Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

from builtins import zip 

from builtins import range 

from gpkit import Variable 

import numpy as np 

 

import unittest 

from gpkit.tests.helpers import run_tests 

 

from robust.equivalent_posynomials import EquivalentPosynomials 

 

class TestEquivalentPosynomials(unittest.TestCase): 

def test_merge_intersected_lists(self): 

for _ in range(100): 

number_of_lists = int(10*np.random.random()) + 1 

list_of_lists = [] 

for l in range(number_of_lists): 

number_of_elements = int(5*np.random.random()) + 1 

list_of_lists.append([int(20*np.random.random()) for _ in range(number_of_elements)]) 

partition = EquivalentPosynomials.merge_intersected_lists(list_of_lists) 

for i in range(len(partition) - 1): 

self.assertTrue(all(not (set(partition[i]) & set(partition[j])) for j in range(i+1, len(partition)))) 

for from_list in list_of_lists: 

self.assertTrue(any(set(from_list) <= set(from_partition) for from_partition in partition)) 

 

def test_same_sign(self): 

for _ in range(20): 

number_of_elements = int(50*np.random.random()) + 1 

a = [int(20*np.random.random()) for _ in range(number_of_elements)] 

self.assertTrue(EquivalentPosynomials.same_sign(a)) 

a = [int(20*np.random.random()) - 19 for _ in range(number_of_elements)] 

self.assertTrue(EquivalentPosynomials.same_sign(a)) 

a = [int(20*np.random.random()) - 19 for _ in range(number_of_elements)] 

neg_flag = False 

for element in a: 

if element < 0: 

neg_flag = True 

break 

pos_flag = False 

for element in a: 

if element > 0: 

pos_flag = True 

break 

 

if neg_flag and pos_flag: 

self.assertFalse(EquivalentPosynomials.same_sign(a)) 

else: 

self.assertTrue(EquivalentPosynomials.same_sign(a)) 

 

def test_correlated_monomials(self): 

for _ in range(20): 

number_of_monomials = int(50*np.random.random())+1 

number_of_gp_variables = int(np.random.rand()*20) + 1 

number_of_uncertain_variables = int(np.random.rand()*5) + 1 

vector_to_choose_from = [0, 0, 0, 0, 0, 0, 0, 0, 1, -1] 

 

m = number_of_monomials*[1] 

p_uncertain_vars = [] 

correlations = [] 

dependent_theoretical_partition = [] 

 

# Generating random monomials 

for j in range(number_of_monomials): 

for i in range(number_of_gp_variables): 

x = Variable('x_%s' % i) 

m[j] *= x**(np.random.rand()*10 - 5) 

 

# Generating random uncertain variables to merge with monomials 

for i in range(number_of_uncertain_variables): 

u = Variable('u_%s' % i, np.random.random(), pr=100*np.random.random()) 

p_uncertain_vars.append(u.key) 

neg_pos_neutral_powers = [vector_to_choose_from[int(10*np.random.random())] for _ in range(number_of_monomials)] 

same_sign = EquivalentPosynomials.same_sign(neg_pos_neutral_powers) 

 

if not same_sign: 

related_monomials = [i for i in range(number_of_monomials) if neg_pos_neutral_powers[i] != 0] 

correlations.append(related_monomials) 

 

for j in range(number_of_monomials): 

m[j] *= u**(np.random.rand()*5*neg_pos_neutral_powers[j]) 

if neg_pos_neutral_powers[j] != 0: 

dependent_theoretical_partition.append(j) 

 

# Merging intersections of correlations gives the theoretical partition of monomials. 

theoretical_partition = EquivalentPosynomials.merge_intersected_lists(correlations) 

 

p = sum(m) 

equivalent_posynomial = EquivalentPosynomials(p, 0, False, False) 

equivalent_posynomial.main_p = p 

actual_partition = equivalent_posynomial.correlated_monomials() 

 

theoretical_posynomials = [] 

actual_posynomials = [] 

 

monomials = p.chop() 

for theo_list, act_list in zip(theoretical_partition, actual_partition): 

theoretical_posynomials.append(sum([m[i] for i in theo_list])) 

actual_posynomials.append(sum([monomials[j] for j in act_list])) 

 

self.assertSetEqual(set(actual_posynomials), set(theoretical_posynomials)) 

 

# dependent uncertainties 

temp = [] 

for part in theoretical_partition: 

temp += part 

 

theoretical_partition = list(set(dependent_theoretical_partition)) 

equivalent_posynomial = EquivalentPosynomials(p, 0, False, True) 

equivalent_posynomial.main_p = p 

actual_partition = equivalent_posynomial.correlated_monomials() 

 

theoretical_posynomials = [] 

actual_posynomials = [] 

 

theoretical_posynomials.append(sum([m[i] for i in theoretical_partition])) 

actual_posynomials.append(sum([monomials[j] for j in actual_partition[0]])) 

self.assertSetEqual(set(actual_posynomials), set(theoretical_posynomials)) 

 

def test_check_if_in_list_of_lists(self): 

for _ in range(20): 

number_of_lists = int(10*np.random.random()) + 1 

list_of_lists = [] 

number_of_elements = [] 

for l in range(number_of_lists): 

number_of_elements.append(int(5*np.random.random()) + 1) 

list_of_lists.append([int(200*np.random.random()) for _ in range(number_of_elements[l])]) 

 

element_list = int(number_of_lists*np.random.random()) 

element = list_of_lists[element_list][int(number_of_elements[element_list]*np.random.random())] 

non_element = int(200*np.random.random()) + 200 

 

self.assertTrue(EquivalentPosynomials.check_if_in_list_of_lists(element, list_of_lists)) 

self.assertFalse(EquivalentPosynomials.check_if_in_list_of_lists(non_element, list_of_lists)) 

 

TESTS = [TestEquivalentPosynomials] 

 

def test(): 

run_tests(TESTS) 

 

if __name__ == "__main__": 

test()