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Abstract

A physics-based, reduced-order combustor flow model, CFLOW, is described which cap-
tures the essential features of physical flow phenomena characteristic of combustors. The
compressible flow equations are solved on a stream-aligned grid using a Newton-Raphson
method. The effects of combustor flow phenomena such as shear layers and recirculation
zones are represented by simple turbulence models and semi-empirical relationships. Two
turbulence modeling approaches are presented which capture the mixing processes in com-
bustor flows. Validation studies are conducted in order to assess the merits of the proposed
turbulence models.
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Chapter 1

Introduction

1.1 Background and Motivation

Combustor flows are characterized by a wide range of physical flow phenomena which are

difficult to simulate with three-dimensional, transient Computational Fluid Dynamic (CFD)

simulations. Boundary layers line the pre-diffuser, diffuser, and burner walls. Two large

recirculation zones occupy the dump region between the pre-diffuser exit and the burner

entrance. In addition, the recirculation zones re-attachment points fluctuate with respect

to time, which adds another modeling difficulty. The burner hood also introduces a region

of high velocity flow with strong streamline curvature, which increases the local turbulence

levels and decreases the total pressure. In addition to the difficulties presented by modeling

the aforementioned phenomena, CFD packages are computationally expensive, typically

requiring several hours if not days to run. As a result, engineering necessity requires that

the combustor design engineer use conceptual and semi-empirical models in order to arrive

at an acceptable design within the specified time limits.

CFD simulations are used near the end of the design process in order to predict phe-

nomena that were not accounted for in the preliminary design phase. Design corrections

in the latter phases of the design process, however, can lead to significant costs for engi-

neering re-work and delays in product delivery. Hence, there is a critical need for higher

fidelity simulations to be introduced into the earlier phases of the design process. CFLOW,

a physics-based lower order model of combustor flows, is proposed in order to address this

need. CFLOW models combustor flows essentially as compressible and inviscid with mass,

momentum, and energy transfer source terms to include turbulent mixing effects. These
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source terms require the bulk of the modeling effort. The reduced complexity of this lower-

order model renders it less computationally expensive than high-fidelity simulations.

The basic modeling approaches used in CFLOW are based on the work of Underwood [2]

and Drela [3]. Underwood sought to predict the behavior of confined swirling flows with heat

addition using various reduced-order computational flow models. In one of these schemes,

the flow is solved on a stream-aligned grid in order to minimize numerical dissipation. Thus,

the total pressure loss is zero for smooth geometries unless loss mechanisms are added to the

model. Underwood employs the empirical relationship for the growth rate of plane mixing

layers presented by Dimotakis [13] in order to arrive at expressions for the transport terms.

In this thesis, two modeling approaches are presented for the effects of turbulent mixing

on the mean combustor flow. The first model applies Prandtl’s second hypothesis, which

relates the eddy viscosity to the velocity difference across a mixing layer and the thickness,

to the turbulent viscosity hypothesis developed by J. Boussinesq. Prandtl’s equation is

substituted into the shear stress equation, which eliminates the eddy viscosity and mixing

layer thickness from the expression (see Chapter 3). The result is that the turbulent shear

stress is a function of the density, the velocity difference squared, and a mixing constant

determined from Dimotakis’ study. The second approach (see Chapter 4) uses the Boussi-

nesq expression explicitly, instead of substituting for eddy viscosity and the mixing layer

thickness, in order to arrive at a model in which the turbulent eddy viscosity and shear layer

thickness evolve with the flow. Specifically, the von Karman Integral Momentum Equation

and the Spalart-Allmaras Equation [4] were chosen to represent the evolution of the eddy

viscosity and mixing layer thickness. Drela [3] integrated the continuity and the axial com-

ponent of the Navier-Stokes Equations for a 2D compressible thin shear layer in order to

arrive at the Integral Momentum Equation for a mixing layer. Similarly, the continuity and

Spalart-Allmaras (S-A) equations were integrated across the mixing layer in order to arrive

at the integral form of the S-A equation used in CFLOW. Reasonable assumptions about

the eddy viscosity, density, and velocity profiles were made in order to utilize this integral

approach. However, calibration to the physical flow becomes a necessity as a result.

12



1.2 Research Objectives

The goal of the research effort is to develop an easily calibrated physics-based, reduced-

order computational flow model which accurately captures the effects of shear layers and

recirculation zones on critical combustor design parameters, such as total pressure loss and

mass flow distribution. These metrics will then be validated against experimental results

from combustor-diffuser performance studies.

1.3 Thesis Overview

Chapter 2 first describes combustor flow phenomena and terminology. The basic governing

equations for compressible inviscid flow and the mass, momentum, and energy transfer

terms are presented. Finally, the damped Newton solver is discussed.

Chapter 3 presents the theoretical approach and numerical results of the Algebraic

Turbulent Shear-Layer Model. The plane mixing layer is introduced as the mechanism for

momentum transfer between adjacent streams. Mass and energy transfer terms are assumed

to be negligible compared to momentum transfer terms. In addition, the wall shear stress

model is discussed briefly. Finally, the results of the algebraic model are compared to several

combustor/diffuser performance studies.

In Chapter 4, the theoretical approach and numerical results of the Turbulent Integral

Shear-Layer Model are presented. The governing equations are derived, calibrated, and then

discretized for implementation in CFLOW. Finally, the results of this model are compared

to those of the algebraic model and the combustor/diffuser performance studies.

Chapter 5 summarizes the theoretical approaches of both turbulence models, discusses

the results of the validation studies, and outlines recommendations for future work on

CFLOW.

13
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Chapter 2

Combustor Flow Modeling

The purpose of this chapter is to discuss combustor flows and the foundation of the CFLOW

model. First, the physical flow features as air passes through each component of the com-

bustor are briefly discussed. Second, the streamtube model and the numerical stencil are

described. Third, the mean flow governing equations and matching conditions are presented.

Finally, the Newton solver is discussed.

2.1 Combustor Flows

The annular dump combustor layout has been the automatic choice for all new aircraft

engines since the 1960s [5]. The CF6-50, one of the engines fitted with annular dump

combustors, is shown in Figure 2-1. A typical combustor of this type consists of a prediffuser,

a diffuser, a burner, a burner dome, shrouds, fuel injectors, fuel igniters, and liners. For

the analysis undertaken in this thesis, this layout has been idealized in manner shown in

Figure 2-2, where the fuel injectors and igniters have been omitted and the geometry has

been simplified. The prediffuser accepts highly turbulent, high pressure flow from the high

pressure compressor and decreases the Mach number from about 0.5 to 0.3. Further diffusion

is necessary in order to reduce the total pressure losses in the dump gap; the diffuser serves

this purpose. Recirculation zones present in the dump gap reduce the total pressure and

increase the entropy of the gas. After diffusion, the flow splits into three branches:

1. The primary zone.

2. The area between the outer shroud diameter and the outer burner diameter.

15



Figure 2-1: CF6 Cutaway
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Figure 2-2: Combustor schematic
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Figure 2-3: Combustor features

3. The area between the inner shroud diameter and the inner burner diameter.

This flow split insures that the equivalence ratio of the turbulent, reacting flow in the

entrance of the burner primary zone is near or greater than one (depending on the power

setting). Further downstream, the reaction is quenched by added air from the shroud

passage flows via the dilution holes. However, this process also causes a drop in the total

pressure. In addition, the process of forcing flow through the burner hood, which contains

the fuel nozzles, incurs even more total pressure losses.

