary-conforming meshes. The boundary-conforming simulations
were performed using the same flow solver and linear elasticity to convert linear boundary-conforming meshes
to higher-order, q = 3, meshes. The comparison between boundary conforming and cut-cell meshes indicates
that the boundary-conforming meshes can achieve lower error at a given degree of freedom count than the
cut-cell method. The lower required degree of freedom for the same error is not unexpected. The boundary-
conforming meshes have high aspect ratio curved elements on the geometry, where the cut-cell method has
high aspect ratio linear elements which intersect the embedded boundary and get broken into a number of
smaller elements. Though the boundary-conforming meshes outperform the cut-cell method for this simple
geometry, mesh generation for the cut-cell method is significantly easier and therefore more automated.

Since pressure is an algebraic function of the state vector, it is relatively easy to resolve. Figure 18(a)
reflects this fact as the pressure distributions for the final adaptive grids for p = 1, 2, 3 are very smooth. Skin
friction, on the other hand, is a derivative quantity and more prone to oscillations. Skin friction is therefore
more sensitive to well conditioned bases and volume ratio. Figure 18(b) shows that, even though the drag
error is quite low, oscillations remain in the skin friction. The oscillations are not unique to the cut-cell
method as the final p = 2 boundary conforming skin friction results also shown in Figure 18(b) contain
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Initial Grid Zoom 1 Initial Grid Zoom 2

Intermediate Grid

Intermediate Grid Zoom 1 Intermediate Grid Zoom 2

Final Grid

Final Grid Zoom 1 Final Grid Zoom 2

Figure 16. Initial, intermediate, and final mesh from the drag-based adaptation process
for a p = 2 solution for M∞ = 0.3, Rec = 6.5 × 106, α = 2.31◦, turbulent flow
over a RAE2822.
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Figure 17. Convergence plots for drag based error indicator and the drag itself versus
degrees of freedom per state for M∞ = 0.3, Rec = 6.5 × 106, α = 2.31◦,
turbulent flow over a RAE2822. Boundary-conforming mesh results are
also included for comparison.

them. The skin friction results do however demonstrates the benefit of higher-order methods as the p = 3
solution is much smoother than the lower-order solutions.
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Figure 18. Surface distributions of cp and cf for M∞ = 0.3, Rec = 6.5 × 106, α = 2.31◦,
turbulent flow over a RAE2822 for the final grids at p = 1, 2, 3 solution
orders. The small oscillations visible in the cp distribution are a result of
the RAE2822 geometry definition used and are not a result of the cut-cell
method.

Figure 16 also shows an intermediate and the final mesh for p = 2 adaptation process. The final mesh
highlights the importance of the boundary layer for the turbulent flow.

V.B. Transonic RAE2822

Next, a transonic case with shock boundary layer interaction is considered, where M∞ = 0.729, Rec =
6.5 × 106, α = 2.31◦. Shock capturing is performed using the PDE-based artificial viscosity model from
Barter and Darmofal.35,36 The adaptation process begins with the same initial mesh as used above for the
subsonic RAE2822 and Figure 19 shows intermediate and final grids for p = 2 solutions. The adaptation
strategy has significantly more difficulty with the transonic RAE2822 compared to the subsonic case. The
complication comes from accurately predicting the location of the shock. When the boundary layer is under-
resolved the shock capturing scheme adds artificial viscosity that smooths the solution but also thickens the
boundary layer. The thicker boundary layer causes the shock location to move forward. More adaptation
iterations are needed compared to the subsonic case until the shock is in the correct location. The pressure
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distribution in Figure 20(a) shows that the location of the shock matches well with experimental data from
Cook et al.37 Also the skin friction distribution in Figure 20(b) compares well with the cut-cell method
providing a smooth distribution.

V.C. Subsonic MDA Three Element Airfoil

The last test case considered is a high-lift MDA three element airfoil. The complex geometry of the three
element airfoil is a good test of the robustness of the cut-cell method. Boundary-conforming meshes would
be challenging to generate autonomously for this case even though it is only two-dimensional. Figure 21
shows the initial mesh used for the adaptation process. The initial isotropic mesh is very coarse containing
1046 elements and does not contain enough refinement for a satisfactory Euler solution. The turbulent flow
conditions studied are M∞ = 0.2, Rec = 9×106, and α = 8.1◦. Figure 22 shows the final adaptive grid. The
final grid resolves the boundary layer with highly anisotropic elements. The resulting anisotropy emphasizes
the benefit of the simplex cut-cell technique in that it is not something that could be generated with a
Cartesian quadrilateral mesh.

Boundary distributions of pressure coefficient are shown in Figure 23. The adaptation process has
successfully added sufficient resolution to the mesh for smooth surface pressure distributions.

VI. Discussion and Conclusions

The goal of this work is to identify and resolve some of the limitations in the higher-order simplex cut-cell
method. Sections II-IV detailed the three main limitations which have been observed in the cut-cell method.
For each limitation, an approach was presented to resolve the issue.

An updated simplex cut-cell technique is demonstrated with the solution to high Reynolds number RANS
simulation over complex geometries. For a transonic RAE2822, strong matching is seen between computation
and experimental results. The utility of the cut-cell technique is demonstrated by the simulation of a three
element airfoil. Future work will extend this approach to three dimensions.

Acknowledgments

This work was supported by funding from The Boeing Company with technical monitor Dr. Mori Mani.

References

1Rannacher, R., “Adaptive Galerkin finite element methods for partial differential equations,” Journal of Computational

and Applied Mathematics, Vol. 128, 2001, pp. 205–233.
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Figure 19. Initial, intermediate, and final mesh from the drag-based adaptation process
for a p = 2 solution for M∞ = 0.729, Rec = 6.5× 106, α = 2.31◦, turbulent flow
over a RAE2822.
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Figure 20. Surface distributions of cp and cf for M∞ = 0.729, Rec = 6.5 × 106, α =
2.31◦, turbulent flow over a RAE2822. Pressure distributions compared to
experimental data from Cook et al.37

Figure 21. Initial mesh from the drag-based adaptation process for a p = 2 solution
for M∞ = 0.2, Rec = 9 × 106, α = 8.1◦, turbulent flow over an MDA three
element airfoil.
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Figure 22. Final mesh from the drag-based adaptation process for a p = 2 solution for
M∞ = 0.2, Rec = 9×106, α = 8.1◦, turbulent flow over an MDA three element
airfoil.
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Figure 23. Surface pressure distributions for M∞ = 0.2, Rec = 9×106, α = 8.1◦, turbulent
flow over an MDA three element airfoil.
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