Coverage for gpkit/solvers/cvxopt.py: 100%
58 statements
« prev ^ index » next coverage.py v7.3.1, created at 2023-09-23 21:27 -0400
« prev ^ index » next coverage.py v7.3.1, created at 2023-09-23 21:27 -0400
1"Implements the GPkit interface to CVXOPT"
2import numpy as np
3from cvxopt import spmatrix, matrix
4from cvxopt.solvers import gp
5from gpkit.exceptions import UnknownInfeasible, DualInfeasible
8# pylint: disable=too-many-locals,too-many-statements
9def optimize(*, c, A, k, meq_idxs, use_leqs=True, **kwargs):
10 """Interface to the CVXOPT solver
12 Definitions
13 -----------
14 "[a,b] array of floats" indicates array-like data with shape [a,b]
15 n is the number of monomials in the gp
16 m is the number of variables in the gp
17 p is the number of posynomial constraints in the gp
19 Arguments
20 ---------
21 c : floats array of shape n
22 Coefficients of each monomial
23 A : floats array of shape (n, m)
24 Exponents of the various free variables for each monomial.
25 k : ints array of shape p+1
26 k[0] is the number of monomials (rows of A) present in the objective
27 k[1:] is the number of monomials present in each constraint
29 Returns
30 -------
31 dict
32 Contains the following keys
33 "success": bool
34 "objective_sol" float
35 Optimal value of the objective
36 "primal_sol": floats array of size m
37 Optimal value of free variables. Note: not in logspace.
38 "dual_sol": floats array of size p
39 Optimal value of the dual variables, in logspace.
40 """
41 log_c = np.log(np.array(c))
42 A = A.tocsr()
43 maxcol = A.shape[1]-1
44 lse_mons, lin_mons, leq_mons = [], [], []
45 lse_posys, lin_posys, leq_posys = [], [], []
46 constraint_hashes = set()
47 for i, n_monomials in enumerate(k):
48 start = sum(k[:i])
49 mons = range(start, start+k[i])
50 A_m = A[mons, :].tocoo()
51 chash = hash((c[i], tuple(A_m.data), tuple(A_m.row), tuple(A_m.col)))
52 if chash in constraint_hashes:
53 continue # already got it
54 if i: # skip cost posy
55 constraint_hashes.add(chash)
56 if use_leqs and start in meq_idxs.all:
57 if start in meq_idxs.first_half:
58 leq_posys.append(i)
59 leq_mons.extend(mons)
60 elif i != 0 and n_monomials == 1:
61 lin_mons.extend(mons)
62 lin_posys.append(i)
63 else:
64 lse_mons.extend(mons)
65 lse_posys.append(i)
66 if leq_mons:
67 A_leq = A[leq_mons, :].tocoo()
68 log_c_leq = log_c[leq_mons]
69 kwargs["A"] = spmatrix([float(r) for r in A_leq.data]+[0],
70 [int(r) for r in A_leq.row]+[0],
71 [int(r) for r in A_leq.col]+[maxcol], tc="d")
72 kwargs["b"] = matrix(-log_c_leq)
73 if lin_mons:
74 A_lin = A[lin_mons, :].tocoo()
75 log_c_lin = log_c[lin_mons]
76 kwargs["G"] = spmatrix([float(r) for r in A_lin.data]+[0],
77 [int(r) for r in A_lin.row]+[0],
78 [int(r) for r in A_lin.col]+[maxcol], tc="d")
79 kwargs["h"] = matrix(-log_c_lin)
80 k_lse = [k[i] for i in lse_posys]
81 A_lse = A[lse_mons, :].tocoo()
82 log_c_lse = log_c[lse_mons]
83 F = spmatrix([float(r) for r in A_lse.data]+[0],
84 [int(r) for r in A_lse.row]+[0],
85 [int(r) for r in A_lse.col]+[maxcol], tc="d")
86 g = matrix(log_c_lse)
87 try:
88 solution = gp(k_lse, F, g, **kwargs)
89 except ValueError as e:
90 raise DualInfeasible() from e
91 if solution["status"] != "optimal":
92 raise UnknownInfeasible("solution status " + repr(solution["status"]))
93 la = np.zeros(len(k))
94 la[lin_posys] = list(solution["zl"])
95 la[lse_posys] = [1.] + list(solution["znl"])
96 for leq_posy, yi in zip(leq_posys, solution["y"]):
97 if yi >= 0:
98 la[leq_posy] = yi
99 else: # flip it around to the other "inequality"
100 la[leq_posy+1] = -yi
101 return dict(status=solution["status"],
102 objective=np.exp(solution["primal objective"]),
103 primal=np.ravel(solution["x"]),
104 la=la)