2.2 Streamtube Model and Stencil

The CFLOW model divides the flow into several stream tubes in order to capture the effects

of the recirculation zones and the flow distribution around the burner hood separately

(Figure 2-3). In the current version, seven streamtubes have been used. Streamtubes 1 and

7 are used to capture the recirculation zones in the dump gap. Streamtube 4 represents

the burner mass flow. The remaining streamtubes are distributed around the dome. This

approach enables the total pressure distribution at the pre-diffuser inlet to be approximated.

The flow within each streamtube conserves mass, momentum, and energy unless specific

mechanisms are added to the model that permit mass diffusion, momentum dissipation, heat

17
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transfer, and work transfer. These mechanisms are represented in the governing equations

by source terms, which must be modeled. The flow is assumed to be a steady, compressible,

turbulent flow that behaves like a calorically perfect gas. The governing equations that are

presented in Section 2.3 model the mean quantities of the fluid mechanical variables.

The seven streamtubes and a specified number of axial grid lines form an array of control

volume cells (Figure 2-4). CFLOW solves the compressible flow equations for each cell until

streamsurface locations are aligned with the grid. A typical grid for a converged CFLOW

simulation is shown in Figure 2-5. Each cell (i, j) contains 8 state variables and 8 equations

(Figure 2-6). The axial velocity, radial velocity, density, and temperature state variables

are stored on the cell faces. Pressure and the radial locations are stored on the north and

south cell edges.
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Figure 2-5: CFLOW Grid
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2.3 Main Flow Governing Equations

2.3.1 Conservation of Mass

The conservation of mass for cell(i, j) is

ρT1uT1AT1 − ρT0uT0AT0 = M̃PT − M̃TM (2.1)

where ρ is the density, u is the axial velocity, and A is the cell face area. M̃ denotes the

mass flow rate across the control volume edges as a result of turbulent mixing. Expressions

for the mass transfer terms are presented in Chapters 3 and 4.

The cell faces areas are defined

AT0 =
π

4
[(rNT0 + rNT1)

2 − (rST0 + rST1)
2] (2.2)

AT1 =
π

4
[(rNT1 + rNT2)

2 − (rST1 + rST2)
2] (2.3)

2.3.2 Equation of Motion: Axial

The axial component of the equation of motion is

ρT1u
2
T1AT1 − ρT0u

2
T0AT0 + pT1AT1 − pT0AT0 + pST1∆AS − pNT1∆AN = Sx + Scx, (2.4)

where Sx is the shear force due to the Reynolds stress and Scx is the convective momentum

transfer term due to turbulent mixing. The development and presentation of the expressions

for Sx and Scx are presented Chapters 3 and 4. ∆AS and ∆AN are the area changes over

which the pressures on the cell edges act. They are computed by

∆AN =
π

4
[(rNT1 + rNT2)

2 − (rNT0 + rNT1)
2] (2.5)

∆AN =
π

4
[(rST1 + rST2)

2 − (rST0 + rST1)
2] (2.6)
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2.3.3 Equation of Motion: Radial

The radial component of the equation of motion is

ρT1uT1vT1AT1 − ρT0uT0vT0AT0 − 0.5(pNT1 − pST1)(AS + AN ) = Sr + Scr (2.7)

where the v is the radial velocity, Sr is the radial component of the shear force acting on

the control volume, and Scr is the convective momentum transfer term due to turbulent

mixing. The expressions for Sr and Scr are presented in Chapters 3 and 4.

2.3.4 Conservation of Energy

The Conservation of Energy for a steady-state, steady flow process through cell(i, j) is

ρT1uT1AT1HT T1 − ρT0uT0AT0HT T0 = Hs + Htx − Ws (2.8)

where HT is the total enthalpy, Hs is the heat transfer rate across cell(i, j), Htx is the rate

of enthalpy flux across cell(i, j) due to mixing, and Ws is the rate of work transfer due to

shear. The expressions for the source terms are presented in Chapters 3 and 4.

2.3.5 Equation of State

The Equation of State, which ensures that the pressures on the cell faces are consistent

with those on the cell edges, is

ρT0RgasTT0 + ρT1RgasTT1 − (pST1 + pNT1) = PSD (2.9)

Rgas is the ideal gas constant for air, and T is the static temperature. PSD is a stabilization

term that eliminates the pressure-streamsurface decoupling mode that occurs as the system

is being updated. This term is defined in the following manner.

PSD = (PEPS)(
1

8
(ρT0 + ρT1)(u

2
T0 + u2

T1)/Ast1)(Ast1 −
1

4
(Ast0 + 2Ast1 + Ast2) (2.10)

Ast0 = π(r2
NT0 − r2

ST0) (2.11)
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Ast1 = π(r2
NT1 − r2

ST1) (2.12)

Ast2 = π(r2
NT2 − r2

ST1) (2.13)

PEPS = 0.300 (2.14)

2.3.6 Flow Tangency

The flow tangency condition is

u
dr

dx
− v = En (2.15)

where En, the net entrainment velocity, is defined in Chapters 3 and 4. In a case where

there is no mixing, En = 0 and the velocity vector is parallel to the streamline direction.

2.3.7 Matching Conditions: North and South Edges

For cells in which both edges are shear layers (as opposed to a fixed wall), the matching

conditions on the north and south edges of cell(i, j) are

pNT1 = pSP1 (2.16)

and

rST1 = rNM1 (2.17)

If the northern edge of cell(i, j) is a wall at a fixed radial location Rbn, then Equation 2.16

is replaced by

rNT1 = Rbn (2.18)

If the southern edge of cell(i, j) is a wall at a fixed radial location Rsn then Equation 2.17

is replaced by

rST1 = Rsn (2.19)
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2.4 Boundary Conditions

2.4.1 Inlet Boundary Conditions

Dirichlet boundary conditions are set at the inlet for the axial velocity, density, temperature,

and both edge static pressures. The radial velocity is determined by the flow tangency

condition. The radial locations corresponding to the northern edge of streamtube 7, the

southern edge of streamtube 1, and both edges of streamtubes 2 and 6 are fixed. Neumann

conditions apply to the streamsurfaces which emanate from the lip of the dome walls (see

Figure 2-3). This condition allows these streamsurfaces to float until the prescribed burner

mass flow rate is achieved.

2.4.2 Outlet Boundary Conditions

Dummy Dirichlet boundary conditions are applied to all fluid mechanical state variables at

the outlet. Neumann boundary conditions are set for northern and southern streamsurfaces

locations corresponding to streamtubes 2 and 6. The other 4 streamsurfaces are fixed to

the prescribed combustor geometry via Dirichlet conditions.

