Skip to content

Passed

run_tests.TestSimulation_mosek_conif.test_simulate (from run_tests.TestSimulation_mosek_conif-20200714173257)

Took 8.1 sec.

Standard Output

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

Solution check warning: Dual cost 1.907714641790115e+16 does not match primal cost 1.9116728491193156e+16
Final solution let signomial constraints slacken by 16%. Calling .localsolve with a higher `pccp_penalty` (it was 200 this time) will reduce final slack if the model is solvable with less. If you think it might not be, check by solving with `use_pccp=False, x0=(this model's final solution)`.

SGP not convergent: Cost rose by 0.043% on GP solve 3. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8.1% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 0.46% on GP solve 4. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 1.9% on GP solve 3. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

Final solution let signomial constraints slacken by 0.046%. Calling .localsolve with a higher `pccp_penalty` (it was 200 this time) will reduce final slack if the model is solvable with less. If you think it might not be, check by solving with `use_pccp=False, x0=(this model's final solution)`.

SGP not convergent: Cost rose by 0.06% on GP solve 3. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 0.058% on GP solve 3. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8.1% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 0.46% on GP solve 4. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

SGP not convergent: Cost rose by 8% on GP solve 2. Details can be found in `m.program.results` or by solving at a higher verbosity. Note that convergence is not guaranteed for models with SignomialEqualities.

	

Standard Error