2.5 Newton-Raphson Solver

The system of nonlinear model equations is setup and solved simultaneously using a damped

Newton-Raphson method. The equations and state variables are stored in the residual

vector, R, and the state vector, Q, respectively. The goal is to find the state vector, Q∗,

which satisfies Equation 2.20.

R(Q∗) = 0 (2.20)

In order to do so, R is linearized about Q at iteration i, as shown in Equation 2.21 and

Equation 2.22. ∂R
∂Q

is the Jacobian matrix, which contains the partial derivatives of the

governing equations with respect to the state variables,

R(Qi + ∆Qi) = 0 (2.21)

R(Qi) +
∂R

∂Q
∆Qi ≈ 0 (2.22)
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∂R

∂Q
∆Qi ≈ −R(Qi) (2.23)

Qi+1 = Qi + ωi∆Qi (2.24)

∆Qi is solved in Equation 2.23 using a tri-diagonal block solver. The state vector is updated

in Equation 2.24, where ωi is the relaxation parameter at each iteration. For the all state

variables except the radial velocity, the relaxation parameter is determined in the following

manner:

ωi =











kQi

|∆Qi|
: | ∆Qi |> kQi

1 : | ∆Qi |≤ kQi

For the radial velocity,

ωi =











k
|∆Qi|

: | ∆Qi |> k

1 : | ∆Qi |≤ k

In this damping scheme, k ∼ 0.1. The minimum value of the relaxation parameter is chosen

for the newton update. This damping scheme is used to prevent the state variables, except

the radial velocity, from becoming negative during the newton updates. For example, a

negative value of pressure is not permissible in CFLOW. However, negative values of radial

velocity are physically possible. This procedure continues until the l2-norm of R is below

10−10. The initial state vector, Q0, must be relatively close to Q∗ in order for the system

to converge. Thus, Q0 is specified based on the inlet conditions (for the fluid mechanical

variables) and local geometry (for the radial locations of the streamlines).
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Chapter 3

Algebraic Turbulent Shear Layer

Model

The purpose of this chapter is to introduce the Algebraic Turbulent Shear Layer Model.

First, the bases for the momentum tranport mechanism used in CFLOW are explained.

Then, the modeling assumptions are stated and an algebraic turbulent shear layer model is

derived. Finally, this chapter concludes with a validation study, where critical combustor

performance metrics are studied.

3.1 Theoretical Approach

Turbulent flow over a backward facing step is similar to the flow leaving the pre-diffuser

and entering the dump gap. The thin boundary layers on the pre-diffuser walls separate,

curve sharply toward the diffuser walls, and then re-attach. The actual re-attachment point

is a function of time [14]. The region between the diffuser wall and the shear layer is called

the recirculation zone. Large eddies on the order of the step height pass through the re-

attachment region. Baker [16], Eaton and Johnson [15], and McGuiness [17] computed the

growth rates of reattaching shear layers and compared them to the growth rates of plane

mixing layers. It was found that reattaching shear layer growth rate was comparable to the

plane mixing layer growth rate. In addition, the mean velocity profiles were identical in the

outer three-fourths of the layer. The difference is found in the region near the low-speed

edge, where the turbulence intensity is higher for the reattaching shear layer case compared

to the plane mixing layer case. Eaton concluded that the reattaching shear layer is similar
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Figure 3-1: CFLOW mixing layer

to a plane-mixing layer upstream of the reattaching zone.

The CFLOW algebraic turbulence model uses the plane mixing layer as the principal

mechanism for momentum transfer between streams. Based on the work of Eaton, it is

appropriate to use the plane mixing layer to model the turbulent interactions between the

mean flow and the recirculation zone in the dump gap. For simplicity, the model is used

in the pre-diffuser region and the diffuser regions that are downstream of the dump gap to

facilitate mixing between adjacent streams with differing velocities.

The first approach to the turbulent mixing layer model consists of the following assump-

tions:

1. The mixing layer is thin ( δ
L

≪ 1), where L is a physical axial length scale, like the

length of the combustor.

2. The flow is highly turbulent (νt

ν
≫ 1).

3. Tangential velocity difference across mixing layer is small ( ∆U
Uave

≪ 1).

4. Pressure gradients are negligible compared to viscous diffusion.

5. Streamline curvature effects are negligible.

6. Mass and energy transfer are negligible, and their source terms are set to zero in

CFLOW.

7. Compressibility effects are negligible; the mixing layer is incompressible.

The mass flow rate of air through the mixing layer is negligible compared to the mass

flow rate across the cell faces as a result. Therefore, the effect of the mixing layer on

26



the mean flow are represented by shear stresses on the cell edges in this turbulence model

(Figure 3-1). In addition, convection and diffusion through the shear layer are neglected.

According J. Boussinesq [1], the shear stress for simple turbulent shear flows can be

represented by

τs = ρ(ν + νt)
∂u

∂y
(3.1)

where ν is the kinematic viscosity, νt is the eddy viscosity, and u is the mean axial velocity

in the mixing layer. Equation 3.1 is accurate when the turbulence characteristics and mean

velocity gradients change slowly relative to the mean flow. This is the case for simple,

turbulent shear flows such as the plane mixing layer. Thus, the local velocity gradients

characterize the Reynolds stresses [8].

Combustor flows are highly turbulent flows where the eddy viscosity is 2 or 3 orders of

magnitude larger the kinematic viscosity. Thus, the shear stress can be approximated as:

τs = ρνt
∂u

∂y
(3.2)

In addition, the flow Mach number in most of the regions downstream of the pre-diffuser is

less than 0.3. Thus, the assumption of incompressibility for the mixing layer is not grossly

inaccurate.

For a free mixing layer, Prandtl’s second hypothesis states that the eddy viscosity is

proportional to the velocity difference across two streams and the layer thickness. Hence,

νt = Kν∆Uδ (3.3)

where Kν is an empirical constant. In CFLOW, Kν is calibrated based on values determined

for plane mixing layers. The rule of thumb for such flows is: Kν ∼ 0.01. Combining the

Boussinesq analogy and Prandtl’s second hypothesis with the assumption that ∂u
∂y

≈ ∆u
δ

,

the mixing layer Reynolds stress is

τs = Ktρ(∆U)2. (3.4)

Görtler (1942) [1] solved for the velocity profile of a turbulent incompressible temporal plane
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mixing layer formed by two parallel streams with velocities U1 and U2,

u − U1

U2 − U1

=
1

2
[1 + erf(

σy

x
)] (3.5)

where u is the mean tangential velocity within the shear layer and σ is an empirical constant.

For a highly turbulent shear layer without pressure gradients and where changes in the

normal direction to the flow dominate over changes in the axial direction, it can be shown

from dimensional analysis (see Appendix C) that

δ = Kδ
∆U

Uave
x (3.6)

where Kδ is a constant determined from experiment. The linear growth of the mixing layer

thickness was verified by Dimotakis [13]. Combining this result for δ and Prandtl’s second

hypthosis for νt yields

νt = KνKδ
(∆U)2

Uave
x (3.7)

Taking the gradient of the velocity profile, evaluating it at the centerline, and substituting

Equation 3.6 and Equation 3.7 into Equation 3.2 yields

τs = 0.13ρ(∆U)2 (3.8)

Thus, in order to calibrate the shear layer model to the physical plane mixing layer case

state above, Kt is set to 0.13. This analysis also shows that Kt is an empirical constant. In

practice, Kt is calibrated in order to minimize the error between the performance metrics

(i.e. total pressure loss) in CFLOW and in experiment.

3.2 Wall Shear Stress

The wall shear stress τw is represented by

τw = Cf
1

2
ρU2 (3.9)

where the turbulent skin friction coefficient, Cf , is prescribed a value typical of turbulent

flows in circular pipes at Reynolds numbers characteristic of combustor flows and U is the
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Figure 3-2: Annular Combustor/Diffuser Rig

tangential velocity of the streams which are adjacent to the combustor walls.

A nominal value is set based on the following formula by Colebrook [1].

1

4Cf

≈ −2.0 log10(
k/D

3.7
+

2.51

ReD

√

4Cf

) (3.10)

In practice, Cf is a calibration constant in a similar manner to Kt.

3.3 Results

Lohmann et al [12] and Srinivasan et al [10] engaged in an experimental test programs

which sought to investigate the aerodynamic characteristics of dump diffuser/annular burner

systems in a blockage free environment (i.e. struts and fuel injector supports are absent).

A schematic of these combustor/diffuser rigs is shown in Figure 3-2. The static pressure

recovery, total pressure loss, and mass flow distribution measurements were collected as a

function of dump gap length. This thesis focuses on the effects dump gap length on the

pre-diffuser pressure recovery, the overall diffuser pressure recovery, and the diffuser total

pressure loss (dump loss).

Lohmann et al found that decreasing the dump gap length causes a back pressuring

of the pre-diffuser, which results in increased static pressure recovery and decreased total
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pressure loss. Srinivasan et al stated that decreasing the dump gap length results in lower

overall static pressure recovery and higher overall total pressure loss. These effects are due

to high velocities at increased streamline curvature near the dome walls. Lohmann et al

also discovered that an optimum dump gap length exists, where the overall diffuser pressure

recovery is maximum. Most of the pressure recovery occurs in the pre-diffuser, while most

of the total pressure loss is a result of the turbulent mixing in the dump region and around

the dome.

The nominal test conditions of Lohmann et al’s experiment were the following:

1. The mean inlet Mach number is 0.33.

2. The inlet Reynolds number is 300,000.

3. The inlet velocity profile is flat (as opposed to profiles with distorted velocity distri-

butions).

4.
Lp

D
= 4 (see Figure 3-2)

5. No mass transfer from shrouds to burner via dilution holes.

6. Percent Mass flow split: ID(29), OD(43), primary zone(28)

CFLOW was calibrated at a dump gap ratio, xd/D, of 1.43 in order to closely match

the values given in the Lohmann experiment for pre-diffuser static pressure recovery, Cp12
,

mass-averaged overall diffuser pressure recovery, Cp13
, and the mass-averaged dump loss,

CL13
. The CFLOW calibration constants for this study were Cf = 0.025 and Kt = 0.13. In

order to simulate the flat profile case in the Lohmann experiment, the core flow (streamtubes

3, 4, and 5) Mach number was set to 0.33, and the blockage flow (streamtubes 1,2,6, and

7) Mach number was set to 0.32 (see Appendix A).

3.3.1 Flow Plots

The CFLOW results for the Lohmann study at xd/D = 1.43 are shown in the following

flow plots.
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Mach Number

Figure 3-3 shows the Mach number distribution within the combustor rig. Streamtubes 1

and 7 are thin in the pre-diffuser. Then, they grow in the dump region as the speeds within

these streams sharply decrease. The recirculation zones induce large velocity differences

between streamtubes 1 and 2 and streamtubes 6 and 7, which result in increased mixing.

It is important to note that in the CFLOW, there is actually no recirculating air in the

dump region. This would require negative axial velocities, which are not permissible in this

model. However, representing the recirculation zone as a dead air or low velocity region

induces the desired effect.

Static Pressure Recovery

Figure 3-4 shows the static pressure recovery. The pre-diffuser induces most of the static

pressure recovery. The radial pressure distribution becomes uniform at the combustor exit

as a result of turbulent mixing.

Total Pressure Loss

Figure 3-5 demonstrates that most of the total pressure loss occurs in the dump region.

The loss coefficient is aproximately 0.6 in the recirculation zones. In the core streams,

CL is approximately 0.1. Further downstream along the ID and OD flow paths, the loss

coefficients of each stream approach 0.42 due to turbulent mixing.

3.3.2 Validation

Following the calibration procedure, a parametric study involving the aforementioned per-

formance metrics was performed in order to determine CFLOW’s level of modeling accuracy.

In the following figures, the performance metrics for CFLOW and the Lohmann study are

denoted with the suffixes ’n’ and ’exp’, respectively.

Pre-diffuser Static Pressure Recovery

Figure 3-6 shows that the pre-diffuser static pressure recovery predicted by CFLOW closely

matches the experimental data. The maximum error between the two curves is approx-

imately 2 percent. In addition, CFLOW captures the general trend for this metric. As
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Figure 3-3: Flow Plot: Mach Number

Figure 3-4: Flow Plot: Static Pressure Recovery

Figure 3-5: Flow Plot: Total Pressure Loss
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the cowl moves closer to the pre-diffuser, there is a slight back-pressuring effect, which is

represented as an increase in Cp12
as xd/D decreases.

Overall Diffuser Static Pressure Recovery

The overall diffuser static pressure recovery predicted by CFLOW matches the experimental

data as well (Figure 3-7). In CFLOW, Cp13
decreases as the dump gap length increases. In

addition, the error between the values of the two curves is less than 4 percent. Because the

margin of error of the pressure measurements was only 4 to 8 percent of their magnitudes,

the error between the two curves is insignificant.

Overall Total Pressure Loss

Figure 3-5 shows that the CL varies from stream to stream. In order to compute CL13
in

CFLOW, mass-averaged measurements were taken at the combustor exit. As the Lohmann

data illustrates (Figure 3-8), the dump loss is constant as the dump gap length increases

from 0.43 to 2.0, then it slightly increases as xd/D further rises. The dump loss predicted

by CFLOW is roughly constant over a range of dump gap lengths. The CFLOW results do

not approximate the moderate increase in the dump loss with increase dump gap length.

In addition, CFLOW overpredicts the dump loss by as much as 30 percent.
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Chapter 4

Turbulent Integral Shear Layer

Model

In this chapter, the Turbulent Integral Shear Layer Model is proposed as an improvement

over the algebraic model. First, the modeling assumptions are presented. Second, the

governing equations for this turbulence model are derived and discretized. Finally, the

results of this model are compared to those of the algebraic model and the experimental

combustor/diffuser performance studies.

4.1 Theoretical Approach

In Chapter 3, the algebraic turbulence model accurately predicted the pre-diffuser and

overall diffuser pressure recoveries as the dump gap length was varied. However, neither

the general trend nor the absolute magnitudes of the dump loss were accurately predicted.

The error in predicting the dump loss suggests that the mixing processes in the dump

region and diffuser are not modeled accurately enough. In addition, this simple approach

to quantifying the shear stress source terms is based on the experimental and theoretical

results for simple free plane mixing layers and turbulent boundary layers, where some of

the modeling assumptions, such as small velocity differences, negligible pressure gradients,

and small streamwise curvature are incorrect in the dump region. The eddy viscosity model

and the self-similar velocity profile both fail when these assumptions are no longer valid.

The spatial plane mixing layer does not grow symmetrically with respect to a horizontal

centerline (Figure 4-1). It spreads into the low-speed stream and entrains fluid into it [8].
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In addition, the free stream velocities are not exactly parallel. Thus, there is mass and

energy transport across a plane mixing layer that is not taken into account in the algebraic

model.

The next step in improving the CFLOW turbulence model is to relax the relationship

between the eddy viscosity and mixing layer thickness governed by Equation 3.3 and permit

conduction and diffusion processes across the mixing layers in CFLOW. The turbulent

viscosity hypothesis is still retained at this step, but the relationship between the Reynolds

stress and the mean velocity gradient becomes a function of the flow conditions. Hence, the

one-equation model of turbulence that is proposed in this chapter treats the eddy viscosity

as an evolving quantity. Out of this new model comes a mechanism for conduction and

diffusion processes which govern the behavior of the plane mixing layer.

4.1.1 Modeling Assumptions

The assumptions for the Turbulent Integral Shear Layer Model are:

1. The mixing layer is thin ( δs

L
≪ 1).

2. The flow is highly turbulent (νt

ν
≫ 1).

3. The eddy viscosity and the shear layer thickness are state variables; Prandtl’s second

hypothesis is relaxed.
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4. Pressure gradients are negligible.

5. Streamline curvature effects are negligible.

6. Mass and energy transfer are not negligible across mixing layers.

7. Compressibility effects are negligible; the shear layer is incompressible.

4.1.2 Spalart-Allmaras Model

The Spalart-Allmaras (S-A) Equation [4] , an empirically-determined one-equation turbu-

lence model for the eddy viscosity transport, is

Dνt

Dt
= cb1Sνt +

1

σt
[∇ · (νt∇νt) + cb2(∇νt)

2] (4.1)

where S ≡ 1
2
(∂Ui

∂xj
+

∂Uj

∂xi
) is the rate of strain tensor, σt is the turbulent Prandtl number, and

cb1 and cb2 are empirically determined constants. They are calibrated for high Reynolds

number free shear flows and boundary layers. The kinematic viscosity does not enter into

the equation because “energy and information cascades flow only from the large scales to

the small scales” [4].

Drela [3] integrated the steady S-A equation and the continuity equation for a compress-

ible 2-D thin shear layer in order to produce an integral form of the S-A model. The steady

S-A equation for a thin shear layer is

ρu
∂νt

∂x
+ ρv

∂νt

∂y
= cb1ρνtS +

1

σt
[
∂

∂y
(ρνt

∂νt

∂y
) + cb2ρ(

∂νt

∂y
)2] (4.2)

and the continuity equation for a steady, compressible flow in a thin, 2-D shear layer is

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (4.3)

The axial velocity u, the radial velocity v, density ρ, and the eddy viscosity νt are defined

to be time-averaged quantities. Integrating the continuity equation and the steady Spalart-

Allmaras equation from the lower edge, Y1, to the upper edge, Y2 results in the integral

form of the S-A Equation.
Y2
∫

Y1

[νt( 4.3) + ( 4.1)]dy (4.4)
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d(ρeueδν)

dx
− cb1Pν − cb2Dν =

1

σt
[(ρνt

∂νt

∂y
)1 − (ρνt

∂νt

∂y
)2] + (ρEνt)2 − (ρEνt)1 (4.5)

where the eddy viscosity thickness and the production and diffusion integrals are defined

as:

δν =

Y2
∫

Y1

νt
ρu

ρeue
dy (4.6)

Pν =

Y2
∫

Y1

ρνtSdy (4.7)

Dν =

Y2
∫

Y1

ρ(
∂νt

∂y
)2dy (4.8)

The edge velocity, ue, is an arbitrary quantity for free mixing layers. Unlike a boundary

layer where the edge velocity is clearly the axial velocity component in the irrotational free

stream, ue is not readily identified for a plane mixing layer. In this analysis, ue ≡ 1
2
(U1+U2),

the average velocity of two adjacent streamtubes. The new term, the entrainment velocity

E, is defined as

E = u
dY

dx
− v. (4.9)

It is the velocity component normal to the edge of the mixing layer. The eddy viscosity

thickness and the production and diffusion terms are approximated by assuming that there

is no density variation within the mixing layer and that the velocity and eddy viscosity

profiles are:

u(
y

δ
) =

1

2
[U1 + U2 + (U1 − U2)cos(π

y

δ
)] (4.10)

νt(x,
y

δ
) =

π

2
νm(x)sin(π

y

δ
) (4.11)

These profiles contain properties consistent with the physical flow. The velocity gradient is

zero at the edges and maximum at the centerline. The eddy viscosity is maximum at the

centerline and zero at the edges.

Inserting these profiles and assumptions into the integral definitions yield:

δν = KNνmδ (4.12)

Pν = KP ρνm∆U (4.13)
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Dν = KDρ
ν2

m

δ
(4.14)

where ∆U ≡ U2 −U1 for U2 > U1. Inserting these terms and noting that the eddy viscosity

is zero at the edge of the mixing layer, the S-A Equation becomes

d(KNueνmδ)

dx
= cb1KP νm∆U +

cb2

σt
KD

ν2
m

δ
(4.15)

4.1.3 Karman-Integral Momentum Equation

The free mixing layer form of the von Karman Integral Momentum Equation has been

derived by Drela [3] in the following manner.

Start from the governing equations (continuity and x-momentum) in boundary layer

form.
∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (4.16)

ρu
∂u

∂x
+ ρv

∂u

∂y
= ρeue

due

dx
+

∂τ

∂y
(4.17)

where ue is the edge velocity.

Integrate the sum of both equations over the mixing layer

Y2
∫

Y1

[(u − ue)( 4.16) + ( 4.17)]dy (4.18)

These steps result in the second governing equation of the turbulence model.

d(ρeu
2
eθ)

dx
+ ρeueδ

∗due

dx
− τ1 + τ2 = ρ2E2(ue − u2) − ρ1E1(ue − u1) (4.19)

E1 and E2 are the entrainment velocites at Y1 and Y2, respectively (see Figure 4-1).

The displacement and momentum thicknesses are defined by:

δ∗ =

Y2
∫

Y1

(1 − ρu

ρeue
)dy (4.20)

θ =

Y2
∫

Y1

(1 − u

ue
)

ρu

ρeue
dy (4.21)

41



The entrainment velocity, E, is an extra unknown in the system, which must be modeled.

Prandtl [9] suggested that growth of a turbulent mixing layer was related to the fluctuating

transverse velocity component via
Dδ

Dt
∝ v′. (4.22)

v′ can be related to the Reynolds shear stress, −ρu′v′, by

v′ ∝ u′ ∝
√
−u′v′. (4.23)

Thus, the shear layer growth can be related to the Reynolds stress.

Dδ

Dt
= KE

√
−u′v′ (4.24)

Dδ

Dt
= KE

√

τs

ρ
(4.25)

KE is the entrainment constant, which should be calibrated to a nominal value.

The net entrainment velocity into the shear layer will result in its growth. This entrain-

ment of the outer fluid into the mixing layer takes place only when subject to Reynolds

stresses. Thus the net entrainment velocity, En, is

En = KE

√

τs

ρ
(4.26)

Substituting the turbulent viscosity hypothesis for shear stress into (4.26) yields

En = KE

√

νm(U2 − U1)

δ
(4.27)

Governing Equation

As previously stated, the edge velocity is defined to be the average velocity of the mixing

layer. After substituting this definintion into the right hand side of Equation 4.19, the von

Karman Integral Momentum Equation simplifies to

d(ρeu
2
eθ)

dx
+ ρeueδ

∗due

dx
− τ1 + τ2 = −1

2
ρ(E1 + E2)∆U (4.28)

42



In addition, the Reynolds stresses are negligible at the edges of the layer, which means that

τ1 = τ2 = 0 (4.29)

For a constant density shear layer subject to the assumed velocity cosine profile, the dis-

placement thickness is zero.

δ∗ = 0 (4.30)

Also, the momentum thickness can be simplified to

θ = fθδ (4.31)

where fθ is defined as:

fθ = −1

8

∆U

ue
(4.32)

A negative momentum thickness signifies that the shear layer is an excess of momentum

instead of a defect of momentum. Combining these assumptions into the von Karman

equation yields
d(u2

efθδ)

dx
= −1

2
(E1 + E2)∆U (4.33)

The net entrainment velocity is defined as

En = E1 + E2, (4.34)

The observed linear growth of the classical turbulent plane mixing layer means that the net

entrainment velocity is finite. The entire right-hand side of ( 4.33) and the uefθ term on

the left-hand side of ( 4.33) are constant for du
dx

= 0. Thus, dδ
dx

= constant confirms that

there must be a net entrainment of fluid through the mixing layer in order to match the

linear thickness growth.

By inserting Equation 4.34 and Equation 4.27 into Equation 4.33, the von Karman

Integral Momentum Equation becomes

d(u2
efθδ)

dx
= −1

2
KE

√

νm∆U

δ
∆U (4.35)
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4.1.4 Discretized Governing Equations

The integral turbulence model is calibrated to evolve as a classical plane mixing layer in the

case where the axial velocities of the inviscid streams are constant and the radial velocities

are zero. The eddy viscosity and the mixing layer thickness both grow linearly with x when

the freestream velocities are constant. The S-A Equation is calibrated by placing calibration

constant, Kc, on the right-hand side of Equation 4.15 and then solving for it. Substituting

Equation 4.10 and Equation 4.11 into Equation 4.7 and Equation 4.8 yields KP = KD.

After algebraic manipulation, the S-A Equation becomes

d(ueνmδ)

dx
= Kc(cb1νm∆U +

cb2

σt

ν2
m

δ
) (4.36)

Kc =
2Kδ

cb1 + cb2

σt
Kν

(4.37)

Kc is only a function of empirical constants, and, therefore, is a constant as well.

The von Karman Equation was calibrated in order to solve for the appropriate value

of KE , which is unknown otherwise. Substituting Equation 3.6 and Equation 3.7 into

Equation 4.35 yields

KE =
1

4

Kδ

K0.5
ν

∆U

ue
. (4.38)

KE and fθ are not constants but functions of the velocity field. In CFLOW, however, they

are calibrated based on the maximum velocity difference at the pre-diffuser inlet. Based on

these procedures, the linear growth rates of νm and δ are recovered when the axial velocities

are constant, and there are no radial components.

After this calibration procedure, the governing equations are discretized, linearized, and

then implemented in CFLOW.

(uave1
νT1δT1 − uave0

νT0δT0) = C1(∆uT0νT0 + ∆uT1νT1)∆x + C2(
ν2

T0

δT0

+
ν2

T1

δT1

)∆x (4.39)

fθ(u
2
ave1

δT1 − u2
ave0

δT0) = C3(
∆u1.5

T0ν
0.5
T0

δ0.5
T0

+
∆u1.5

T1ν
0.5
T1

δ0.5
T1

)∆x (4.40)

C1 =
1

2
Kccb1 (4.41)

C2 =
1

2
Kc

cb2

σt
(4.42)
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C3 =
1

4
KE (4.43)

uave =
1

2
(U1 + U2) (4.44)

4.1.5 Source Terms

Mass Transfer

The mass transport across streamsurface area, As, is

M̃ = ρEnAs (4.45)

where M̃ is the mass flow source term in the Conservation of Mass (see Chapter 2). Thus,

increasing the velocity difference raises the shear stress, which results in a greater net

entrainment of fluid into the low-speed stream.

Momentum Transfer

The Reynolds shear stress is governed by

τs = ρνm
∆U

δ
(4.46)

which must be resolved into the axial and radial directions. Respectively, the expressions

for the momentum transfer source terms (see Chapter 2), Sx and Sr, are

Sx = τsAsx̂ (4.47)

Sr = τsAsr̂ (4.48)

The convective momentum transfer source terms are defined in the following manner.

Scx = −ρEnuAsx̂ (4.49)

Scr = −ρEnvAsr̂ (4.50)
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Energy Transfer

The energy transfer source terms in the Conservation of Energy (Chapter 2) are finite in

the integral turbulence model. The heat transfer rate source term, Hs is finite only in the

burner region. For the studies conducted in Chapters 3 and 4, this term is set to zero.

Hs = 0 (4.51)

The enthalpy flux term, Htx is defined as:

Htx = M̃hT (4.52)

where M̃ is the mass transport across the cell edges and hT is the total enthalpy of the high

speed stream.

The work transfer term, Ws, is

Ws = τsue (4.53)

Flow Tangency

The flow tangency condition is updated in order to account for the entrainment component

of velocity across the control volume edges. The net entrainment velocity contributes a

radial component of velocity.

u
dr

dx
− v = En (4.54)

Turbulence Model Boundary Conditions

Additional boundary conditions are necessary due to the increased size of the system of

governing equations. Inlet values of the eddy viscosity, the mixing layer thickness, and the

turbulent length scale, ˆLturb, are prescribed based on the expressions (see Appendix B)

shown below,

δ̂ = 1 (4.55)

ν̂t = (νt/ν)
M

Reδo

(4.56)

ˆLturb =
ReL

Reδo

(4.57)
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Figure 4-2: Flow Plot: Mach Number

where ReL is the Reynolds number based on the length scale of the mean flow, Reδo
is the

Reynolds number based on the inlet mixing layer thickness, and M is the mean inlet Mach

number. In CFLOW, (νt/ν) = 102 and Reδo
= 104, which are ballpark values for turbulent

mixing layers.

4.2 Results

The results of the Turbulent Integral Shear Layer Model applied to the Lohmann study

do not yield physically accurate solutions in CFLOW at the calibration point (xd/D =

1.43). As Figure 4-2 shows, the high speed flow emanating from the pre-diffuser hugs the

burner walls, which leaves two large low-speed streamtubes adjacent to the diffuser walls.

A sufficient amount of turbulent mixing would cause the high speed streams to decrease

in velocity and the low speed streams to increase in velocity. According to continuity, a

concomitant effect is for the streamtube areas to increase in the high speed streams as their

velocities decrease. Similarly, the flow-through areas for the low speed streams decrease

as their velocities increase. This effect results in the closure of the recirculation zones.

However, Figure 4-4 shows that there is insufficient mixing in the dump region to close the

recirculation zones in this case. Figure 4-3 demonstrates that all of the pressure recovery

occurs in the pre-diffuser. The small pressure recovery provided by the diffuser is a direct

result of the low amount of turbulent mixing in the dump region and along the diffuser flow

paths. Further analysis of results from the integral model show that the eddy viscosity

decreases and the mixing layer thickness grows rapidly as the flow leaves the pre-diffuser
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Figure 4-3: Flow Plot: Static Pressure Recovery

Figure 4-4: Flow Plot: Total Pressure Loss
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and enters the dump region. This combined effect produces values of the shear stress that

are 3 to 4 orders of magnitude smaller those given in the algebraic model, which results

in low values of Reynolds shear stress (compared to the momentum flux) predicted by

Equation 4.46. In order to demonstrate the dramatic effects of sufficient mixing in the

dump region, Equation 4.46 has been amended with the mixing coefficient Cτ . Setting

Cτ = 103 offsets the low values of νm

δ
that have been previously described.

τs = Cτρνm
∆U

δ
(4.58)

4.2.1 Flow Plots

The following flow plots show the CFLOW results from the Lohmann case at the calibration

point, where xd/D = 1.43, Cτ = 103, and Cf = 0.02.

Mach Number (Cτ = 103)

As shown in Figure 4-5, the Reynolds shear stresses are high enough to close the recirculation

zones and properly mix out the flow downstream of the dump region. The increase in flow

area and the turbulent mixing processes decreases the Mach number as the flow travels

downstream.

Static Pressure Recovery (Cτ = 103)

Figure 4-6 shows that the most of the static pressure recovery occurs in the pre-diffuser. In

addition, the radial pressure distribution at the combustor exit is uniform.

Total Pressure Loss (Cτ = 103)

Figure 4-7 illustrates the increase in CL in the dump region and downstream of the burner

front end at a result of turbulent mixing. Momentum transfer between among the stream-

tubes in the ID and OD flow paths change the values of CL as the flow moves downstream.

As a result, the core streams, which have lower levels of total pressure loss than the recir-

culation zone streamtubes, have increasing levels of CL further downstream.
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Figure 4-5: Flow Plot: Mach number (Cτ = 103)

Figure 4-6: Flow Plot: Pressure Recovery (Cτ = 103)

Figure 4-7: Flow Plot: Total Pressure Loss (Cτ = 103)
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4.2.2 Validation

Following the calibration procedure in the previous section, a parametric study was per-

formed in order to compare the results of the integral model at Cτ = 103 with those of

the algebraic model and with experimental data from the Lohmann study. ’nt’ denotes the

CFLOW performance metrics for the integral model.

Pre-Diffuser Static Pressure Recovery

Figure 4-8 demonstrates that the pre-diffuser static pressure recovery for Cτ = 103 matches

the experimental data; the amended integral model curve overlaps the experimental data

curve.

Overall Diffuser Static Pressure Recovery

As shown in Figure 4-9, the amended model does not match the trend nor the absolute

magnitudes for the experimental value of Cp13
. As xd/D increases, the pressure recovery

increases when it should decrease. In addition, the pressure recovery is underpredicted by

a maximum of 9 percent.

Overall Total Pressure Loss

The dump loss slightly decreases as the dump gap length increases (Figure 4-10). Also, the

magnitude of the CL13
overpredicted by the amended integral model by 45 percent.

4.3 Discussion

These results show that the amended integral model does not capture the mixing processes

downstream of the pre-diffuser exit plane accurately. Simply increasing the value of Cτ

alone does not offset the modeling errors that possibly result from inaccurate choices of the

inlet boundary conditions for the turbulence model. The ability to decrease Reδo
to 103 or

increase νt/ν to 103 in CFLOW will decrease the growth of the mixing layer thickness and

increase the magnitude of the eddy viscosity in the pre-diffuser and dump regions. However,

the integral model cannot be solved under these conditions. The high nonlinearity of this

system may be a deterrent in achieving a reasonable solution using the current numerical

approach.

51



Pre-diffuser Recovery

0.42

0.425

0.43

0.435

0.44

0.445

0.45

0.455

1.43 2.43 3.43 4.43 5.43

x/D

C
p

12

Cp12_exp

Cp12_n

Cp12_nt

Figure 4-8: Pre-diffuser Static Pressure Recovery (Cτ = 103)
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Dump Loss
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Chapter 5

Summary and Future Work

5.1 Summary

A physics-based, reduced-order computational flow model for combustors has been devel-

oped. CFLOW models flows through combustors using multiple compressible and inviscid

streamtubes where the plane mixing layer is used as the mechanism for mass, momentum,

and energy transfer via turbulent mixing. Two turbulence models have been developed

which quantify these source terms.

The Algebraic Turbulent Shear Layer Model assumes that the eddy viscosity is con-

stant across the plane mixing layer and is related to the thickness via Prandtl’s second

hypothesis. Using this approach, an expression for the turbulent shear stress that only

depends on the velocity difference squared across the shear layer is derived. Conduction

and diffusion processes across the mixing layer are assumed to be negligible. The valida-

tion studies demonstrate that this model accurately predicts the pre-diffuser and overall

diffuser pressure recoveries. CFLOW predicts the behavior of the dump loss as the dump

gap changes. However, the magnitude of the dump loss is 30 percent greater in CFLOW

than was measured in the Lohmann study.

The Turbulent Integral Shear Layer Model assumes that the eddy viscosity varies sinu-

soidally across the plane mixing layer and that the mean quantity is a variable in CFLOW.

The Spalart-Allmaras model and the von Karman Integral Equation comprise the integral

model. The conduction and diffusion processes naturally come out of this turbulence model.

The level of turbulent mixing in the dump region is 3 to 4 orders of magnitude lower than

predicted by the algebraic model. A high speed jet hugs the burner tightly and does not mix
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out. This insufficient amount of turbulent mixing does not allow the recirculation zones in

CFLOW to close as they should. Thus, the flow predicted by using this turbulence model

is unphysical. Increasing the magnitudes of the Reynolds shear stresses through a mixing

constant results in the closure of the recirculation zones. However, the trend studies in

Section 4.2 show that the flow physics in the regions downstream of the pre-diffuser exit

plane are not accurately represented by the amended integral model. These modeling errors

are due, in part, to CFLOW’s inability to solve the flow for lower values of Reδo
and higher

values of (νt/ν).

5.2 Future Work

There are several features that require further development in order for CFLOW to accu-

rately predict combustor performance. A more robust numerical scheme should be imple-

mented in order to solve the flow for more reasonable initial conditions. In addition, some

of the basic features that should be implemented in order to arrive at a more complete

combustor model include streamwise curvature effects, the effects of dilution holes, a heat

release model, and blockage effects.

5.2.1 Augmented Newton Solver

The high nonlinearity of the Integral Turbulence Model’s governing equations prevent them

from being solved for reasonable initial guesses of the state vector. An improved version of

CFLOW’s Newton solver may permit solutions using initial conditions based on Reδo
< 104

and (νt/ν) > 102. As a result, the eddy viscosity may grow, instead of decrease, in the pre-

diffuser and dump regions, and the Reynolds stresses will increase enough to cause sufficient

levels of turbulent mixing.

5.2.2 Streamline Curvature

Mixing layers are strongly affected by streamline curvature [1]. Strong curvature causes

either an increase or decrease in the turbulence levels. These effects can be captured by

adding a rotation function to the production term in the Spalart-Allmaras turbulence model

[21].
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5.2.3 Dilution Hole Modeling

A dilution hole model for CFLOW should be one in which the dilution jet angle, the

jet velocity, and the discharge coefficient are functions of the pressure field. Thus, the

sensitivity of dilution air mass flow and jet angle to combustor mass flow split or back

pressure can be quantified. A good approach involves the use of empirical relationships for

the aforementioned quantities outlined in a paper by Adkins and Gueroui [18].

5.2.4 Heat Release and Emissions Models

A CFLOW heat release model would be a function of pressure, temperature, and equivalence

ratio. The sensitivity of combustor temperature rise to pressure and equivalence ratio

changes may be useful to study. In addition, an emissions model would enable the prediction

of NOx, Carbon Monoxide, unburned hydrocarbons, and other emissions. For example,

Kerrebrock [19] discusses the correlation between NOx production and combustor inlet

temperature.

5.2.5 Blockage Effects

Physical causes of blockage are not currently represented in CFLOW. For example, the

struts for the fuel lines are flow obstructions. They affect the mass flow split and total

pressure losses in combustors. Models for the mass flow defect and momentum drag induced

by the presence of blockage-causing apparati should be included.
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Appendix A

CFLOW User’s Manual

This appendix contains the CFLOW user’s manual. In order to run CFLOW, type the

following commands followed by the casename.

1. XPATHGEN: This file generates the geometry. First, XPATHGEN prompts the

user to enter number of axial control volume cells. Then, XPATHGEN asks the user

to input the location of the ’blockage streams relative to the pre-diffuser walls.’ The

blockage streams are streamtubes 1, 2, 6, and 7. This routine stores this data in

casename.ipd .

2. FLOWGEN: The file generates the initial condition for the flow field state vector.

FLOWGEN prompts the user to enter the Mach number of the core flow, the Mach

numbers of the blockage streams, the mass flow split, the ratio of specific heats, the

mixing layer constant, Kt, and the wall friction coefficient, Cf . This routine stores

this data in casename.ifd .

3. CFLOW: CFLOW reads in the information stored in the .ifd and .ipd files. Then

it solves the governing equations and satisfies all of the matching conditions. Finally,

it creates two output files: casename.opd and casename.ofd .

4. CVIZ: CVIZ plots the CFLOW results stored in the .ofd and opd files using Visual3.
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Appendix B

Dimensional Analysis

The inlet state variables and thermodynamic constants are non-dimensionalized in the fol-

lowing manner, where ’o’ denotes a reference quantity.

â =
a

Uo
(B.1)

û =
u

Uo
(B.2)

v̂ = 0 (B.3)

ρ̂ =
ρ

ρo
(B.4)

Ĉp =
Cp

Cpo
(B.5)

R̂ =
R

Cpo
(B.6)

T̂ =
CpT

U2
o

(B.7)

p̂ =
p

ρoa2
o

(B.8)

δ̂ =
δ

Lo
(B.9)

ν̂ =
ν

UoLo
(B.10)

L̂ =
L

Lo
(B.11)
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Currently in CFLOW, the reference velocity, Uo is set equal to the static speed of sound,

ao, and the reference length, Lo, is equal to the inlet duct height, Do. (Note that v is

zero due to the uniform flow condition at the inlet.) Subsituting these definitions into the

expressions above yields the following.

â = 1 (B.12)

û = M (B.13)

v̂ = 0 (B.14)

ρ̂ = 1 (B.15)

Ĉp = 1 (B.16)

R̂ =
γ − 1

γ
(B.17)

T̂ =
1

γ − 1
(B.18)

p̂ =
1

γ
(B.19)

δ̂ = 1 (B.20)

ν̂t =
νt

Uoδo
(B.21)

ˆLturb =
L

δo
(B.22)

ˆLmean =
L

Do
(B.23)

M is the inlet Mach number. ˆLmean is the length scale of the mean flow, and ˆLturb is the

length scale of the dynamic turbulence model.

The nondimensional forms of ν̂t and L̂ are the following.

ν̂t = (νt/ν)
M

Reδo

(B.24)

ˆLturb =
ReL

Reδo

(B.25)

(νt/ν) = 102 and Reδo
= 104, which are ballpark values for turbulent mixing layers.
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Appendix C

Plane Mixing Layer Growth

The linear growth rate of a free mixing layer can be derived from dimensional analysis in

the following manner.

Start with the continuity equation for an steady, incompressible, thin shear layer.

∂u

∂x
+

∂v

∂y
= 0 (C.1)

The axial component of the Navier-Stokes equations for an steady, incompressible, thin

shear layer which is not under the influence of any pressure gradients is

v
∂u

∂y
=

1

ρ

∂τ

∂y
(C.2)

The shear stress is computed using the turbulent viscosity hypothesis.

τ = ρ(ν + νt)
∂u

∂y
(C.3)

The flow is assumed to be turbulent, where

νt

ν
≫ 1 (C.4)

Thus, the approximate expression for the turbulent shear stress is

τ ≈ ρνt
∂u

∂y
(C.5)
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Substituting this expression into the x-momentum equation is

v
∂u

∂y
= νt

∂2u

∂y2
(C.6)

where the eddy viscosity is constant across the mixing layer. Prandtl’s second hypothesis

specifies the relationship between the eddy viscosity, the velocity difference across the mixing

layer, and the thickness of the layer.

νt = Kν∆Uδ (C.7)

Applying dimensional analysis to the continuity and momentum equations, the following

relationships are valid.

v ∼ Ū
δ

L
(C.8)

vU

δ
∼ νt

Ū

δ2
(C.9)

where Ū is the average velocity in the shear layer and L is the characteristic length. Inserting

the expression for v and the equation for eddy viscosity into the momentum equation yields

the following.
Ū2

L
∼ Kν

∆UŪδ

δ2
(C.10)

Ū

L
∼ Kν

∆U

δ
(C.11)

δ ∼ Kν
∆U

Ū
L (C.12)

Thus, for the case of two uniform streams with no velocity gradients, the mixing layer

thickness grows linearly.

δ(L) = (constant)L (C.13)
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